
Application Note AN-80
BridgeSwitch Family

www.power.com September 2020

BridgeSwitch FAULT Communication Interface

Introduction
This application note describes the software implementation guide for
the BridgeSwitch™ FAULT status communication interface feature. It
includes the overview of the BridgeSwitch FAULT status communication
interface, the state machine that captures and processes received
status updates, the reference code and its data structures, and the
demonstration of the software by displaying status updates through
UART terminal as well as an example fault protection implementation in
an inverter board.

BridgeSwitch FAULT Status Communication
Interface
A BridgeSwitch device can communicate status updates, including
internal and system level faults to the system MCU through its open
drain FAULT output. It uses a 7-bit word pattern followed by an odd
parity bit to report a status update.

The following sections describe the FAULT bus specifications in detail.

Hardware Configuration

To communicate all detected status updates to the system micro-
controller, all FAULT pins connects to a single-wire bus pulled up to the
system supply voltage. Figure 1 shows the typical interface of three
BridgeSwitch devices to the system MCU in a single-wire bus
configuration.

HB 1 HB 2 HB 3
IN

GND SG SG

FAULT FAULT FAULT

SGIDID

BPL

ID

System
µC

PI-8305-040517

RUPVUP

Figure 1. Single Wire Status Communication Bus with Device ID Programming.

The device ID pin connection allows each device to assign itself a
unique device ID depending on the device ID pin connection. This
device ID allows communicating the physical location of a detected
fault condition to the system micro-controller by pulling the FAULT bus
low for the respective device ID period tID at the start of status
communication.

Table 1 lists the device ID, resulting device ID time period tID, and how
to program the respective ID through ID pin connection.

Device ID tID ID Pin Connection

1 40 μs BPL Pin

2 60 μs Floating

3 80 μs SG Pin

Table 1 – Device ID Selection through ID Pin.

http://www.power.com
http://www.power.com

Rev. B 09/20

2

Application Note

www.power.com

AN-80

FAULT Status Communication Bus Specification

Status Encoding
The 7-bit word followed by a parity bit encodes the FAULT information.
Table 2 summarizes encoding of various status updates the device
may communicate to the system micro-controller. The status word
consists of five blocks with status changes grouped together that
cannot occur at the same time. This enables simultaneous reporting
of multiple status updates to the system micro-controller without
having to take care about fault priorities and a fault-reporting queue.

The last row (7-bit word “000 00 0 0”) encodes Device Ready status
and is used to communicate a successful power-up sequence to the
system, communicated when a certain fault is cleared and sent it to
acknowledge a status request the system MCU in case no fault is
present.

FAULT Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6

HV bus OV 0 0 1

HV bus UV 100% 0 1 0

HV bus UV 85% 0 1 1

HV bus UV 70% 1 0 0

HV bus UV 55% 1 0 1

System thermal fault 1 1 0

LS Driver not ready[1] 1 1 1

LS FET thermal warning 0 1

LS FET thermal shutdown 1 0

HS Driver not ready[2] 1 1

LS FET over-current 1

HS FET over-current 1

Device Ready (no faults) 0 0 0 0 0 0 0

Notes:
1. Includes XL pin open/short-circuit fault, IPH pin to XL pin short

circuit, and trim bit corruption.
2. Includes HS-to-LS communication loss, VBPH or internal 5 V rail out

of range, and XH pin open/short-circuit fault.

Table 2. Status Word Encoding.

Communication on the FAULT bus initiates for one of the following
reasons:

• Ready for mission mode communication after a successful
power-up.

• A FAULT status register update communication initiated by one of
the devices.

• A current status communication following a query of the system
micro-controller.

http://www.power.com
http://www.power.com

Rev. B 09/20

3

Application Note

www.power.com

AN-80

Figure 2 depicts the FAULT interface communication flowchart for all
of those three cases.

Yes

)

?

0. Power-Up

1. Device ID
Determined

(tID)?

2. Load FAULT
Register into

Transmit Register
(7-bit word)

Yes

No

3. VFAULT>VFAH
for ≥tSS?

Yes

5. Release
FAULT Pin

4. Send Device ID
(FAULT Pin <VFAL)

for tID

7. Send FAULT in
Transmit Register

(7-bit word)

8. Send Parity Bit

9. Send End Period
(tLO)

10. Release FAULT
Pin & Idle for tIDLE

(2x tSS

11. Mission Mode

12. FAULT
Status

Change?

13. FAULT
Status = Transmit

Register?

14. VFAULT<VFAL
for tSYSID?

Yes

16. VFAULT<VFAL
for tLARES ?

17. Reset
Fault Latch

15. VFAULT>VFAH

Yes

Yes

No

No

No

No

No

Yes

Yes

6. VFAULT>VFAH?
NoNo

PI-8306-050418

Figure 2. Status Communication Flowchart.

A status update communication always starts with bus arbitration
initiated by the communicating device. It transmits the respective
device ID Time Period tID by pulling down the FAULT pin if the bus has
been quiet for at least 80 μs. After the device has won bus
arbitration the current fault register (7-bit word) followed by the odd
parity bit and the transmission end signal is sent as depicted in the
communication flowchart (Figure 2).

Bit Stream Timing
Figure 3 depicts the bit stream timing diagram BridgeSwitch uses for
a status update communication. The two logic states are encoded
with two different voltage signal high-time periods at the FAULT pin
followed by a low-time period tLO (typically 10 μs). A logic “1” is
encoded with a period tBIT1 (typically 40 μs) and a logic “0” is encoded
with a period tBIT0 (typically 10 μs). Table 3 lists the timing table of
the FAULT status communication.

http://www.power.com
http://www.power.com

Rev. B 09/20

4

Application Note

www.power.com

AN-80

System
Clock

FAULT
Bus

ID Fault ParityArbitration

0 0 01

Steady
State

t ID tBit1tBit0tLOtSS tCLK tLO

End

0 0 0 0

Steady
State tTRANSMIT

PI-8307-032917

Figure 3. Status Communication Bit Stream.

Symbol Description Logic State Period (Typical)

tID Device ID 0 Refer to Table 1

tLO Low-time 0 10 μs

tBit0 Logic 0 1 10 μs

tBit1 Logic 1 1 40 μs

Table 3. Bits Stream Timing Table.

After each completed transmission the device will idle for tIDLE
(typically 2 × tSS = 160 μs) before starting a new communication.
This enables other devices on the bus to communicate a possible
occurred status change or to respond to a status inquiry sent by the
system micro-controller.

The device communicates each detected status update only once. It
also reports a status change for all system level faults to the system
MCU. This includes DC bus undervoltage and overvoltage conditions
and external temperature monitor faults. It also reports all status
level changes for device internal faults with the exception of the LS
power FREDFET thermal shutdown.

The BridgeSwitch device also monitors the FAULT bus for possible
commands sent by the system micro-controller once it is in mission
mode. This could be a status update query (see step 15 in Figure 2)
by the micro-controller through its pulling the bus low for a period of
tSYSID (typically 160 μs). Or it could be a command to reset the device
status register including over-temperature shutdown latch and to
enter the power-up sequence mode (see step 17 in Figure 2) by
pulling the FAULT bus low for a period of tLARES (2x tSYSID = typically
320 μs). A power-up sequence is recommended after the MCU has
sent a latch reset command. Table 4 summarizes available system
micro-controller commands.

Bus Pulldown Period Command

tSYSID Status Query

tLARES(2xTSYSID)

Status register including
over-temperature latch reset and

power-up sequence mode

Table 4. System MCU Commands.

http://www.power.com
http://www.power.com

Rev. B 09/20

5

Application Note

www.power.com

AN-80

Software Implementation
This section describes the implementation of a state machine that
captures and handles status updates from each BridgeSwitch device
based on the status communication specification described in the
previous section.

The presented example uses an interrupt based implementation. The
user has to decide interrupt priority based on their specific application
requirements, such as motor control algorithm or type of micro-
controller.

System MCU Peripherals

To demonstrate the FAULT bus communication interface
implementation, the reference code was developed using Cypress
PSoC Creator IDE version 4.1 and tested on the Cypress PSoC 4 MCU
(CY8CKIT-042 PSoC Pioneer Kit). The MCU board provides an
onboard programmer and debugger interfaced through USB
connector to communicate to PC. The state machine was
demonstrated by printing received status updates on a UART console
depicted in the fault detection example section.

The FAULT status communication bus connects to a single bi-
directional MCU pin in an open Drain drive mode. The pin is attached
to a timer which captures both rising and falling edges of the signal.
The handling of the FAULT signal is interrupt based using two 16-bit
timer/counter blocks Bit_counter_timer and ID_counter_timer with a
12 MHz clock. The Bit_counter_timer captures signals from rising-to-
falling edge while the ID_counter_timer captures signals from
falling-to-rising edge. These two timers capture the count value and
generate an interrupt when falling edge and rising edge of the fault
signal has been received respectively. The fault state machine
routine handles each received interrupt.

ID_counter_timer

reload ov
un
cc

Interrupt lsr_fault_1

capture

clock

PI-8909-020619

Timer Counter

CLK_12 MHz
12 MHz

PSoC 4 MCU

Bit_counter_timer

reload ov
un
cc

Interrupt lsr_fault

capture

clock

Timer Counter

FAULT_Bus 1[0]

Software Description

The software implementation begins by initializing fault_bus_state
variable to idle state (STEADY_STATE). The fault_bus_state variable
captures the state of the FAULT signal once an interrupt is received.
The initialization function init_fault_bus_interrupt() initializes the
timer/counter capture port and enables the capture interrupt for both
the rising and falling edges. Whenever an interrupt service routine
(ISR) is triggered, fault_detect() function will be called. This function
is the fault state machine routine that captures and processes
received faults. The high-level view of the main SW flow is depicted
in Figure 5.

The fault state machine routine basically handles the ISR events and
updates fault_bus_state variable based on the current state in the
fault processing. The fault machine states are STEADY_STATE,
ID_DET, ARBITRATION, T_LO and BIT_DETECT. The detailed SW
flow diagram of the fault state machine is depicted in Figure 6.
Whenever a complete packet of fault status has been received with
no parity error it calls the fault processing function fault_process(),
else re-synchronization takes place where the fault_bus_state is reset
to STEADY_STATE.

The fault processing function decodes the received FAULT status
update and invokes required action. For example, shutting down the
inverter after receiving an over-current fault or reducing inverter
output power after receiving a thermal warning status update. The
FAULT status is stored in fault variable, which updates every time a
new status update has been received. The user should provide the
necessary action or decision of what the MCU should do depending
on the FAULT status that was received and the application
requirement. Table 5 lists the exemplary actions the system
micro-controller could take after receiving a STATUS update. The
fault_process() function SW flow diagram is depicted in Figure 7.

Figure 4. System MCU Peripherals for Fault Signal Handling Example with PSoC 4 MCU.

http://www.power.com
http://www.power.com

Rev. B 09/20

6

Application Note

www.power.com

AN-80

Status Query and Latch Reset Command
The software implementation of status query and latch reset
commands supports the following example use cases:

Status query command:
MCU may send a status query every time it wants to restart the
inverter (i.e. send PWM signals) after the inverter was off for some
time. For example after a reported line overvoltage or an over-
current fault. The main purpose for the status query is to check if all
devices are ready or if the MCU has to initiate a power-up sequence.
Figure 8 shows the flowchart for the status query example
implementation.

The status query routine checks the status of each BridgeSwitch
device to determine which of the following conditions applies:
A. Each device responds with a status READY, (no faults are

present): The MCU invokes a RESTART command to restart the
inverter and sends PWM signals to control inputs of BridgeSwitch.

B. One or more devices respond with a High-side driver not ready
fault: The MCU invokes a START UP command, which initiates a
power-up sequence to charge the High-side driver supply voltages
(VBPH with respect to HB pin) to its nominal value. After comple-
tion of the power-up sequence, the MCU follows up with another
status query command. If all devices respond with READY, the
MCU invokes a RESTART command to restart the inverter. If any
of the devices respond with a status other than READY, the
inverter will remain in shutdown mode.

The status query command is handled by the status_query()
function that pulls the FAULT bus low for tSYSID = 160 μs (refer to
Table 4). Each device follows this command and will send
successively their status. After a status query is sent by the system
micro-controller, the detected fault status will be processed by the
process_status_query_command() function (placed inside the fault
bus state machine function), which will store each detected device
status and process them in the status_query_action() function. The
status_query_action() function checks the received faults status and
provides actions following the conditions as described in Table 5.

Latch reset command:
MCU could send a latch reset command some time after one (or all)
of the devices had reported an over-temperature fault (and latched
off). Figure 9 shows the flow chart for the latch reset command
example. A power-up sequence is recommended after a latch reset
command. This ensures that the bypass high-side voltage is at the
nominal level before switching resumes.

The latch reset command is handled by the latch_reset() function
that pulls the FAULT bus low for tLARES = 320 μs (refer to Table 4) to
reset each device status. A power-up sequence is invoked after a
latch reset command is sent by the system micro-controller. Note
that the fault detect function must be disabled whenever a latch reset
command is sent.

http://www.power.com
http://www.power.com

Rev. B 09/20

7

Application Note

www.power.com

AN-80

Fault Status Word Software
Action/Decision Note

High-Voltage Bus OV 001 xxx x Shutdown Typically only one device monitors HV bus, MCU
shuts down entire inverter.

High-Voltage Bus UV 100% 010 xxx x None
MCU could increase motor output to nominal power
‒ if previous status update was UV85, UV70, or
UV50.

High-Voltage Bus UV 85% 011 xxx x Warning MCU could decrease motor output power
(speed/torque) to reduce inverter load.

High-voltage Bus UV 70% 100 xxx x Warning MCU could decrease motor output power
(speed/torque) to reduce inverter load.

High-Voltage Bus UV 55% 101 xxx x Warning MCU could decrease motor output power
(speed/torque) to reduce inverter load.

System Thermal Fault 110 xxx x Warning/Shutdown Depends which external component temperature is
monitored.

LS Driver Not Ready 111 xxx x Shutdown MCU could attempt an inverter restart after some
time to check if fault has cleared.

LS FET Thermal Warning xxx 010 x Warning
MCU could decrease motor output power
(speed/torque) to reduce inverter load or to limit
PCB temperature.

LS FET Thermal Shutdown xxx 10x x Shutdown

Latching shutdown may occur only at one device,
MCU should shut down entire inverter, MCU could
make an inverter restart attempt after a cooling off
period.

LS FET Over-Current xxx xx1 x Shutdown
Device automatically turn-off respective FREDFET
to protect motor from a stall or over-load condition.
MCU shuts down entire inverter.

HS Driver Not Ready xxx 11x x Shutdown MCU could attempt an inverter restart after some
time (a few seconds) to check if fault has cleared.

HS FET Over-Current xxx xxx 1 Shutdown
Device automatically turn-off respective FREDFET
to protect motor from a stall or over-load condition.
MCU shuts down entire inverter.

Device Ready (no faults) 000 000 0 None

MCU could restart inverter after previous status
update was HV Bus OV or LS/HS FET over-current.
It could also increase motor power to nominal if
previous status update was Thermal Warning.

Table 5. Exemplary Actions Taken by the Micro-controller After Receiving STATUS updates.

http://www.power.com
http://www.power.com

Rev. B 09/20

8

Application Note

www.power.com

AN-80

Software Flowchart

Below flowchart illustrates a high level view of the software for the
FAULT signal handling.

PI-8910-020719

Start

Initialize fault_bus_state =
STEADY_STATE

Initialize Counter/Timer and
Fault Bus Interrupts

FAULT
Signal ISR

Fault Bus State
Machine

Figure 5. High-Level View of the Fault Bus Implementation in Software.

http://www.power.com
http://www.power.com

Rev. B 09/20

9

Application Note

www.power.com

AN-80

Fault Bus State Machine

Figure 6 illustrates the SW flowchart of the fault bus state machine.

PI-8911-032819

Start

fault_bus_state

STEADY_STATE Reset bit_counter and parity _counter = 0
fault_bus_state = ID_DET

ID_DET

No

Read ID_counterYes

Yes

ARBITRATION

No

fault_bus_state =
T_LO

Yes

T_LO

No

bit_counter
<=7

fault_bus_state = BIT_DETECTYes

No

fault _bus_state =
STEADY_STATE

Parity error

process status query
command

process fault

No

No

 ID_count_value
is valid

fault_bus_state =
ARBITRATION

Yes

fault_bus_state =
STEADY_STATE

Yes

YesYes

No

No

BIT_DETECT Read_Bit_CounterYes

BIT_count_value =
tBit0

Update fault data
bit_counter++

Yes

No

BIT_count_value =
tBit1

Update fault data
bit_counter++

parity_counter++

Yes fault_bus_state =
T_LO

End

fault_bus_state =
STEADY_STATE

No

No

Status query
command

Yes

Figure 6. Fault Bus State Machine.

http://www.power.com
http://www.power.com

Rev. B 09/20

10

Application Note

www.power.com

AN-80

Figure 7 illustrates the SW Flowchart of the Fault Processing Function.

Has Fault in
GROUP 1

Start

DEVICE _READY

Fault Data

Has Fault in
GROUP 3

Fault Action
Yes

No Action
Yes

Has Fault in
GROUP 2

Fault Action
Yes

Fault Action
Yes

End

No

No

No

Get the Fault Code in the
Fault_Status _Info_Array

Print Fault Status
Information via

UART

Get Fault _Code
MCU Fault Action

ACTION _SHUTDOWN e.g. MCU Shutdown
Yes

ACTION _WARNING e.g. Reduce Power
Yes

ACTION _NONE e.g. No Action
Yes

No

No

End

Fault Action

PI-8912-020719

Figure 7. Fault Processing Function.

The fault data received may contain more than one type of status
update and the fault processing function should be able to handle
each fault type. Fault bits, which cannot occur at the same time, are
grouped together to determine the fault type. Table 6 lists the status

word groups. A fault from GROUP1, GROUP2, Low-side FET
over-current and High-side FET over-current can be reported
simultaneously within a single status word.

http://www.power.com
http://www.power.com

Rev. B 09/20

11

Application Note

www.power.com

AN-80

GROUP FAULT Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6

GROUP1

HV bus OV 0 0 1

HV bus UV 100% 0 1 0

HV bus UV 85% 0 1 1

HV bus UV 70% 1 0 0

HV bus UV 55% 1 0 1

System thermal fault 1 1 0

LS Driver not ready[1] 1 1 1

GROUP2

LS FET thermal warning 0 1

LS FET thermal shutdown 1 0

HS Driver not ready[2] 1 1

LS FET over-current 1

HS FET over-current 1

Table 6. FAULT Status Groups.

In this exemplary implementation, the fault action function will be
called for every reported fault type. The fault action function picks
from the FAULT_STATUS_INFO_ARRAY a specific fault action
corresponding to the fault code, which the MCU then subsequently
executes. Refer to Table 5 for a list of possible specific actions.
Actions following reported status updates need to be adjusted
depending on specific application requirements.

The Fault Detection Example paragraph in this document demonstrates
the status update decoding by means of displaying the fault status via
UART console. The paragraph also illustrates specific actions the
MCU takes in a 3-phase inverter board.

http://www.power.com
http://www.power.com

Rev. B 09/20

12

Application Note

www.power.com

AN-80

PI-8911-020719

--

Status Query
 Command

FAULT
Status Data

FAULT Bus State
Machine

Store Captured
Status of each

Devices

All Devices has
READY Status

Inverter RestartYes

FAULT Status only HS
Driver not Ready

Start up Sequence

End

No

Start up Attempt
Completed

Yes

Yes

No

No

 Figure 8. Status Query Command Processing Function.

PI-8947-031919

OTP Latch
Shutdown

MCU Reset

Power-up
Sequence

 Figure 9. Latch Reset Command Function.

http://www.power.com
http://www.power.com

Rev. B 09/20

13

Application Note

www.power.com

AN-80

Reference Code Data Structures

Fault State Machine States
Below are the fault bus states which determine the current fault signal state during detection process.

 STEADY_STATE =0,
 ID_DET,
 ARBITRATION,
 T_LO,
 BIT_DETECT,

Fault_Status_Info_Array
This FAULT_STATUS_INFO array is a list of specific actions following a decoded fault status update.

 {HV_BUS_OV, ACTION_SHUTDOWN},
 {HV_BUS_UV_100, ACTION_NONE},
 {HV_BUS_UV_85, ACTION_WARNING},
 {HV_BUS_UV_70, ACTION_WARNING},
 {HV_BUS_UV_55, ACTION_WARNING},
 {SYSTEM_THERMAL_FAULT, ACTION_SHUTDOWN},
 {LS_DRIVER_FAULT, ACTION_SHUTDOWN},
 {LS_FET_THERMAL_WARNING, ACTION_WARNING},
 {LS_FET_THERMAL_SHUTDOWN, ACTION_SHUTDOWN},
 {HS_DRIVER_FAULT, ACTION_SHUTDOWN},
 {LS_FET_OVERCURRENT, ACTION_SHUTDOWN},
 {HS_FET_OVERCURRENT, ACTION_SHUTDOWN},

For example, the entry for overvoltage {HV_BUS_OV, ACTION_SHUTDOWN} indicates that the MCU should shut down the system when this
error occurs.

In this implementation, the specific actions following a fault status update are:
ACTION_SHUTDOWN,
ACTION_WARNING,
ACTION_NONE,

http://www.power.com
http://www.power.com

Rev. B 09/20

14

Application Note

www.power.com

AN-80

Fault Status Codes
Fault states which can occur are:

 //GROUP1 FAULTS
 HV_BUS_OV = 4u,
 HV_BUS_UV_100 = 2u,
 HV_BUS_UV_85 = 6u,
 HV_BUS_UV_70 = 1u,
 HV_BUS_UV_55 = 5u,
 SYSTEM_THERMAL_FAULT = 3u,
 LS_DRIVER_FAULT = 7u,

 //GROUP2 FAULTS
 LS_FET_THERMAL_WARNING = 16u,
 LS_FET_THERMAL_SHUTDOWN = 8u,
 HS_DRIVER_FAULT = 24u,

 //LS FET OVERCURRENT
 LS_FET_OVERCURRENT = 32u,

 //HS FET OVERCURRENT
 HS_FET_OVERCURRENT = 64u,

 //FAULT CLEAR
 DEVICE_READY = 128u,

FAULT_STRUCT
This structure contains the fault code and device id of the occurring fault.

dev_id
fault

http://www.power.com
http://www.power.com

Rev. B 09/20

15

Application Note

www.power.com

AN-80

/* ==
 * THE SOFTWARE INCLUDED IN THIS FILE IS FOR GUIDANCE ONLY.
 * Power Integrations SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR
 * CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM USE OF THIS
 * SOFTWARE.
 * ==*/

/**
* Function Name: void fault_detect(void)

*
* Summary:
* This function is the state machine for the fault bus.
*
* Parameters: None
*
* Return: None
**/

void fault_detect(void)
{

 switch(fault_bus_state)
 {
 case STEADY_STATE: bit_counter = 0;
 parity_counter = 0;
 /* change state to ID detect */
 fault_bus_state = ID_DET;
 break;

 case ID_DET: /* change state to ARBITRATION */
 fault_bus_state = ARBITRATION;
 /*Read ID_counter_timer capture value */
 ID_count_value = Read_ID_Counter;

 if((ID_count_value >= ID_40uS_MIN)&&(ID_count_value <= ID_40us_MAX))
 {
 //Device 1
 fault_struct.dev_id = DEVICE_ID_1; }

 else if((ID_count_value >= ID_60uS_MIN)&&(ID_count_value <= ID_60us_MAX))
 {
 //Device 2
 fault_struct.dev_id = DEVICE_ID_2; }

Reference Code

This example code was developed using the PSoC Creator IDE version
4.1 tested on the CY8CKIT-042 PSoC Pioneer Kit device with DER-654
reference design inverter board. Below code presents reference
functions associated with the fault signal processing. The reference
code presented excludes the code snippet that prints fault status
information through UART console (refer to the Notes paragraph for
more details). Please refer to the provided code file for the definition
of other variables used.

http://www.power.com
http://www.power.com

Rev. B 09/20

16

Application Note

www.power.com

AN-80

 else if((ID_count_value >= ID_80uS_MIN)&&(ID_count_value <= ID_80us_MAX))
 {
 //Device 3
 fault_struct.dev_id = DEVICE_ID_3; }

 else {

//Re-synchronize fault detection if
//invalid ID was received

 fault_bus_state = STEADY_STATE; }

break;

case ARBITRATION: /* change state to T_LO */

fault_bus_state = T_LO;

 break;

case T_LO: if(bit_counter <= 7)
 {

/* change state to BIT_DETECT*/
 fault_bus_state = BIT_DETECT; }

else
 {

/* change state to STEADY_STATE */
fault_bus_state = STEADY_STATE;

if(!(parity_counter & 1))

 {

//Parity Error
 }

 else

//Process fault
 process_fault();
 }

 }
 break;

http://www.power.com
http://www.power.com

Rev. B 09/20

17

Application Note

www.power.com

AN-80

1.

case BIT_DETECT: /* Read Bit_counter_timer capture value*/
 BIT_count_value = Read_Bit_Counter;

 if((BIT_count_value >= T_BIT0_MIN) && (BIT_count_value <= T_BIT0_MAX))
 {
 /* change state to T_LO*/
 fault_bus_state = T_LO;

 //update fault status variable
 fault_struct.fault = fault_struct.fault & ~(1 << bit_counter);
 bit_counter++;
 }
 else if((BIT_count_value >= T_BIT1_MIN)&&(BIT_count_value <= T_BIT1_MAX))
 {
 /* change state to T_LO*/

 fault_bus_state = T_LO;

 // update fault status variable
 fault_struct.fault = fault_struct.fault | (1 << bit_counter);
 parity_counter++;
 bit_counter++;
 }
 else {
 //Re-synchronize fault detection when invalid BIT was received
 fault_bus_state = STEADY_STATE;
 }

 break;

 default:
 break;

 }

}

/**************************end of function ********************************/

http://www.power.com
http://www.power.com

Rev. B 09/20

18

Application Note

www.power.com

AN-80

/**
* Function Name: void process_fault(void)

*
* Summary:
* This function is to process fault after receiving it.
*
* Parameters: None
*
* Return: None
*
**/
void process_fault(void){

 /*If the received fault is DEVICE_READY*/
 if(fault_struct.fault == DEVICE_READY){

 //user own implementation
 }

 else{

 /*Low-side FET Overcurrent*/
 if((fault_struct.fault & BIT5) != 0){
 tfault = (fault_struct.fault & BIT5);
 action_fault(tfault);
 }

 /*High-side FET Overcurrent*/
 if((fault_struct.fault & BIT6) != 0){
 tfault = (fault_struct.fault & BIT6);
 action_fault(tfault);
 }

 /*Group1 Faults*/
 if((fault_struct.fault & GROUP1) != 0){
 tfault = (fault_struct.fault & GROUP1);
 action_fault(tfault);
 }

 /*Group2 Faults*/
 if((fault_struct.fault & GROUP2) != 0){
 tfault = (fault_struct.fault & GROUP2);
 action_fault(tfault);
 }

 }

 }

/******************************end of function******************************/

http://www.power.com
http://www.power.com

Rev. B 09/20

19

Application Note

www.power.com

AN-80

/**
*
* Function Name: void fault_action(unit8)

*
* Summary:
* This function is to command an action after a fault is received
*
* Parameters: masked fault by group
*
* Return: None
*
**/

void action_fault(uint8 tfault){

/*Look the fault code into the fault_status_info_arr array and the
corresponding MCU action*/

 int loop_count = sizeof(fault_status_info_arr)/sizeof(FAULT_STATUS_INFO);
 for (int i=0; i<=loop_count; i++){

 if(tfault != (fault_status_info_arr[i].fault_code))
 continue;

 switch(fault_status_info_arr[i].fault_action){

 case ACTION_NONE:
 /* do nothing */
 break;

 case ACTION_WARNING:
 /* user own implementation */
 break;

 case ACTION_SHUTDOWN:
 /* Shutdown MCU */
 break;

 }

 /**OPTIONAL -print fault information for debugging purposes only**/
 print_fault_info(tfault);

 }

}

/******************************end of function******************************/

http://www.power.com
http://www.power.com

Rev. B 09/20

20

Application Note

www.power.com

AN-80

The code below presents the reference functions associated with the
status query and latch reset command example implementation
described in this document. The call to status query and latch reset
commands should be handled separately in the actual implementation
depending on each user use cases. Please refer to the provided code
file for the definition of the variables used.

/**

* Function Name: void status_query(void)

*
* Summary:
* This function is to command a status query
*
* Parameters: None
*
* Return: None
*

**/

void status_query(void){

 /*Clear FAULT Bus ISRs*/
 FAULT_Bus_ClearInterrupt();

 /*Pull down the FAULT Bus for 160 uS*/
 FAULT_Bus_Write(0);
 CyDelayUs(160);

 FAULT_Bus_Write(1);

 /*Enable FAULT_Bus ISRs*/
 init_fault_bus_interrupt();

 /*Set status query flag*/
 status_query_state = TRUE;

}

http://www.power.com
http://www.power.com

Rev. B 09/20

21

Application Note

www.power.com

AN-80

/**

* Function Name: void process_status_query_command(void)

*
* Summary:
* This function is to process the status query command
*
* Parameters: None
*
* Return: None
*

**/

void process_status_query_command(){

 //store each devices fault status
 device_fault_arr[fault_struct.dev_id] = fault_struct.fault;

 //increment device_counter
 device_counter++;

 if(device_counter == DEVICE_COUNT){

 //status_query_action
 status_query_action();

 //reset status query state
 status_query_state = FALSE;

 //reset device counter
 device_counter = 0;

 }

}

http://www.power.com
http://www.power.com

Rev. B 09/20

22

Application Note

www.power.com

AN-80

/**

* Function Name: void status_query_action(void)

*
* Summary:
* This function is to process the captured fault status from a status query
* command
* Parameters: None
*
* Return: None
*

**/
void status_query_action(void){

 //Function that checks if all devices are READY
 if (device_ready_check()){

 /*All devices are READY, Inverter restart function should be placed here
 *
 */ }

 //Function that checks for only HS driver not ready fault
 else if(hs_driver_not_ready_check()){

 //Command a startup sequence after the first status query command
 if(startup_flag == FALSE){

 /*Startup sequence function should be placed here
 *
 */

 /*Check the status if HS not ready fault/s is/are cleared*/
 status_query();

 //Assert startup_flag after start up sequence
 startup_flag = TRUE;
 }
 else{

 //HS driver not ready fault still exists

 //De-assert startup_flag
 startup_flag = FALSE;

 }
 }
 else{

 //Other faults are present
 startup_flag = FALSE;
 }

}

http://www.power.com
http://www.power.com

Rev. B 09/20

23

Application Note

www.power.com

AN-80

/**

* Function Name: boolean device_ready_check(void)

*
* Summary:
* This function is to check if all devices are ready
*
* Parameters: None
*
* Return: boolean
*

**/

boolean device_ready_check(void){

 uint8 tfault_status =0;

 //Check if all devices are READY
 for(uint8 i=0; i<sizeof(device_fault_arr); i++){

 tfault_status |= device_fault_arr[i];

 }

 //If all devices are READY
 if(tfault_status == DEVICE_READY){

 //return TRUE
 return TRUE;

 }else{

 //return FALSE
 return FALSE;
 }

}

http://www.power.com
http://www.power.com

Rev. B 09/20

24

Application Note

www.power.com

AN-80

/**

* Function Name: boolean hs_driver_not_ready_check(void)

*
* Summary:
* This function is to check if all devices are READY
*
* Parameters: None
*
* Return: boolean
*

**/

boolean hs_driver_not_ready_check(void){

 //Default hs_driver_fault_flag
 hs_fault_flag = FALSE;

 for(uint8 i=0; i<sizeof(device_fault_arr); i++){

 if((device_fault_arr[i] == DEVICE_READY) || (device_fault_arr[i] ==
HS_DRIVER_NOT_READY_FAULT)){

 if(device_fault_arr[i] == HS_DRIVER_NOT_READY_FAULT){

 //Assert hs_driver_fault flag
 hs_fault_flag = TRUE;

 continue;
 }

 }else{

 //Other fault/s is/are present
 return FALSE;
 }

 }

 return hs_fault_flag;

}

http://www.power.com
http://www.power.com

Rev. B 09/20

25

Application Note

www.power.com

AN-80

/**

* Function Name: void latch_reset(void)

*
* Summary:
* This function is to command latch reset
*
* Parameters: None
*
* Return: None
*

**/
void latch_reset(void){

 /*Disable FAULT Bus ISRs*/
 FAULT_Bus_ClearInterrupt();

 /*Pull down the FAULT Bus for 320 uS*/
 FAULT_Bus_Write(0);
 CyDelayUs(320);

 FAULT_Bus_Write(1);
 }
/**

* Function Name: void mcu_latch_reset(void)

*
* Summary:
* This function is to command latch_reset followed by a power up sequence
*
* Parameters: None
*
* Return: None
*

**/
void mcu_latch_reset(void){

 //latch reset command
 latch_reset();

 /*Power up sequence function should be placed here
 *
 *
 */

 //Enable FAULT Bus ISRs
 init_fault_bus_interrupt();

 }

http://www.power.com
http://www.power.com

Rev. B 09/20

26

Application Note

www.power.com

AN-80

Fault Detection Example
The presented FAULT detection examples and decisions made by the
micro-controller follow the exemplary actions listed in Table 5 using
the reference code detailed above.

The UART terminal displays the fault status information to illustrate
the fault state machine. The displayed information has a format of
[device ID, fault, action]. For example, UART message of W, STS,
and S represents the status update from Device W (device 1, 2 and 3
are designated U, V and W respectively), fault status is System
Thermal Shutdown (STS), and the MCU action is Shutdown (S).

Figure 10 depicts a reported system thermal fault and the exemplary
action of shutting down the inverter (see UART terminal output in
Figure 11).

Figure 10. Example Inverter Shutdown after System Temperature Status FAULT.

Figure 11. UART Terminal Output after Receiving a System Thermal FAULT.

Figure 12 depicts a reported low-side over-current fault and the
exemplary action of shutting down the inverter (see UART terminal
output in Figure 13).

Figure 12. Example of Inverter Shutdown after Receiving a Low-side
 Over-Current FAULT.

Figure 13. UART Terminal Output after Receiving a Low-Side Over-Current

 FAULT.

http://www.power.com
http://www.power.com

Rev. B 09/20

27

Application Note

www.power.com

AN-80

Figure 14 depicts a reported high-voltage bus UV85 fault with a
warning status. In this exemplary implementation, the MCU did not
take a specific action but only displayed a Warning status. See UART
terminal in Figure 15.

Figure 14. Warning Status after Receiving a High-Voltage Bus UV85.

Figure 15. UART Terminal Output after Receiving a High-Voltage Bus UV85.

Figure 16 depicts a reported high-voltage bus overvoltage and the
exemplary action of shutting down the inverter (see UART terminal
output in Figure 17).

Figure 16. Example of Inverter Shutdown after Receiving a High-Voltage Bus
 Overvoltage.

Figure 17. UART Terminal Output after Receiving a High-Voltage Bus

 Overvoltage.

http://www.power.com
http://www.power.com

Rev. B 09/20

28

Application Note

www.power.com

AN-80

MCU Commands Example
Figure 18 depicts an inverter restart after a status query command
following a shutdown caused by a line overvoltage fault condition.

Figure 18. Status Query Command After a Line Overvoltage Condition.

(1) A line overvoltage occurs and the inverter is shutdown with the OV
status depicted by Figure 19. (2) Overvoltage condition has cleared
and at (3) the system micro-controller sends a status query command
to check devices status. Figure 20 shows the status query command
and the respective status report from all three devices. All devices
reported READY and the system micro-controller restarts the inverter.

Figure 19. Inverter Shutdown After a Line Overvoltage Condition.

Figure 20. Status Query Command After a Line Overvoltage Condition
 (All Devices Reported READY).

http://www.power.com
http://www.power.com

Rev. B 09/20

29

Application Note

www.power.com

AN-80

Figure 21 depicts an inverter restart after a status query (2)
command following a shutdown caused by high-side driver not ready
fault (1).

Figure 21. Status Query Command After a High-Side Driver not Ready Fault.

In this example, the reported status update is only a High-side driver
not ready fault. The MCU will command a start-up routine (i.e.
applying a logic high to low-side PWM inputs INL for a periods of 100
ms). At (3) the MCU sends another status query command to check if
all devices are READY. In this example, all faults are cleared and all
devices are READY. The MCU initiates an inverter restart and sends
PWM signals to the BridgeSwitch control inputs INL and /INH.

Figure 22 shows the corresponding high-side driver not ready fault
status and Figure 23 shows the status query command and the
respective status report from all three devices after a start-up
sequence attempt. All devices reported READY and the system
micro-controller restarts the inverter.

Figure 22. Inverter Shutdown After a High-Side Driver not Ready Fault.

Figure 23 . Status Query Command After a Startup Sequence.

http://www.power.com
http://www.power.com

Rev. B 09/20

30

Application Note

www.power.com

AN-80

Figure 24 depicts a latch reset command following a latching
shutdown caused by an over-temperature fault. The MCU applies a
full power-up sequence after sending the latch reset command.

Figure 24. Latch Reset Command and a Power-Up Sequence After a Latching
 Over-Temperature Protection.

Figure 25 shows the latch reset command (1) and the default status
reports of High-side not ready (note that fault detection is disabled
when invoking latch reset command). The MCU applies start-up
(power-up) sequence after sending a latch reset command. Figure 26
depicts all devices reporting a READY (2) and then the inverter is
started.

Figure 25. Latch Reset Command and a Power-Up Sequence After a Latch OTP.

Figure 26 depicts successful completion of a power-up sequence with
all devices reporting a READY status.

Figure 26. Device Status After Start-Up Sequence.

http://www.power.com
http://www.power.com

Rev. B 09/20

31

Application Note

www.power.com

AN-80

Example Code Library
An example code library is available for download from the
BridgeSwitch product page (www.power.com) using the link below:

https://motor-driver.power.com/products/bridgeswitch-family/
bridgeswitch/

Notes
This application note describes displaying of fault information through
UART console for debugging purposes. The display execution should
be implemented in a polled manner to limit the load on the MCU.
Minimizing the amount of information displayed also reduces the load.

http://www.power.com
http://www.power.com
http://www.power.com
https://motor-driver.power.com/products/bridgeswitch-family/bridgeswitch/
https://motor-driver.power.com/products/bridgeswitch-family/bridgeswitch/

Revision Notes Date

A Initial release. 04/19

B Corrected typos in Table 2 and Table 6. 09/20

For the latest updates, visit our website: www.power.com
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations
does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY
HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

Patent Information
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one
or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of
Power Integrations patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set
forth at www.power.com/ip.htm.

Life Support Policy
POWER INTEGRATIONS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS
WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF POWER INTEGRATIONS. As used herein:

1. A Life support device or system is one which, (i) is intended for surgical implant into the body, or (ii) supports or sustains life, and (iii) whose
failure to perform, when properly used in accordance with instructions for use, can be reasonably expected to result in significant injury or
death to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the
failure of the life support device or system, or to affect its safety or effectiveness.

Power Integrations, the Power Integrations logo, CAPZero, ChiPhy, CHY, DPA-Switch, EcoSmart, E-Shield, eSIP, eSOP, HiperPLC, HiperPFS,
HiperTFS, InnoSwitch, Innovation in Power Conversion, InSOP, LinkSwitch, LinkZero, LYTSwitch, SENZero, TinySwitch, TOPSwitch, PI, PI Expert,
PowiGaN, SCALE, SCALE-1, SCALE-2, SCALE-3 and SCALE-iDriver, are trademarks of Power Integrations, Inc. Other trademarks are property of
their respective companies. ©2020, Power Integrations, Inc.

World Headquarters
5245 Hellyer Avenue
San Jose, CA 95138, USA
Main: +1-408-414-9200
Customer Service:
Worldwide: +1-65-635-64480
Americas: +1-408-414-9621
e-mail: usasales@power.com

China (Shanghai)
Rm 2410, Charity Plaza, No. 88
North Caoxi Road
Shanghai, PRC 200030
Phone: +86-21-6354-6323
e-mail: chinasales@power.com

China (Shenzhen)
17/F, Hivac Building, No. 2, Keji Nan
8th Road, Nanshan District,
Shenzhen, China, 518057
Phone: +86-755-8672-8689
e-mail: chinasales@power.com

Italy
Via Milanese 20, 3rd. Fl.
20099 Sesto San Giovanni (MI) Italy
Phone: +39-024-550-8701
e-mail: eurosales@power.com

Japan
Yusen Shin-Yokohama 1-chome Bldg.
1-7-9, Shin-Yokohama, Kohoku-ku
Yokohama-shi,
Kanagawa 222-0033 Japan
Phone: +81-45-471-1021
e-mail: japansales@power.com

Korea
RM 602, 6FL
Korea City Air Terminal B/D, 159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728, Korea
Phone: +82-2-2016-6610
e-mail: koreasales@power.com

Singapore
51 Newton Road
#19-01/05 Goldhill Plaza
Singapore, 308900
Phone: +65-6358-2160
e-mail: singaporesales@power.com

Taiwan
5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu Dist.
Taipei 11493, Taiwan R.O.C.
Phone: +886-2-2659-4570
e-mail: taiwansales@power.com

UK
Building 5, Suite 21
The Westbrook Centre
Milton Road
Cambridge
CB4 1YG
Phone: +44 (0) 7823-557484
e-mail: eurosales@power.com

Power Integrations Worldwide Sales Support Locations

Germany (AC-DC/LED Sales)
Einsteinring 24
85609 Dornach/Aschheim
Germany
Tel: +49-89-5527-39100
e-mail: eurosales@power.com

Germany (Gate Driver Sales)
HellwegForum 1
59469 Ense
Germany
Tel: +49-2938-64-39990
e-mail: igbt-driver.sales@power.com

India
#1, 14th Main Road
Vasanthanagar
Bangalore-560052 India
Phone: +91-80-4113-8020
e-mail: indiasales@power.com

http://www.power.com
http://www.power.com
http://www.power.com/ip.htm
mailto:usasales@power.com
mailto:chinasales@power.com
mailto:chinasales@power.com
mailto:eurosales@power.com
mailto:japansales@power.com
mailto:koreasales@power.com
mailto:singaporesales@power.com
mailto:taiwansales@power.com
mailto:eurosales@power.com
mailto:eurosales@power.com
mailto:igbt-driver.sales@power.com
mailto:indiasales@power.com

	Introduction
	BridgeSwitch FAULT Status Communication Interface
	Software Implementation
	Fault Detection Example
	MCU Commands Example
	Example Code Library

