

PWM Dimming

- PWM Analog
 - PWM signal modifies FB Pin current to change output current
 - Same concept for 0 to 10 V dimming
 - Advantages
 - Do not need to reduce transformer's flux density for audible noise
 - Power Factor > 0.8 over dimming range
 - Disadvantages
 - Limited dimming range <20:1

- PWM Digital
 - PWM signal inhibits operation of LinkSwitch-PH
 - Advantages
 - Large dimming range
 - Disadvantages
 - Need to reduce transformer's flux density for audible noise
 - » Limited data less than BM 2000 Gauss recommended
 - Poor Power Factor during dimming

PWM Signal Reduces FB Pin Current to Control Output Current (PWM-Analog)

Dimming range can be increased by simultaneously decreasing FB Pin current and increasing V Pin current

Modulating LinkSwitch-PH PWM Dimming

PWM-Digital

PWM of the LED String Does Not Work

Power Supply Continues to Deliver Energy to Output Caps When LED String is Turned Off, Causes High LED Peak Currents When Turned On

93% DC: I_{OUT} = 1.15 A

23% DC: I_{OUT} = 1.03 A

Output Current Average $I_{OUT} = 1.03 \text{ A}$ Peak $I_{OUT} = 5 \text{ A}$

23% Duty Cycle

PWM Control of LinkSwitch-PH and LED Load

Opto transistor enables LinkSwitch-PH by pulling disable signal low

Peak LED Current is Constant

Peak LED Current = 900 mA

Regulation of peak LED current maintains good LED color temperature over dimming range