Buck Converters Using The TOPSwitch ${ }^{\text {® }}$ Family

Stefan Bäurle
Tekelec Airtronic GmbH, Kapuzinerstraße 9, D-80337 Munich, Germany
Tel. +49 (0) 895164 187, Fax +49 (0) 895164 110, eMail: baeurle@tekelec.de

Indroduction

The use of the highly integrated power conversion IC TOPSwitch from Power Integrations in isolated flyback switching power supplies is well known and documented in the comprehensive company literature. Because of its unique flexibility, TOPSwitch can also be used in a forward, boost or buck configuration. The following paper describes the buck topology in detail and provides the equations necessary for designing circuits using TOPSwitch in this
same time. A detailed description of the functionallaty of TOPSwitch can be found in the Data Book and Design Guide.

In the circuit shown in figure 1, the voltage across the inductor L 1 is rectified and smoothed through D3 and C2 and supplies the internal logic in addition to providing the control loop feedback signal. D1 maintains current flow through the inductor during offtime of the TOPSwitch integrated MOSFET. When the input voltage is applied first, an

Figure 1. Basic buck converter with TOPSwitch
configuration. As in off-line power supplies, the integration of a Power MOSFET together with a PWM control, the start-up circuit, and a current and overtemperature protection offers significant benefits for DC/DC converters, where an isolation is not required. Designers can build very compact and cost effective power supplies capable of dealing with wide input voltage ranges.

Basic Circuit

The buck converter shown in figure 1, with an input voltage range from 24 V to 300 V and two output voltages with a total output power of 5 W represents the basic circuit. As in other topologies, the TOPSwitch operates here as power switch and PWM controller unit at the
internal current source within TOPSwitch charges C1. As soon as C 1 reaches 5.8 volts relative to the TOPSwitch Source pin, TOPSwitch starts to switch. Initially, the internal logic and the gate drive is supplied through the energy stored in capacitor C1. In addition, this capacitor is used together with its ESR for control loop compensation. When the output voltage reaches its regulated value, the TOPSwitch supply current is derived from the feedback current through D2. The linear regulator is needed in order to realize the second 5 V output, as the buck topology is - unlike the flyback topology - able to provide one output voltage only. The output voltage $\mathrm{V}_{\text {OUT }}$ is determined by the
regulated Control-Pin voltage $\mathrm{V}_{\mathrm{C}}=5.8 \mathrm{~V}$ and the zener voltage of D2.

$$
\begin{equation*}
V_{\text {OUT }}=V_{C}+V_{\mathrm{ZD} 2} \tag{1}
\end{equation*}
$$

Hence the minimum possible output voltage in this circuit is 5.8 V . If lower output voltages are required (5 V for instance), one has to use a linear regulator or look at slightly different circuits introduced later on in this paper.

The limiting paramaters of the input voltage range are the breakdown voltage of the respective TOPSwitch as well as its minimum and maximum duty cycle specifications, TOPSwitch is able to switch on the MOSFET. In terms of the MOSFET, the maximum specified breakdown voltage is 350 V for the TOP1xx family and 700V for the TOP2xx familiy. Regarding the minimum input voltage, TOPSwitch will start operating with drain voltages as low as 16 V . In cases where the input voltage is lower than 36 V , the user has to consider, that the TOPSwitch charging current for C1 during initial start-up decreases and hence, the turn-on delay of the output voltages increases. With a Control-Pin capacitor of 47uF and a drain voltage of 16 V , the turn-on delay is typically 450 msec . compared to 190 msec . at a drain voltage of 36 V or above.

The maximum duty cycle range of TOPSwitch is specified in the data sheet between 3% and 64%. The minimum and the maximum duty cycle, required in any particular design, is determined through the output voltage $\mathrm{V}_{\mathrm{OUT}}$, the forward voltage $\mathrm{V}_{\text {FD1 }}$ of D1 and the saturation voltage $V_{D S}$ of the MOSFET at the input voltage limits:

$$
\begin{align*}
& D C_{M I N}=\frac{V_{O U T}+V_{F D 1}}{V_{I N, M A X}-V_{D S}+V_{F D 1}} \tag{2}\\
& D C_{\text {MAX }}=\frac{V_{O U T}+V_{F D 1}}{V_{I N, M I N}-V_{D S}+V_{F D 1}} \tag{3}
\end{align*}
$$

For the calculation of the inductor L1 figure 2 is quite useful showing qualitatively the voltage and current waveforms in a buck converter. In order to ensure, that during the switch-off time toff of the integrated MOSFET, the voltage across the inductor
does not drop to zero, the current continues flowing through the inductor. The condition for this continuous mode is as follows:
$\Delta \mathrm{L}_{\mathrm{L}} \leq 2 \cdot \mathrm{I}_{\mathrm{OUT,MIN}}$
Figure 2. Voltage and current waveforms
$\mathrm{l}_{\text {Out,min }}$ is the sum of the minimum currents of

both outputs. $\mathrm{L}_{\text {MiN }}$ is the minimum inductance necessary, in order to just get a continuous operation. Switching frequency $f_{\text {Sw }}$ of TOPSwitch is internally fixed and trimmed to 100 kHz .
$\mathrm{L}_{\text {MIN }}=\frac{\left(\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\text {FD1 }}\right) \cdot\left(1-\mathrm{DC}_{\text {MIN }}\right)}{\mathrm{f}_{\mathrm{SW}} \cdot \Delta \mathrm{L}_{\mathrm{L}}}$
Thus, the real maximum current change $\Delta \mathrm{I}_{\text {LMAX }}$ in L1, peak current $\mathrm{I}_{\text {LMax }}$ through TOPSwitch and the inductor, and RMS current $\mathrm{I}_{\text {LRMS }}$ through L1 can be calculated with the selected value of L 1 at $\mathrm{DC}_{\text {min }}$:

$$
\begin{align*}
& \Delta \mathrm{I}_{\mathrm{LMAX}}=\frac{1}{\mathrm{~L}_{1}} \cdot\left(\mathrm{~V}_{\mathrm{OUT}}+\mathrm{V}_{\mathrm{FD} 1}\right) \cdot \mathrm{t}_{\mathrm{OFF}} \tag{6}\\
& \mathrm{I}_{\mathrm{LMAX}}=\mathrm{I}_{\mathrm{OUT}}+\frac{\Delta \mathrm{I}_{\mathrm{LMAX}}}{2} \tag{7}
\end{align*}
$$

$\mathrm{I}_{\text {LRMS }}=\sqrt{\mathrm{I}_{\text {OUT }}^{2}+\left(\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2 \cdot \sqrt{3}}\right)^{2}}$
With an inductance of $\mathrm{L} 1=1,3 \mathrm{mH}$, as used in the example shown, the maximum current change in the inductor $\Delta_{\text {LMAx }}$ is approximately 95 mA . Hence from equation (7) and (8), $\mathrm{I}_{\text {LMAX }}=575 \mathrm{~mA}$ and $\mathrm{I}_{\text {LRMS }}=530 \mathrm{~mA}$.

The current in inductor L1 has an AC and a DC component. The DC current is supplying the load and the AC current is flowing through capacitor C3. Thus this capacitance together with its ESR , determines the ripple voltage $\Delta \mathrm{U}_{\text {out }}$. The effective ESR can be decreased by adding a small ceramic capacitor in parallel to C3. $\mathrm{V}_{\text {OUt }}$ is the required output ripple voltage.

$$
\begin{align*}
& \mathrm{C}_{3}=\frac{\Delta \mathrm{L}_{\mathrm{LMAX}}}{8 \cdot \mathrm{f}_{\mathrm{SW}} \cdot \Delta \mathrm{~V}_{\mathrm{OUT}}} \tag{9}\\
& \mathrm{ESR}_{\mathrm{C} 3} \leq \frac{\Delta \mathrm{V}_{\mathrm{OUT}}}{\Delta \mathrm{I}_{\mathrm{LMAX}}} \tag{10}
\end{align*}
$$

There are several methods to calculate the required core for the inductor L1. This paper details two techniques to determine the required core in more detail. The first considers the energy storage capability LI^{2}, and subsequently the core size is chosen from core data published by the manufacturer [2]. This energy storage capability is equal to:
$\mathrm{L}_{\mathrm{LMAX}}^{2}=\mathrm{L}_{1} \cdot\left(\mathrm{I}_{\mathrm{OUT}}+\frac{\Delta \mathrm{I}_{\mathrm{LMAX}}}{2}\right)^{2}$
The second technique in choosing a suitable core is to determine the required effective magnetic core volume V_{E} :
$V_{E}=\frac{\mathrm{I}_{\mathrm{LMAX}} \cdot \mathrm{L}_{1} \cdot \mu_{\mathrm{e}} \cdot \mu_{0}}{\mathrm{~B}_{\text {oMAX }}^{2}}$
$\mathrm{B}_{\text {OMAX }}$ is the magnetic saturation flux density of the core material, which can be found in the core databook and μ_{e} is the effective permeability. For toroidal chokes without airgap, this effective permeability μ_{e} can be calculated as:
$\mu_{\mathrm{e}}=\frac{1}{\mu_{0}} \cdot \mathrm{~A}_{\mathrm{L}} \cdot \sum \mathrm{I} / \mathrm{A} \approx \mu_{\mathrm{i}}$
The specifications for the initial permeability μ_{i}, the inductance factor A_{L} and the magnetic core constant $\Sigma / / \mathrm{A}$ can also be found in the core databook. Once a core is selected, the required turns in order to get the desired inductance L has to be calculated with the inductance factor A_{L} :
$N=\sqrt{\frac{L_{1}}{A_{L}}}$
For a switching frequency of 100 kHz , the core material N67 [2] is suitable. The data sheet specifies the saturation flux density $\mathrm{B}_{0 \mathrm{max}}=510 \mathrm{mT}$ and the initial permeability $\mu_{i}=2300$. Thus, from (12) the required magnetic core volume is $\mathrm{V}_{\mathrm{E}}=8,3 \mathrm{~cm}^{3}$. The core size R36 offers a volume, closest to the calculated value. Made of the material N67, the inductance factor A_{L} is specified with 2300 nH . Hence 24 turns are required for the desired inductance $\mathrm{L}_{1}=1,3 \mathrm{mH}$.

The required wire diameter d is calculated with RMS current $I_{\text {LRMs }}$ and the allowable current density S . Typical values in buck converters for S range from $3 A / \mathrm{mm}^{2}$ to $8 \mathrm{~A} / \mathrm{mm}^{2}$ [3]. With the high switching frequencies, the skin effect must be considered. Usually the relative resistance increase $R(f) / R_{0}$ due the skin effect should be lower than 5 to 6\% [3].
$\mathrm{d}=2 \cdot \sqrt{\frac{I_{\text {LRMS }}}{S} \cdot \pi}$
$\mathrm{d}_{\text {MAX }}=4 \cdot \frac{\mathrm{R}(\mathrm{f})}{\mathrm{R}_{0}} \cdot \sqrt{\frac{\sigma_{\mathrm{Cu}}}{\pi \cdot \mathrm{f}_{\mathrm{SW}} \cdot \mu_{0}}}$
In the example of figure 1, for a current density of $S=5 A / \mathrm{mm}^{2}$ the required wire diameter is $0,37 \mathrm{~mm}$. This value is safely below the maximum diameter of $0,89 \mathrm{~mm}$ for an allowable resistance increase - caused by the skin effect - of 5%.

In the example circuit of figure 1, the tolerance of both output voltages is $\pm 5 \%$. For
the 12 V output it's determined by the zener diode and the regulated control pin voltage V_{c}. By using a zener diode with a lower tolerance, 1% for instance, the regulation can be improved.

The diodes D1 and D3 should have a reverse recovery time $t_{R R}$ lower than the Leading Edge Blanking Time of typical 150ns [3] of TOPSwitch in order to prevent premature termintion of the switching pulse. During this time, the internal current protection is deactivated on every switch-on cycle of the MOSFET in order to tolerate the unavoidable parasitc capacitive currents. Therefore reverse recovery times t_{RR} lower than 75ns
inductor during off-time of the integrated MOSFET. The voltage across the choke is rectified and smoothed through D1 and C2 in order to drive the opto-coupler. Zener diode D2 ensures that the voltage across the optotransistor is lower than the breakdown voltage. Hence this diode has to be selected in accordance with the maximum input voltage and the opto-coupler rating.

The load regulation of this circuit as shown is approx. $\pm 5 \%$ at load variations from 10 to 100%. This can be improved by using a zener diode with a tolerance of 1% or 2%. The same equations and rules demonstrated for the circuit of figure 1 can be used in order

Figure 3. Buck Converter with TOPSwitch in an Opto-Coupler Configuration
are a practicable choice. Another criterion of the diode selection is the peak inverse voltage, which is applied at both diodes during switch-on of TOPSwitch. This peak inverse voltage is for D1 as high as the maximum input voltage and for D2 it's the difference between input and output voltage.

Second Circuit Example

Output voltages lower than the regulated control-pin voltage $\mathrm{V}_{\mathrm{C}}=5.8 \mathrm{~V}$ can be realized without an linear regulator by using an inexpensive opto-coupler. Figure 3 shows such an circuit.
The output voltage is determined by the zener voltage of D4, the voltage drop across R1 and the forward voltage drop of the optodiode. D1 maintains current flow through the
to determine the circuit parameters.

Conclusion

This paper has demonstrated simple design procedures to provide low component count and cost effective buck converters using the TOPSwitch family. In addition to the familar flyback and boost converter topologies, the designer can now take advantage of the high level of integration offered by TOPSwitch in the buck configuration. Built-in current and temperature protection features, coupled with the integrated PWM control and switching MOSFET, yield very compact power supplies with the opportunity to design for an ultrawide input voltage range.

References

[1] Udo L. Thiel: Schaltnetzteile erfolgreich planen und dimensionieren, Franzis Verlag, Poing 1995
[2] Siemens, Ferrite und Zubehör, Datenbuch 1990/91
[3] TOPSwitch datasheets and application notes, Power Integrations, Inc., Sunnyvale 1994-96
[4] Stefan Bäurle: Grundlagenuntersuchung von DC/DC-Wandlern, Dissertation at the Augsburg University

