

Design Example Report

Title	12 W Power Factor Corrected (Valley Fill) Non-Dimmable Isolated Flyback; Constant Voltage (24 V) LED Driver Using TinySwitch TM -4 TNY286PG					
Specification	Input: 190 VAC – 265 VAC (47 – 63 Hz); Output: 24 V, 500 mA _{CONT}					
Application	Ballast LED Driver					
Author Applications Engineering Department						
Document Number	DER-423					
Date	November 7, 2014					
Revision	1.0					

Summary and Features

- EcoSmart[™] Meets all existing and proposed harmonized energy efficiency standards
 - CECP (China), CEC, EPA, AGO, European Commission
- No-load consumption <100 mW at 230 VAC
- >80% active-mode efficiency
- Tightly toleranced I²f parameter (-10%, +12%) reduces system cost
 - Increases MOSFET and transformer power delivery
 - Reduces overload power, lowering output diode and capacitor costs
- Integrated TinySwitch-4 safety/reliability features
 - Accurate (±5%), auto-recovering, hysteretic thermal shutdown function maintains safe PCB temperatures under all conditions
 - Auto-restart protects against output short circuit and open loop fault conditions
 - >3.2 mm creepage on package enables reliable operation in high humidity and high pollution environments
- Meets EN550022 ,EN55015 and CISPR-22 Class B conducted EMI

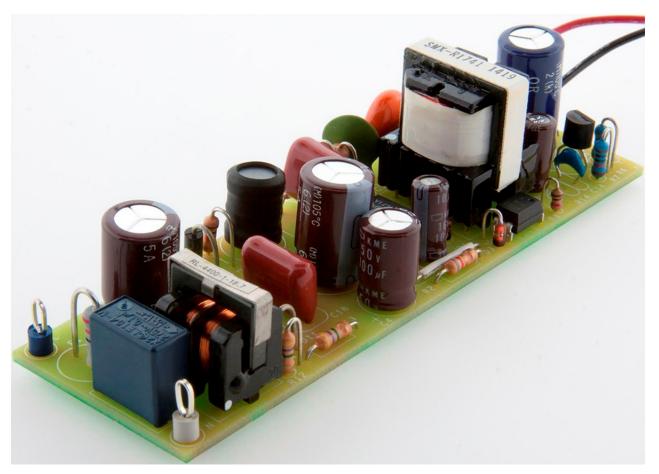
PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.

_

T	able (of Contents	
1	Intro	oduction	5
2	Pow	er Supply Specification	6
3	Sche	ematic	7
4	Circ	uit Description	8
	4.1	Input Stage	8
	4.2	TinySwitch-4 Primary	
	4.3	Output Rectification	
	4.4	Output Feedback	9
	4.5	Line Sense	9
	4.6	Overvoltage Protection (OVP)	9
	4.7	PCB Layout	
5	PCB	Assembly	11
6	Bill	of Materials	12
7	Trar	nsformer Specification	14
	7.1	Electrical Diagram	
	7.2	Electrical Specifications	14
	7.3	Materials	14
	7.4	Transformer Build Diagram	15
	7.5	Transformer Construction	16
8	Trar	nsformer Design Spreadsheet	17
9	Perf	formance Data	
	9.1	Efficiency	20
	9.2	Active Mode Efficiency	
	9.2.		
	9.2.		
	9.3	No-load Input Power	
	9.4	Available Standby Output Power	
	9.5	Regulation	
	9.5.		
	9.5.		
	9.5.		
10		hermal Performance	
	10.1	Thermal Images	
	10.1		
	10.1		
1:	1 W	/aveforms	
	11.1	Input Voltage and Current, Normal Operation	
	11.2	Drain Voltage and Current, Normal Operation	
	11.3	Drain Voltage and Current Start-up Profile	
	11.4	Drain Voltage and Current Start-up Short Waveform	
	11.5	Drain Voltage and Current Normal Running Short Waveform	
	11.6	Output Diode Waveform at Normal Operation	40

11.7	Output Voltage Start-up Profile	41
11.8	Load Transient Response (0% to 100% Load Step)	42
	Brown-out Test	
11.10	Open Loop Test	44
	L Output Ripple Measurements	
	.11.1 Ripple Measurement Technique	
11.	.11.2 Measurement Results	46
13 L	_ine Surge	48
	Conducted EMI	
15 F	Revision History	53
	•	


Important Note:

Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

1 Introduction

This document is an engineering report describing a 12 W power supply utilizing a TNY286PG from the TinySwitch-4 product Family. This power supply was specifically targeted to meet a LED ballast application however it may also be used as a general evaluation platform.

The document contains the power supply specification, schematic, bill of materials, transformer documentation, printed circuit layout, and performance data.

Figure 1 – Populated Circuit Board Photograph.

Power Supply Specification

The table below represents the minimum acceptable performance of the design. Actual performance is listed in the results section.

Description Symbol Typ Units Max Comment Input Voltage V_{IN} 190 265 VAC 2 Wire - no P.E. Frequency 47 50/60 63 Hz **f**LINE No-load Input Power (230 VAC) 0.1 W 269 V; 50 Hz - No damage will In-rush Current (Cold start) $\mathbf{I}_{\mathsf{RUSH}}$ occur to the PSU nor should the fuse open Output Output Voltage 22 24 26 ٧ V_{OUT} \pm 5% Peak to peak, 20 MHz bandwidth-Output Ripple Voltage V_{RIPPLE} ٧ measured with 180 μF, 0.1 μF and 1 $1~\mu\text{F}$ ceramic capacitor **Total Output Power** Continuous Output Power 12 W Pout **Efficiency** Required Average Efficiency at 80 % Per Energy Star test method η_{AVE} 25, 50, 75 and 100 % of Pout **Environmental** Meets CISPR22B / EN55022B/FCC Part 6 dBuV margin with grounded and Conducted EMI

,			Cla			
Leakage Current	I _{LEAK}	0.25 mA			Measured at 265 V _{RMS} , 50/60 Hz	
Line Surge Differential Mode (L1-L2) Common mode (L1/L2-PE)				1 2.5	kV kV	IEC 61000-4-5/EN5504,
Ring Wave (100 kHz) Differential Mode (L1-L2) Common Mode (L1/L2-PE)				2.5	kV kV	500 A short-circuit Series Impedance: Differential Mode: 2Ω Common Mode: 12Ω
Ambient Temperature	T _{AMB}	0		40	°C	Free convection, sea level

Designed to meet IEC950 / UL1950

Safety

ungrounded chassis

Schematic 3

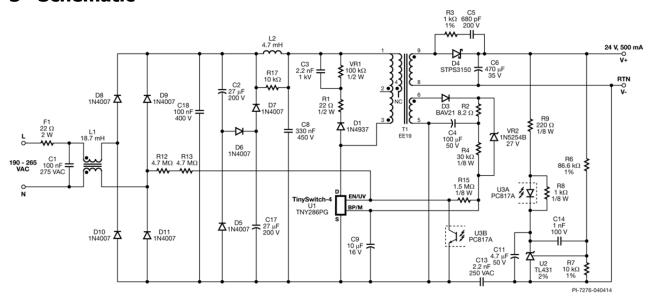


Figure 2 – Schematic.

4 Circuit Description

This circuit is designed for an LED ballast driver application configured as an isolated flyback that provides 500 mA at 24 V with an input voltage range of 190 VAC to 265 VAC.

4.1 Input Stage

Fusible resistor F1 provides protection against component failure causing short or overload in the primary circuit. The fusible resistor also aids in damping of the input current ringing during dimming. Its resistance is useful in suppressing differential line surges.

Diodes D8 to D11 were configured as a full bridge rectifier.

Common mode choke L1, capacitors C1, C18, C8 and differential choke L2 form the EMI filter The frequency jitter feature of TinySwitch-4 ensures compliance with Class B emission limits. Resistor R17 damps the resonance of L2, which helps lower EMI high frequency noise. Inductor L2 was positioned after the bridge to balance the EMI profile between line and neutral. This also allows the use of small high-voltage ceramic capacitors in the input filter.

A valley fill circuit comprising of C2, C17 and D6, D7 and D5 provides greater than 0.7 power factor. The same circuit absorbs energy from line surge disturbances.

4.2 TinySwitch-4 Primary

The TNY286PG device (U1) is an integrated circuit, which includes a power MOSFET, an oscillator, control, start-up and protection functions.

A clamp circuit (D1, VR1, R1 and C3) limits the voltage that appears on the drain of U1 each time the power MOSFET turns off. The clamp design maximizes efficiency at light load conditions.

The output of the bias/auxiliary supply winding is rectified by diode D3 and filtered by capacitor C4. The bias winding is used to supply current to the TNY286PG BYPASS/MULTIFUNCTION (BP/M) pin during steady-state operation. The value of resistor R4 is selected to deliver the IC supply current to the BP/M pin, thereby inhibiting the internal high-voltage current source that normally charges the BP/M pin capacitor (C9). This results in reduced IC heat dissipation thus lower input power consumption under all load conditions. This also lowers no-load consumption. Three different capacitor values could be used for C9, which selects one of three internal current limits (i.e. RED, STD, INC). A 10 μF capacitor was used in this design, which selects the increased current limit (INC) set for the TNY286PG.

The transistor of optocoupler U3 pulls current from the ENABLE/UNDER-VOLTAGE (EN/UV) pin of U1. The IC keeps switching as long as the current drawn from the EN/UV pin is less than 90 μA. Switching stops whenever the current drawn from the EN/UV pin exceeds that threshold, which ranges from 90 μA to 150 μA (typical value ≈115 μA). By enabling and disabling switching pulses, the feedback loop regulates the output voltage.

An internal state machine sets the power MOSFET current limit to one of four levels, depending on the main output load current. This ensures that the effective switching frequency remains above the audible frequency range. The lowest current limit (used at no-load) makes the transformer flux density so low that it produces no perceptible audible noise, especially with dip-varnished transformers.

4.3 Output Rectification

Schottky diode D4 provides output rectification, while capacitor C6 is the main output filter capacitor. Secondary RC (R3, C5) snubber is used across D4 to reduce EMI.

4.4 Output Feedback

Resistors R6 and R7 form a voltage divider network, which provides a proportional voltage signal of the output voltage into the input terminal of the TL431 (U2). The TL431 varies its cathode voltage to keep its input voltage constant (equal to 2.5 V, ±2%). As the cathode voltage changes, the current through the LED and transistor within U3 changes. Every time the EN/UV pin current exceeds the threshold the next switching cycle is disabled and when the EN/UV pin current falls below the threshold, the next switching cycle is enabled. As the load is reduced, the number of enabled switching cycles decreases by skipping a cycle, which lowers the effective switching frequency and the switching losses. This results in a constant efficiency down to very light load, meeting energy efficiency requirements. Capacitor C14 rolls off the gain of U2 with frequency, to ensure stable operation. Capacitor C11 provides soft start-up which prevents the output voltage from overshooting.

4.5 Line Sense

Resistors R12 and R13 senses the input voltage directly at the input of the bridge rectifier. This reduces no-load power consumption. Resistor R15 ensures that sufficient current is injected into the EN/UV pin even when no current flows through resistors R12 and R13, which is approximately 50% of each line cycle. This ensures that the UV detection feature is enabled at all times thereby preventing any hiccup during a slow brown-in or during a line dropout.

4.6 Overvoltage Protection (OVP)

The IC has internal OVP latching protection via the BP/M pin. It is triggered when current exceeds the OV shutdown threshold (\$\approx 5.5 mA) due to an open feedback condition and when the bias voltage rises above the VR2 threshold. The latch condition is reset through R12 and R13, once the AC line is recycled.

4.7 PCB Layout

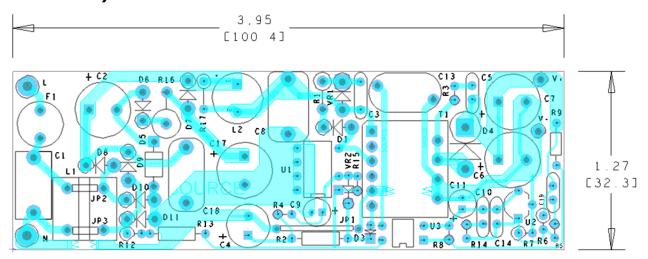
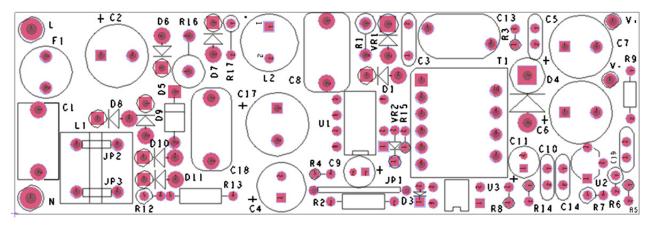
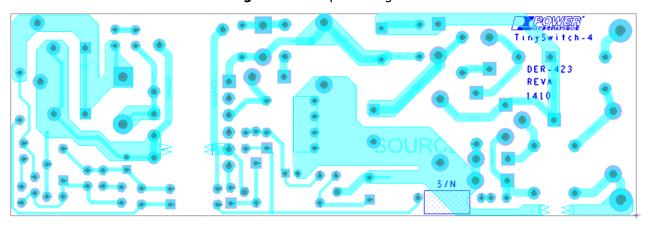




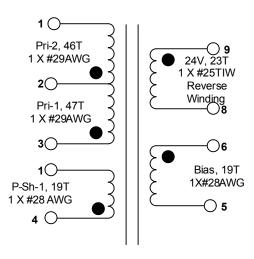
Figure 3 - Printed Circuit Layout.

Figure 4 – Component legend.

Figure 5 – Bottom Layout.

PCB Assembly

Figure 6 – Top Assembly, No Components on the Bottom Side. Some Parts can be Converted to SMD for More Compact Applications.


6 Bill of Materials

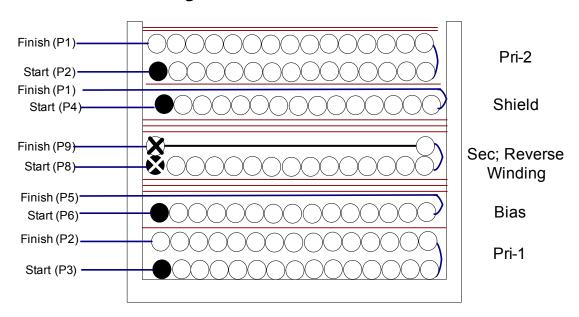
Item	Qty	Ref Des Description		Mfg P/N	Manufacturer	
1	1	C1	100 nF, 275VAC, Film, X2	LE104-M	OKAYA	
2	2	C2 C17	27 μF, 200 V, Electrolytic, (10 x 16),	EKXJ201ELL270MJ16S	Nippon Chemi-Con	
3	1	C2 C17	2.2 nF, 1 kV, Disc Ceramic	NCD222K1KVY5FF	NIC	
<u> </u>	1		100 μF, 50 V, Electrolytic, Gen. Purpose,	NCDZZZKIKVIJII		
4	1	C4	(8 x 11.5)	KME50VB101M6X11LL	Nippon Chemi-Con	
5	1	C5	680 pF, 200 V, Ceramic, X7R	C315C681K2R5TA	Kemet	
6	1	C6	470 μF, 35 V, Electrolytic, Low ESR, 52 m Ω , (10 x 20)	ELXZ350ELL471MJ20S	Nippon Chemi-Con	
7	1	C8	330 nF, 450 V, METALPOLYPRO	ECW-F2W334JAQ	Panasonic	
8	1	C9	10 μF, 16 V, Electrolytic, Gen. Purpose, (5 x 11)	EKMG160ELL100ME11D	United Chemi-Con	
9	1	C11	4.7 μ F, 50 V, Electrolytic, Gen. Purpose, (5 x 11)	EKMG500ELL4R7ME11D	Nippon Chemi-Con	
10	1	C13	2.2 nF, Ceramic, Y1	440LD22-R	Vishay	
11	1	C14	1 nF, 100 V, Ceramic, X7R	FK18X7R2A102K	TDK	
12	1	C18	100 nF, 400 V, Film	ECQ-E4104KF	Panasonic	
13	1	D1	600 V, 1 A, Fast Recovery Diode, 200 ns, DO-41	1N4937RLG	On Semi	
14	1	D3	250 V, 250 mA, Fast Switching, DO-35	BAV21	Vishay	
15	1	D4	150 V, 3 A, Schottky, DO-201AD	STPS3150RL	ST	
16	7	D5 D6 D7 D8 D9 D10 D11	1000 V, 1 A, Rectifier, DO-41	1N4007-E3/54	Vishay	
17	1	F1	$22~\Omega$, 10% , $2~W$, $10~\%$ Axial Flame Proof, Fusible, Pulse Withstanding	EMC2-22RKI	TT Electronics	
18	1	L1	18.7 mH, 0.22 A, Common Mode Choke	RL-4400-1-18.7	Renco	
19	1	L2	4.7 mH, 0.150 A, 20%	RL-5480-3-4700	Renco	
20	1	R1	22 Ω, 5%, 1/2 W, Carbon Film	CFR-50JB-22R	Yageo	
21	1	R2	8.2 Ω, 5%, 1/4 W, Carbon Film	CFR-25JB-8R2	Yageo	
22	1	R3	1 kΩ, 1%, 1/4 W, Metal Film	MFR-25FBF-1K00	Yageo	
23	1	R4	30 kΩ, 5%, 1/8 W, Carbon Film	CF18JT30K0	Stackpole	
24	1	R6	86.6 kΩ, 1%, 1/4 W, Metal Film	MFR-25FBF-86K6	Yageo	
25	1	R7	10 kΩ, 1%, 1/4 W, Metal Film	MFR-25FBF-10K0	Yageo	
26	1	R8	1 kΩ, 5%, 1/8 W, Carbon Film	CF18JT1K00	Stackpole	
27	1	R9	220 Ω, 5%, 1/8 W, Carbon Film	CF18JT220R	Stackpole	
28	2	R12 R13	4.7 MΩ, 5%, 1/4 W, Carbon Film	CFR-25JB-4M7	Yageo	
29	1	R15	1.5 MΩ, 5%, 1/8 W, Carbon Film	CF18JT1M50	Stackpole	
30	1	R17	10 kΩ, 5%, 1/4 W, Carbon Film	CFR-25JB-10K	Yageo	
31	1	T1	Bobbin, EE19, Vertical, 10 pins, 6pri, 4sec Transformer Transformer	TF-1939 SNX-R1741-X1 PNU-28624	Taiwan Shulin Santronics Premier Magnetics	
32	1	U1	TinySwitch-4, DIP-8C	TNY286PG	Power Integrations	
33	1	U2	2.495 V Shunt Regulator IC, 2%, 0 to 70C, TO-92	TL431CLPG	On Semi	
34	1	U3	Optocoupler, 35 V, CTR 80-160%, 4-DIP	LTV817A	Liteon	
35	2	V+ V-	PCB Terminal Hole, #22 AWG	N/A	N/A	
36	1	VR1	100 kΩ, 5%, 1/2 W, Carbon Film	CFR-50JB-100K Yageo		
37	1	VR2	27 V, 5%, 500 mW, DO-35	1N5254B	Microsemi	
Mecha	nical B					
1	1	JP1	Wire Jumper, Insulated, #24 AWG, 0.6 in	C2003A-12-02	Gen Cable	
2	1	N	Test Point, WHT, THRU-HOLE MOUNT	5012	Keystone	
3	1	L	Test Point, BLU, THRU-HOLE MOUNT	5127	Keystone	
					-	

4	1	R16	Wire Jumper, Insulated, TFE, #22 AWG, 0.2 in	C2004-12-02	Alpha
5	1	WIRE #24 AWG INS (V+)	Wire, UL1007, #24 AWG, Red, PVC, 4 "	1007-24/7-2	Anixter
6	1	WIRE #24 AWG INS (V-)	Wire, UL1007, #24 AWG, Blk, PVC, 4"	1007-24/7-0	Anixter
7	1	PCB	PCB, 0.062 X 1.25 X 4 in; 2 oz Cu	-	-

7 Transformer Specification

7.1 Electrical Diagram

Figure 7 – Transformer Electrical Diagram.


7.2 Electrical Specifications

Electrical Strength	1 second, 60 Hz, from pins 1-3 to pins 8-9.	3000 VAC
Primary Inductance	Pins 1-3, all other windings open, measured at 100 kHz, 0.4 V_{RMS} .	1200 μH ±10%
Resonant Frequency	Pins 1-3 all other windings open.	700 kHz (Min.)
Primary Leakage Inductance	Pins 1-3, with pins 5-9 shorted, measured at 100 kHz, 0.4 V_{RMS} .	25 μH (Max.)

7.3 Materials

Item	Description						
[1]	Core: EE19, P4 (Acme) or Equivalent, gapped for A _{LG} of 136 nH/T ² .						
[2]	Bobbin: EE19 (6-4 pins) Vertical, High Creepage.						
[3]	Tape Polyester film [2 mil (25 μm) base thickness], 9.00 mm wide.						
[4]	Varnish; BC346 or BC359 (Dolphs).						
[5]	Magnet Wire: AWG #29.						
[6]	Triple Insulated Wire: AWG #25.						
[7]	Magnet Wire: AWG #28.						
[8]	Tape Polyester film [2 mil (25 μm) base thickness], 5.00 mm wide.						

7.4 Transformer Build Diagram

Figure 8 – Transformer Build Diagram.

7.5 Transformer Construction

Bobbin Preparation For the purpose of these instructions, bobbin is oriented on winder so side is on the left. Winding direction is counter-clockwise. Follow the assignment in the specification.					
WDG1; Pri-1	Start on pin(s) 3 and wind 47 turns (x 1 filar) of item [5]. in 2 layer(s) from left to right. At the end of 1st layer, continue to wind the next layer from right to left. On the final layer, spread the winding evenly across entire bobbin. Finish this winding on pin(s) 2. Wind 12 bifilar turns of #27 AWG. Finish on pin 10.				
Insulation	Add 1 layer of tape, item [3], for insulation.				
WDG2; Bias	Start on $pin(s)$ 6 and wind 19 turns (x 1 filar) of item [7]. Wind in same rotational direction as primary winding. Spread the winding evenly across entire bobbin. Finish this winding on $pin(s)$ 5.				
Insulation	Add 3 layers of tape, item [3], for insulation.				
WDG3; Sec Reverse Winding	Start on pin(s) 8 and reverse wind 23 turns (x 1 filar) of item [6]. Spread the winding evenly across entire bobbin. Wind in opposite rotational direction as primary winding. Finish this winding on pin(s) 9.				
Insulation	Add 3 layers of tape, item [3], for insulation.				
WDG4; Pri-Shield	Start at pin 4 on the secondary side and wind 19 turns (x 1 filar) of item [7]. Wind in same rotational direction as primary winding. Spread the winding evenly across entire bobbin. Finish this winding on pin(s) 1. Cut out wire connected to temp pin on secondary side. Leave this end of primary shield winding not connected. Bend the end 90 degree and cut the wire in the middle of the bobbin.				
Insulation	Add 1 layer of tape, item [3], for insulation.				
WDG5; Pri-2	Start on pin(s) 2 and wind 46 turns (x 1 filar) of item [5] in 2 layer(s) from left to right. At the end of 1st layer, continue to wind the next layer from right to left. On the final layer, spread the winding evenly across entire bobbin. Finish this winding on pin(s) 1.				
Core Preparation	Grind E core to get the desired inductance. Wrap bottom of one E core with 2 layers of tape to secure the core				
Varnish Dip the transformer to the varnish [4] then dry.					

8 Transformer Design Spreadsheet

ACDC_TinySwitch- 4_121812; Rev.1.1; Copyright Power Integrations 2012	INPUT	INFO	ОИТРИТ	UNIT	ACDC_TinySwitch-4_121812_Rev1-1.xls; TinySwitch-4 Continuous/Discontinuous Flyback Transformer Design Spreadsheet	
ENTER APPLICATION VA	RIABLES		<u> </u>			
VACMIN	150		150	Volts	Minimum AC Input Voltage	
VACMAX	265		265	Volts	Maximum AC Input Voltage	
fL			50	Hertz	AC Mains Frequency	
VO	24.00		24.00	Volts	Output Voltage (at continuous power)	
IO	0.50		0.50	Amps	Power Supply Output Current (corresponding to peak power)	
Power			12	Watts	Continuous Output Power	
n	0.85		0.85		Efficiency Estimate at output terminals. Under 0.7 if no better data available	
Z			0.50		Z Factor. Ratio of secondary side losses to the total losses in the power supply. Use 0.5 if no better data available	
tC			3.00	mSeconds	Bridge Rectifier Conduction Time Estimate	
CIN	30.00		30	uFarads	Input Capacitance	
ENTER TinySwitch-4 VAI	RIABLES					
TinySwitch-4	TNY286P		TNY286P		User-defined TinySwitch-4	
Chose Configuration	INC		Increased Current Limit		Enter "RED" for reduced current limit (sealed adapters), "STD" for standard current limit or "INC" for increased current limit (peak or higher power applications)	
ILIMITMIN			0.419	Amps	Minimum Current Limit	
ILIMITTYP			0.450	Amps	Typical Current Limit	
ILIMITMAX			0.499	Amps	Maximum Current Limit	
fSmin			124000	Hertz	Minimum Device Switching Frequency	
I^2fmin			24.057	A^2kHz	I^2f (product of current limit squared and frequency is trimmed for tighter tolerance)	
VOR	100.00		100	Volts	Reflected Output Voltage (VOR < 135 V Recommended)	
VDS			10	Volts	TinySwitch-4 on-state Drain to Source Voltage	
VD			0.7	Volts	Output Winding Diode Forward Voltage Drop	
KP			0.97		Ripple to Peak Current Ratio (KP < 6)	
KP_TRANSIENT			0.73		Transient Ripple to Peak Current Ratio. Ensure KP_TRANSIENT > 0.25	
ENTER BIAS WINDING \	/ARIABLES					
VB	20.00		20.00	Volts	Bias Winding Voltage	
VDB			0.70	Volts	Bias Winding Diode Forward Voltage Drop	
NB			18.62		Bias Winding Number of Turns	
VZOV			26.00	Volts	Over Voltage Protection zener diode voltage.	
UVLO VARIABLES						
V_UV_TARGET			215.59	Volts	Target DC under-voltage threshold, above which the power supply with start	
V_UV_ACTUAL			207.20	Volts	Typical DC start-up voltage based on standard value of RUV_ACTUAL	
RUV_IDEAL			8.54	Mohms	Calculated value for UV Lockout resistor	
RUV_ACTUAL			8.20	Mohms	Closest standard value of resistor to RUV_IDEAL	
ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES						
Core Type	EE19		EE19		Enter Transformer Core	
Core		EE19		P/N:	PC40EE19-Z	
Custom core				P/N:	EE19_BOBBIN	
AE			0.23	cm^2	Core Effective Cross Sectional Area	

www.powerint.com

Power IntegrationsTel: +1 408 414 9200 Fax: +1 408 414 9201

LE		3.94	cm	Core Effective Path Length
AL		1250	nH/T^2	Ungapped Core Effective Inductance
BW		9	mm	Bobbin Physical Winding Width
			111111	Safety Margin Width (Half the Primary to
М		0	mm	Secondary Creepage Distance)
L		3		Number of Primary Layers
NS	23	23		Number of Secondary Turns
DC INPUT VOLTAGE P	PARAMETERS			,
VMIN		196	Volts	Minimum DC Input Voltage
VMAX		375	Volts	Maximum DC Input Voltage
CURRENT WAVEFORM	1 SHAPE PARAMETEI	RS		
DMAX		0.34		Duty Ratio at full load, minimum primary
DIMAX		0.34		inductance and minimum input voltage
IAVG		0.08	Amps	Average Primary Current
IP		0.42	Amps	Minimum Peak Primary Current
IR		0.42	Amps	Primary Ripple Current
IRMS		0.17	Amps	Primary RMS Current
TRANSFORMER PRIM	IARY DESIGN PARAM	1ETERS		
LP		1184	uHenries	Typical Primary Inductance. +/- 10% to ensure a minimum primary inductance of 1065 uH
LP_TOLERANCE		10	%	Primary inductance tolerance
NP		93		Primary Winding Number of Turns
ALG		136	nH/T^2	Gapped Core Effective Inductance
ВМ		2758	Gauss	Maximum Operating Flux Density, BM<3100 is recommended
BAC		1379	Gauss	AC Flux Density for Core Loss Curves (0.5 X Peak to Peak)
ur		1704		Relative Permeability of Ungapped Core
LG		0.19	mm	Gap Length (Lg > 0.1 mm)
BWE		27	mm	Effective Bobbin Width
OD		0.29	mm	Maximum Primary Wire Diameter including insulation
INS		0.05	mm	Estimated Total Insulation Thickness (= 2 * film thickness)
DIA		0.24	mm	Bare conductor diameter
AWG		31	AWG	Primary Wire Gauge (Rounded to next smaller standard AWG value)
CM		81	Cmils	Bare conductor effective area in circular mils
CMA		477	Cmils/Amp	Primary Winding Current Capacity (200 < CMA < 500)
TRANSFORMER SECO	NDARY DESIGN PAR	AMETERS		
Lumped parameters				
ISP		1.70	Amps	Peak Secondary Current
ISRMS		0.96	Amps	Secondary RMS Current
IRIPPLE		0.82	Amps	Output Capacitor RMS Ripple Current
CMS		191	Cmils	Secondary Bare Conductor minimum circular mils
AWGS		27	AWG	Secondary Wire Gauge (Rounded up to next larger standard AWG value)
VOLTAGE STRESS PAI	RAMETERS			
VDRAIN		605	Volts	Maximum Drain Voltage Estimate (Assumes 20% zener clamp tolerance and an additional 10% temperature tolerance)
PIVS		117	Volts	Output Rectifier Maximum Peak Inverse Voltage
TRANSFORMER SECO	NDARY DESIGN PAR			
1st output	DECIGIT I AIN	(1.101		
VO1		24	Volts	Main Output Voltage (if unused, defaults to single output design)

IO1		0.500	Amps	Output DC Current
PO1		12.00	Watts	Output Power
VD1		0.7	Volts	Output Diode Forward Voltage Drop
NS1		23.00	VOICO	Output Winding Number of Turns
ISRMS1		0.957	Amps	Output Winding RMS Current
IRIPPLE1		0.82	Amps	Output Capacitor RMS Ripple Current
PIVS1		117	Volts	Output Rectifier Maximum Peak Inverse Voltage
F1V31		1N5817,	VOILS	
Recommended Diodes		SB120		Recommended Diodes for this output
CMS1		191	Cmils	Output Winding Bare Conductor minimum circular mils
AWGS1		27	AWG	Wire Gauge (Rounded up to next larger standard AWG value)
DIAS1		0.36	mm	Minimum Bare Conductor Diameter
ODS1		0.39	mm	Maximum Outside Diameter for Triple Insulated Wire
2nd output	<u> </u>			
VO2			Volts	Output Voltage
IO2			Amps	Output DC Current
PO2		0.00	Watts	Output Power
VD2		0.7	Volts	Output Diode Forward Voltage Drop
NS2		0.65		Output Winding Number of Turns
ISRMS2		0.000	Amps	Output Winding RMS Current
IRIPPLE2		0.00	Amps	Output Capacitor RMS Ripple Current
PIVS2		3	Volts	Output Rectifier Maximum Peak Inverse Voltage
Recommended Diode			VOICS	Recommended Diodes for this output
CMS2		0	Cmils	Output Winding Bare Conductor minimum circular mils
AWGS2		N/A	AWG	Wire Gauge (Rounded up to next larger standard AWG value)
DIAS2		N/A	mm	Minimum Bare Conductor Diameter
ODS2		N/A	mm	Maximum Outside Diameter for Triple Insulated Wire
3rd output	ļ			Wile
VO3			Volts	Output Voltage
IO3			Amps	Output DC Current
PO3		0.00	Watts	Output Power
VD3		0.7	Volts	Output Diode Forward Voltage Drop
NS3		0.65	VOICS	Output Winding Number of Turns
ISRMS3		0.000	Amps	Output Winding RMS Current
IRIPPLE3	+	0.00	Amps	Output Capacitor RMS Ripple Current
PIVS3		3	Volts	Output Rectifier Maximum Peak Inverse Voltage
Recommended Diode		J	VOILS	Recommended Diodes for this output
				Output Winding Bare Conductor minimum circular
CMS3		0	Cmils	mils
AWGS3		N/A	AWG	Wire Gauge (Rounded up to next larger standard AWG value)
DIAS3		N/A	mm	Minimum Bare Conductor Diameter
ODS3		N/A	mm	Maximum Outside Diameter for Triple Insulated Wire
Total power		12	Watts	Total Output Power
Negative Output	N/A	N/A		If negative output exists enter Output number; eg:
Negative Output	N/A	N/A		If VO2 is negative output, enter 2

9 Performance Data

All measurements performed at room temperature unless specified.

9.1 Efficiency

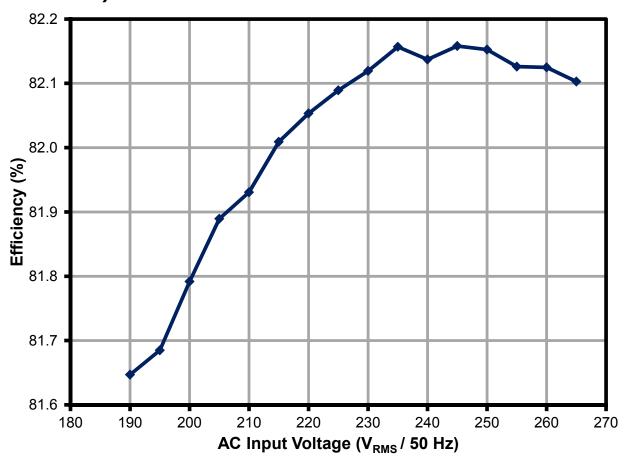
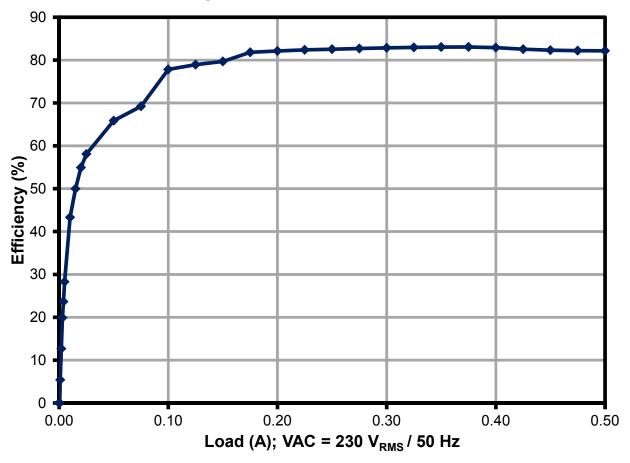



Figure 9 – Efficiency vs. Input Voltage, Room Temperature, 60 Hz.

Inp	ut	Input Measurement				Load Measurement			
VAC (V _{RMS})	Freq (Hz)	V _{IN} (V _{RMS})	I _{IN} (A _{RMS})	P _{IN} (W)	PF	V _{OUT} (V _{DC})	I _{OUT} (A _{DC})	P _{OUT} (W)	Efficiency (%)
180	50	179.94	0.10	14.98	0.83	24.48	0.50	12.21	81.52
185	50	184.91	0.10	14.97	0.83	24.48	0.50	12.21	81.57
190	50	189.97	0.10	14.95	0.82	24.48	0.50	12.21	81.65
195	50	194.95	0.09	14.94	0.82	24.47	0.50	12.2	81.68
200	50	199.91	0.09	14.93	0.81	24.48	0.50	12.21	81.79
205	50	204.97	0.09	14.91	0.81	24.48	0.50	12.21	81.89
210	50	209.94	0.09	14.90	0.80	24.47	0.50	12.21	81.93
215	50	214.92	0.09	14.89	0.80	24.48	0.50	12.21	82.01
220	50	219.97	0.09	14.88	0.79	24.48	0.50	12.21	82.05
225	50	224.94	0.08	14.87	0.79	24.47	0.50	12.21	82.09
230	50	229.92	0.08	14.87	0.78	24.48	0.50	12.21	82.12
235	50	234.97	0.08	14.86	0.78	24.48	0.50	12.21	82.16
240	50	239.95	0.08	14.86	0.77	24.48	0.50	12.21	82.14
245	50	244.92	0.08	14.86	0.77	24.48	0.50	12.21	82.16
250	50	249.98	0.08	14.86	0.76	24.48	0.50	12.21	82.15
255	50	254.95	0.08	14.86	0.76	24.48	0.50	12.21	82.13
260	50	259.93	0.08	14.87	0.75	24.48	0.50	12.21	82.12
265	50	265.00	0.08	14.87	0.75	24.48	0.50	12.21	82.10
270	50	269.97	0.07	14.88	0.74	24.48	0.50	12.21	82.07
275	50	274.94	0.07	14.88	0.74	24.47	0.50	12.21	82.02

Table 1 – Data for Figure 9.

9.2 Active Mode Efficiency

Figure 10 – Load efficiency at 230 V_{RMS} / 60 Hz line, Room Temperature, 60 Hz.

Load	Setting	Input Measurement				Load Measurement			
Load (%)	Load (A)	V _{IN} (V _{RMS})	I _{IN} (A _{RMS})	P _{IN} (W)	PF	V _{OUT} (V _{DC})	I _{OUT} (A _{DC})	P _{OUT} (W)	Efficiency (%)
100	0.50	229.93	0.08	14.87	0.78	24.48	0.50	12.21	82.14
95	0.48	229.93	0.08	14.11	0.78	24.48	0.47	11.60	82.21
90	0.45	229.93	0.08	13.35	0.77	24.48	0.45	10.99	82.31
85	0.43	229.93	0.07	12.57	0.76	24.48	0.42	10.37	82.55
80	0.40	229.94	0.07	11.77	0.75	24.48	0.40	9.76	82.91
75	0.38	229.94	0.06	11.02	0.74	24.48	0.37	9.15	83.06
70	0.35	229.94	0.06	10.29	0.73	24.48	0.35	8.54	83.02
65	0.33	229.94	0.06	9.56	0.72	24.48	0.32	7.93	82.95
60	0.30	229.94	0.05	8.83	0.71	24.48	0.30	7.32	82.86
55	0.28	229.94	0.05	8.10	0.69	24.48	0.27	6.70	82.70
50	0.25	229.94	0.05	7.38	0.67	24.48	0.25	6.09	82.54
45	0.23	229.94	0.04	6.65	0.65	24.48	0.22	5.48	82.37
40	0.20	229.94	0.04	5.93	0.64	24.48	0.20	4.87	82.12
35	0.18	229.94	0.04	5.20	0.62	24.48	0.17	4.25	81.81
30	0.15	229.94	0.03	4.57	0.61	24.48	0.15	3.64	79.70
25	0.13	229.94	0.03	3.84	0.58	24.48	0.12	3.03	78.94
20	0.10	229.94	0.03	3.11	0.53	24.48	0.10	2.42	77.81
15	0.08	229.95	0.02	2.61	0.48	24.48	0.07	1.80	69.21
10	0.05	229.95	0.02	1.81	0.44	24.48	0.05	1.19	65.86
5	0.03	229.95	0.01	1.00	0.34	24.48	0.02	0.58	58.09
4	0.02	229.95	0.01	0.83	0.31	24.48	0.02	0.46	54.93
3	0.02	229.95	0.01	0.66	0.26	24.48	0.01	0.33	49.99
2	0.01	229.95	0.01	0.49	0.21	24.48	0.01	0.211	43.32
1	0.01	229.95	0.01	0.30	0.14	24.48	0.00	0.09	28.28
0.80	0.004	229.95	0.01	0.26	0.13	24.48	0.00	0.06	23.66
0.60	0.003	229.95	0.01	0.23	0.11	24.48	0.00	0.05	19.88
0.40	0.002	229.95	0.01	0.20	0.10	24.48	0.00	0.03	12.67
0.20	0.001	229.95	0.01	0.17	0.08	24.48	0.00	0.01	5.41
0.10	0.0005	229.95	0.01	0.15	0.08	24.48	0.00	0.00	0.00
0.00	0	229.95	0.01	0.08	0.04	24.48	0.00	0.00	0.00
							Average	Efficiency	81.67

Table 2 – Data for Figure 10.

The external power supply requirements below all require meeting active mode efficiency and no-load input power limits. Minimum active mode efficiency is defined as the average efficiency of 25, 50, 75 and 100% of output current (based on the nameplate output current rating).

For adapters that are single input voltage only then the measurement is made at the rated single nominal input voltage (115 VAC or 230 VAC), for universal input adapters the measurement is made at both nominal input voltages (115 VAC and 230 VAC).

To meet the standard the measured average efficiency (or efficiencies for universal input supplies) must be greater than or equal to the efficiency specified by the standard.

The test method can be found here:

http://www.energystar.gov/ia/partners/prod_development/downloads/power_supplies/EP SupplyEffic_TestMethod_0804.pdf

For the latest up to date information please visit the PI Green Room: http://www.powerint.com/greenroom/regulations.htm

9.2.1 USA Energy Independence and Security Act 2007

This legislation mandates all single output single output adapters, including those provided with products, manufactured on or after July 1st, 2008 must meet minimum active mode efficiency and no load input power limits.

Active Mode Efficiency Standard Models

Nameplate Output (P _o)	Minimum Efficiency in Active Mode of Operation
< 1 W	$0.5 \times P_0$
\geq 1 W to \leq 51 W	$0.09 \times \ln{(P_0)} + 0.5$
> 51 W	0.85

In = natural logarithm

No-load Energy Consumption

Nameplate Output (P _o)	Maximum Power for No-load AC-DC EPS			
All	≤ 0.5 W			

This requirement supersedes the legislation from individual US States (for example CEC in California).

9.2.2 ENERGY STAR EPS Version 2.0

This specification takes effect on November 1st, 2008.

Active Mode Efficiency Standard Models

Nameplate Output (P _o)	Minimum Efficiency in Active Mode of Operation			
≤ 1 W	$0.48 \times P_{O} + 0.14$			
> 1 W to ≤ 49 W	$0.0626 \times \ln{(P_0)} + 0.622$			
> 49 W	0.87			

In = natural logarithm

Active Mode Efficiency Low Voltage Models (V_0 <6 V and $I_0 \ge 550$ mA)

Nameplate Output (P _o)	Minimum Efficiency in Active Mode of Operation			
≤ 1 W	$0.497 \times P_{O} + 0.067$			
> 1 W to ≤ 49 W	$0.075 \times \ln{(P_0)} + 0.561$			
> 49 W	0.86			

In = natural logarithm

No-load Energy Consumption (both models)

Nameplate Output (P ₀)	Maximum Power for No-load AC-DC EPS			
0 to < 50 W	≤ 0.3 W			
≥ 50 W to ≤ 250 W	≤ 0.5 W			

9.3 No-load Input Power

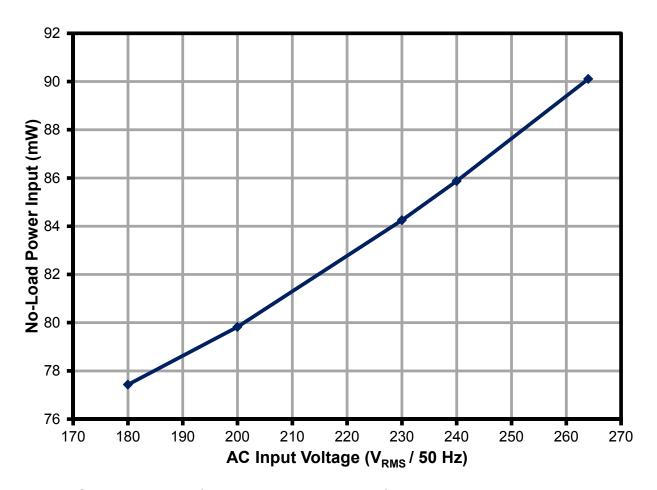


Figure 11- Zero Load Input Power vs. Input Line Voltage, Room Temperature, 50 Hz.

Inp	ut		easurement gration)			
VAC (V _{RMS})	Freq (Hz)	P _{IN} (mW)	I _{IN} (mA _{RMS})	V _{OUT} (V _{DC})	Limit (mW)	Remarks
180	50	77.43	7.44	24.48	100	Pass
200	50	79.82	7.85	24.48	100	Pass
230	50	84.25	8.53	24.48	100	Pass
240	50	85.87	8.77	24.48	100	Pass
265	50	90.11	9.35	24.48	100	Pass

Table 3 – Data for Figure 10.

9.4 Available Standby Output Power

The chart below shows the available output power vs line voltage for an input power of 1 W, 2 W and 3 W.

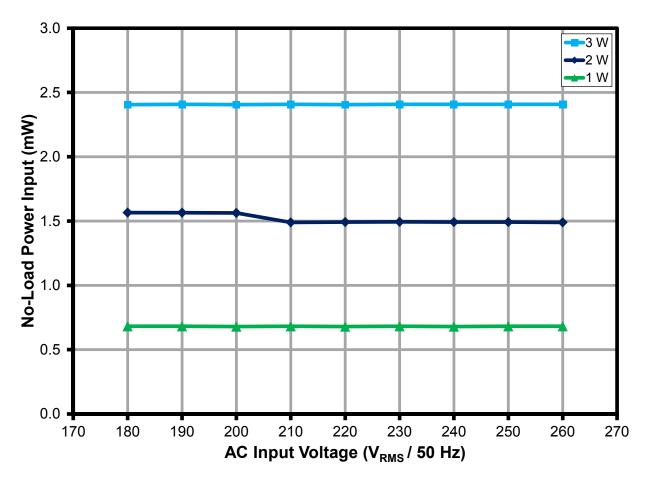
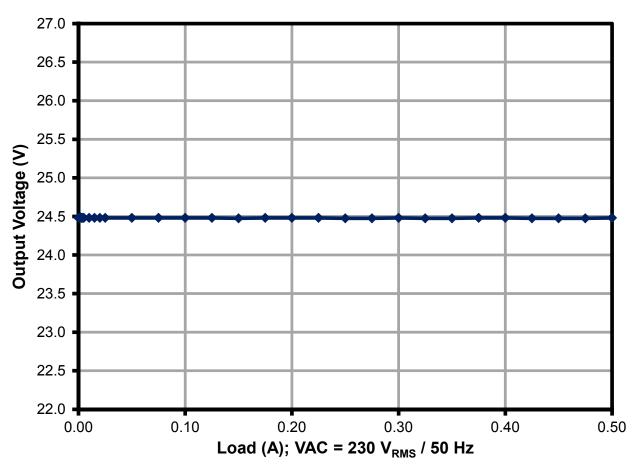



Figure 12 – Available Standby Power vs. Line.

9.5 Regulation

9.5.1 Load

Figure 13 – Load Regulation, Room Temperature.

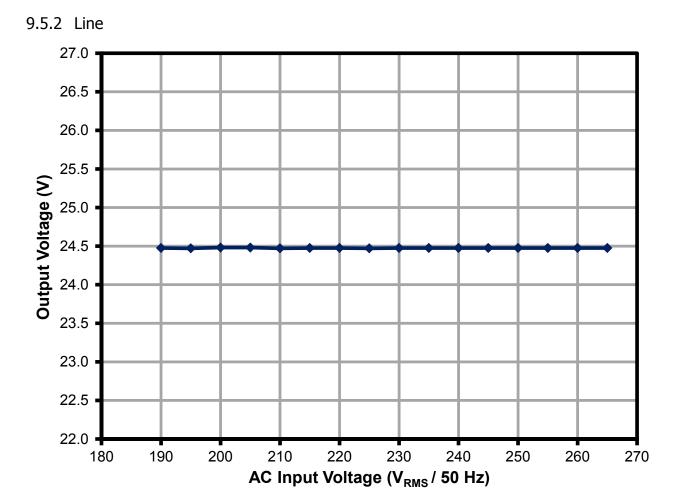


Figure 14 – Line Regulation, Room Temperature, Full Load.

9.5.3 Power Factor (PF)

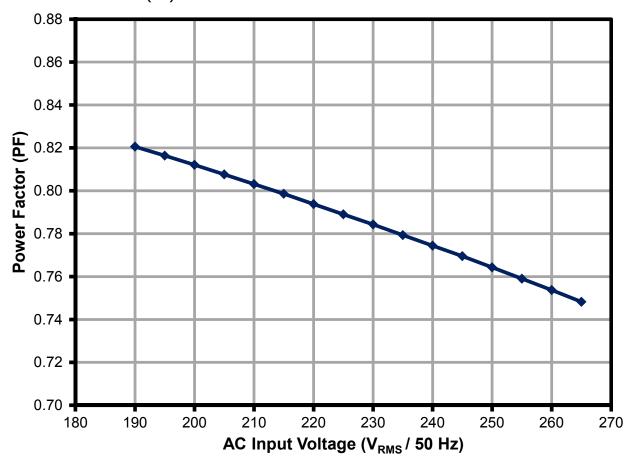


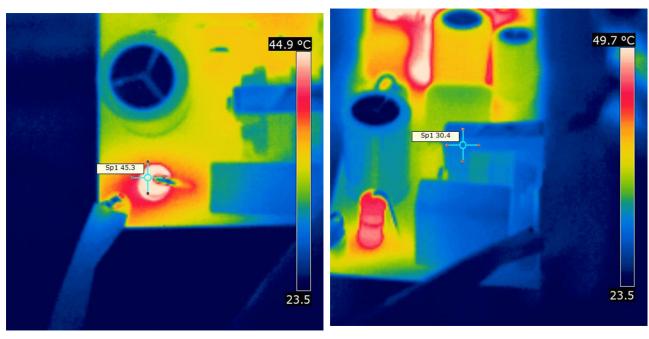
Figure 15 – Power Factor vs. AC Input at full load.

10 Thermal Performance

10.1 Thermal Images

Unit was measured open frame (no enclosure). Temperatures were allowed to stabilize prior to making measurements (>30 mins)

10.1.1 Component Temperatures (190 VAC, 50 Hz, 25 °C)


Figure 16 – SP1 – Snubber Output Resistor (R3).

SP2 – Output Diode (D4).

SP3 - TNY286PG (U1).

SP4 – Fusible Resistor (F1).

Figure 17 - SP1 - TNY286PG (U1).

Figure 18 – SP1 – Fusible Resistor (F1).

Figure 19 - SP1 - Common Mode Choke (L1).

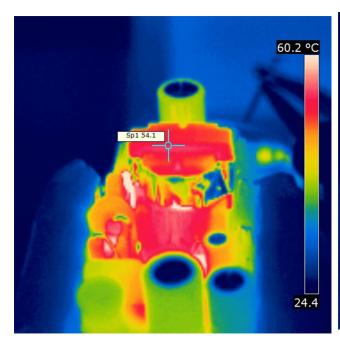
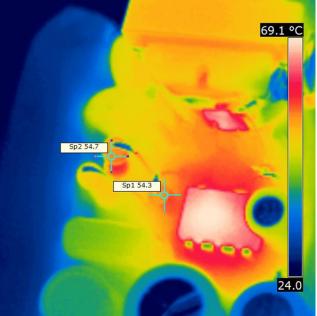
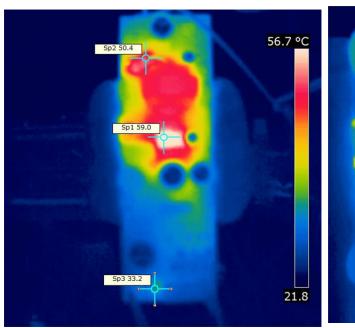
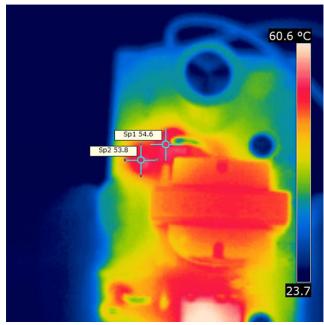
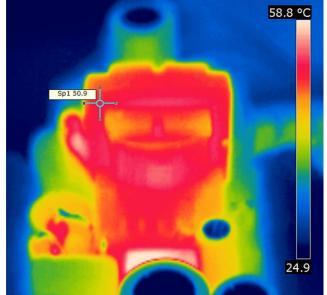




Figure 20 - SP1 - Transformer (T1).

Figure 21 – SP1 – Snubber Diode (D1). SP2 – Snubber Resistor (VR1).


10.1.2 Component Temperatures (265 VAC, 50 Hz, 25°C)



60.8 °C

Figure 22 – SP1 – TNY286PG (U1). SP2 – Output Diode (D4). SP3 – Fusible Resistor (FR1).

Figure 23 - SP1 - TNY286PG (U1).

Figure 24 – SP1 – Output Diode (D4). SP2 – Output Snubber Resistor (R4).

Figure 25 - SP1 - Transformer (T1).

11 Waveforms

11.1 Input Voltage and Current, Normal Operation



Figure 26 – 190 VAC, Full Load. Green: $I_{\rm IN}$, 0.1 A / div.

Yellow: V_{DIN} , 100 V, 5 ms / div.

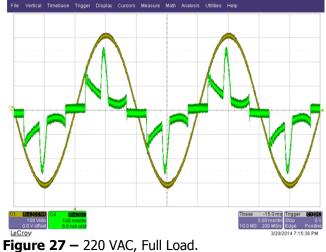


Figure 27 – 220 VAC, Full Load. Green: I_{IN} , 0.1 A / div. Yellow: V_{DIN} , 100 V, 5 ms / div.

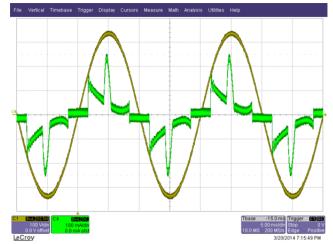
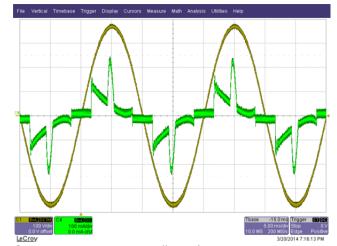



Figure 28 – 240 VAC, Full Load. Green: $I_{\rm IN}$, 0.1 A / div.

Yellow: V_{DIN} , 100 V, 5 ms / div.

Figure 29 – 265 VAC, Full Load. Green: I_{IN} , 0.1 A / div.

Yellow: V_{DIN} , 100 V, 5 ms / div.

11.2 Drain Voltage and Current, Normal Operation

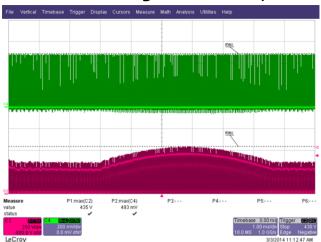


Figure 30 - 190 VAC, Full Load.

Upper: I_{DRAIN} , 0.2 A / div.

Lower: V_{DRAIN} , 200 V, 1 ms / div.

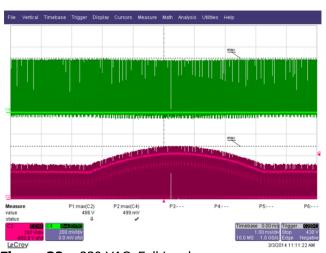


Figure 32 – 230 VAC, Full Load.

Upper: I_{DRAIN} , 0.2 A / div. Lower: V_{DRAIN} , 200 V, 1ms / div.

Figure 31 – 190 VAC, Full Load.

Zoom Time Scale: 100 μ s / div.

Figure 33 – 230 VAC, Full Load.

Upper: I_{DRAIN} , 0.2 A / div. Lower: V_{DRAIN} , 200 V /div. Time Scale: 1 ms / div. Zoom Time Scale: 10 μ s / div.

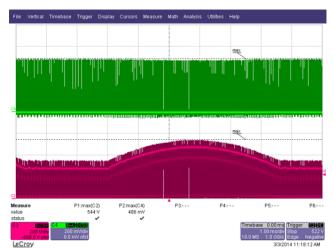


Figure 34 – 265 VAC, Full Load. Upper: I_{DRAIN}, 0.2 A / div. Lower: V_{DRAIN}, 200 V. Time Scale:1 ms / div.

Figure 35 – 265 VAC, Full Load. Upper: I_{DRAIN}, 0.2 A / div.

Lower: V_{DRAIN}, 200 V / div.

Time Scale: 1 ms / div. Zoom Time Scale: 10 µs / div.

11.3 Drain Voltage and Current Start-up Profile

No saturation or any possible cause of failure.

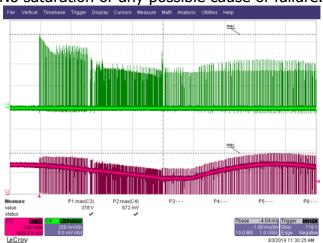


Figure 36 – 190 VAC Input and Maximum Load.

Upper: I_{DRAIN}, 0.2 A / div. Lower: V_{DRAIN}, 200 V / div. Time Scale: 1 ms / div.

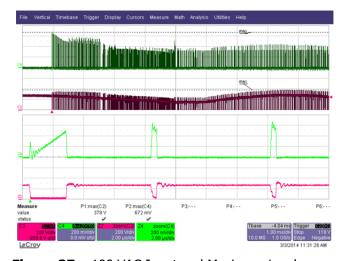


Figure 37 – 190 VAC Input and Maximum Load.

Upper: I_{DRAIN} , 0.2 A / div. Lower: V_{DRAIN}, 200 V / div. Time Scale: 1 ms / div. Zoom Time Scale: 2 µs / div.

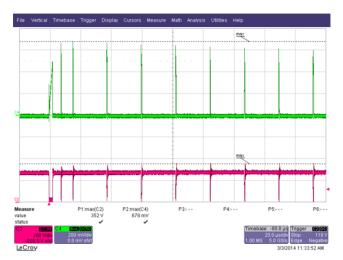
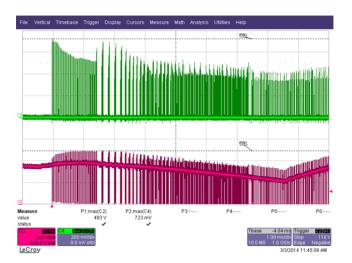



Figure 38 – 190 VAC Input and Maximum Load.

Upper: I_{DRAIN} , 0.2 A / div. Lower: V_{DRAIN} , 200 V / div. Time Scale: 1 μ s / div.

Figure 40 – 265 VAC Input and Maximum Load.

Upper: I_{DRAIN} , 0.2 A / div. Lower: V_{DRAIN} , 200 V / div. Time Scale: 1 ms / div.

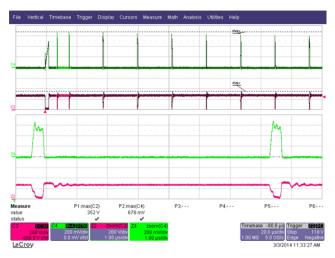


Figure 39 – 190 VAC Input and Maximum Load.

Upper: I_{DRAIN} , 0.2 A / div. Lower: V_{DRAIN} , 200 V / div. Time Scale: 20 μ s / div. Zoom Time Scale: 1 μ s / div.

Figure 41 – 265 VAC Input and Maximum Load.

Upper: I_{DRAIN} , 0.2 A / div. Lower: V_{DRAIN} , 200 V / div. Time Scale: 1 ms / div. Zoom Time Scale: 5 μ s / div.

11.4 Drain Voltage and Current Start-up Short Waveform

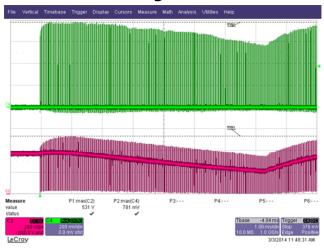
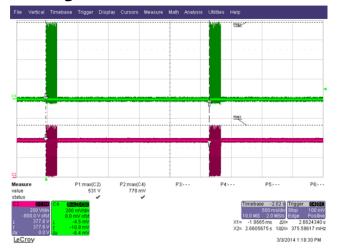


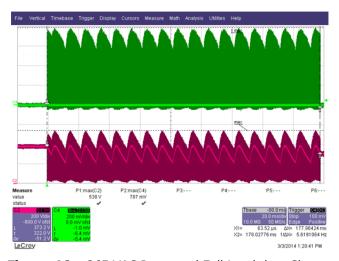
Figure 42 – 265 VAC Input and Shorted Load.

Upper: I_{DRAIN}, 0.2 A / div. Lower: V_{DRAIN}, 200 V / div. Time Scale: 1 ms / div.

Figure 43 – 265 VAC Input and Shorted Load.


Upper: I_{DRAIN}, 0.2 A / div. Lower: V_{DRAIN}, 200 V / div. Time Scale: 1 ms / div. Zoom Time Scale: 5 μs / div.

11.5 Drain Voltage and Current Normal Running Short Waveform


Figure 44 – 265 VAC Input, Full Load then Short.

180 ms Continuous Switching. Upper: I_{DRAIN}, 0.2 A / div. Lower: V_{DRAIN}, 200 V / div. Time Scale: 500 ms / div.

Figure 45 – 265 VAC Input, Full Load then Short. 2.5 s Off Time before Auto-restart.

Upper: I_{DRAIN}, 0.2 A / div. Lower: V_{DRAIN}, 200 V / div. Time Scale: 500 ms / div.

Figure 46 – 265 VAC Input and Full Load then Short.

Figure 47 – 265 VAC Input and Full Load then Short.

Upper: I_{DRAIN} , 0.2 A / div. Lower: V_{DRAIN} , 200 V / div. Time Scale: 50 μ s / div. Zoom Time Scale: 2 μ s / div.

11.6 Output Diode Waveform at Normal Operation

Figure 48 – 190 VAC Input and Full Load then Short.

Upper: I_{DRAIN} , 0.2 A / div. Lower: V_{OUT} , 20 V / div. Time Scale: 100 μs / div.

Figure 49 – 265 VAC Input and Full Load then Short.

Upper: I_{DRAIN} , 0.2 A / div. Lower: V_{DRAIN} , 200 V / div. Time Scale: 50 μ s / div. Zoom Time Scale: 2 μ s / div.

www.powerint.com

11.7 Output Voltage Start-up Profile

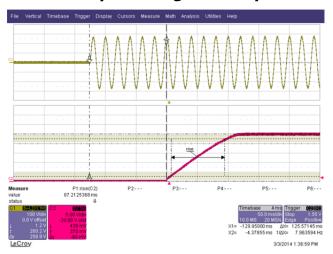
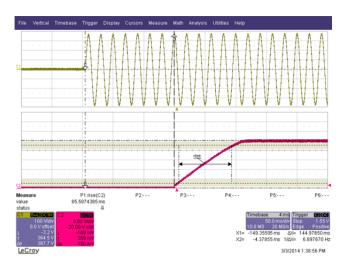



Figure 50 - Start-up Profile, 190 VAC Upper: V_{IN} , 100 V / div.

Lower: V_{OUT}, 5 V / div. Time Scale: 50 ms / div.

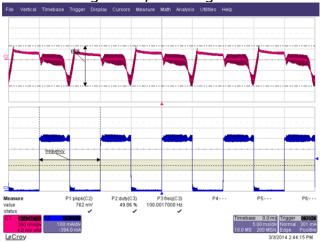
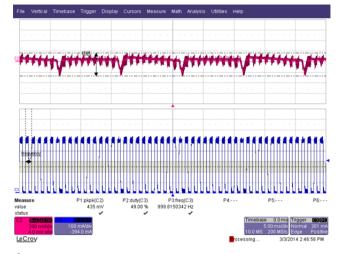
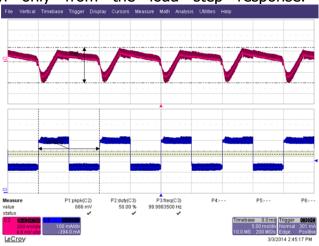


Figure 51 – Start-up Profile, 265 VAC.

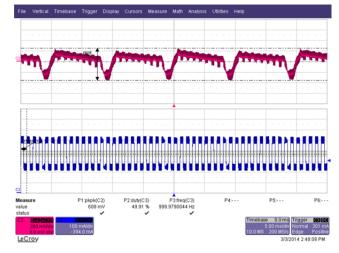
Upper: V_{IN} , 100 V / div. Lower: V_{OUT} , 5 V / div. Time Scale: 50 ms / div.


11.8 Load Transient Response (0% to 100% Load Step)

In the figures shown below, signal averaging was used to better enable viewing the load transient response. The oscilloscope was triggered using the load current step as a trigger source. Since the output switching and line frequency occur essentially at random with respect to the load transient, contributions to the output ripple from these sources will average out, leaving the contribution only from the load step response.


Figure 52 – Transient Response, 230 VAC, 0-100-0% Load Step for Worst Case Condition at 100 Hz.

Upper: V_{OUT} , 200 mV / div. Lower: I_{OUT} , 100 mA / div. Time Scale: 5 ms / div.


Figure 54 — Transient Response, 230 VAC, 0-100-0% Load Step for Worst Case Condition at 1 kHz.

Upper: V_{OUT} , 200 mV / div. Lower: I_{OUT} , 100 mA / div. Time Scale: 5 ms / div.

Figure 53 – Transient Response, 230 VAC, 50-100-50% Load Step for Worst Case Condition at 100 Hz.

Upper: V_{OUT} , 200 mV / div. Lower: I_{OUT} , 100 mA / div. Time Scale: 5 ms / div.

Figure 55 – Transient Response, 230 VAC, 50-100-50% Load Step for Worst Case Condition at 1 kHz.

Upper: V_{OUT} , 200 mV / div. Lower: I_{OUT} , 100 mA / div. Time Scale: 5 ms / div.

11.9 Brown-out Test

No component failure was observed.

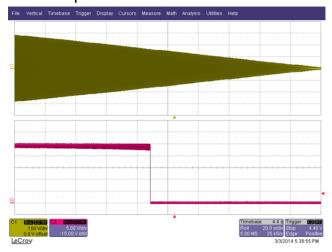


Figure 56 – Brown-out at 0.5 V / div. Upper: V_{IN} , 100 V / div. Lower: V_{OUT} , 5 V / div. Time Scale: 20 s / div.

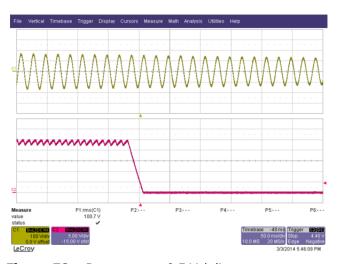


Figure 58 – Brown-out at 0.5 V / div. Upper: V_{IN} , 100 V / div. Lower: V_{OUT} , 5 V / div. Time Scale: 50 ms / div.

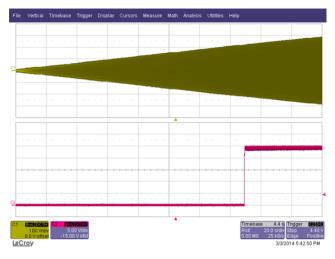


Figure 57 – Brown-in at 0.5 V / div. Upper: V_{IN} , 100 V / div. Lower: V_{OUT} , 5 V / div. Time Scale: 20 s / div.

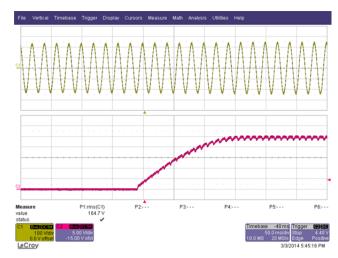


Figure 59 – Brown-in at 0.5 V / div. Upper: V_{IN} , 100 V / div. Lower: V_{OUT} , 5 V / div. Time Scale: 50 ms / div.

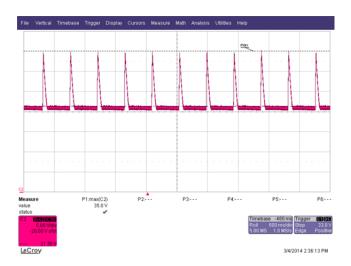

11.10 Open Loop Test


Figure 60 – 190 VAC Open Loop at No-Load. V_{OUT}, 5 V / div. Time Scale: 500 ms / div.

Figure 62 – 190 VAC Open Loop at Full-Load. V_{OUT} , 5 V / div. Time Scale: 500 ms / div.

Figure 61 – 265 VAC Open Loop at No-Load. V_{OUT}, 5 V / div. Time Scale: 500 ms / div.

Figure 63 – 265 VAC Open Loop at Full-Load. V_{OUT}, 5 V / div. Time Scale: 500 ms / div.

11.11 Output Ripple Measurements

11.11.1 Ripple Measurement Technique

For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pick-up. Details of the probe modification are provided in the Figures below.

The 4987BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) $0.1~\mu\text{F/}50~\text{V}$ ceramic type and one (1) $1.0~\mu\text{F/}50~\text{V}$ aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below).

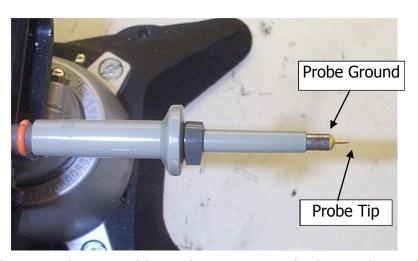
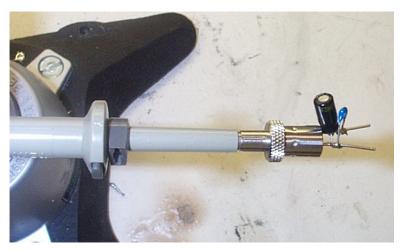
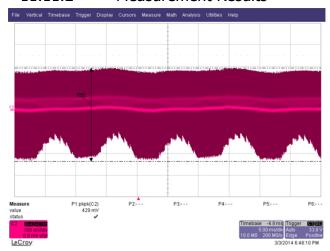




Figure 64 – Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed)

Figure 65 — Oscilloscope Probe with Probe Master (<u>www.probemaster.com</u>) 4987A BNC Adapter. (Modified with wires for ripple measurement, and two parallel decoupling capacitors added)

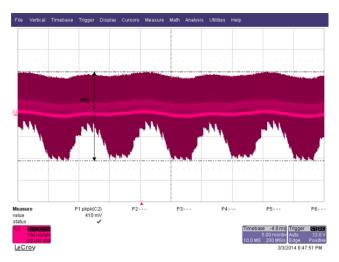

11.11.2 Measurement Results


Figure 66 – Ripple, 190 VAC, Full Load. 5 ms, 100 mV / div.

Figure 68 – Ripple, 230 VAC, Full Load. 5 ms, 100 mV / div.

Figure 67 – Ripple, 265 VAC, Full Load. 5 ms, 100 mV / div.

Figure 69 – Ripple, 230 VAC, ³/₄ Full Load. 5 ms, 100 mV / div.

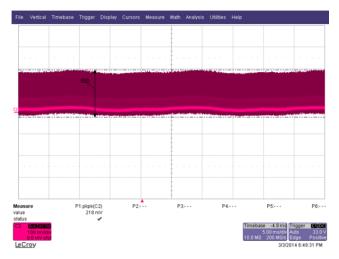


Figure 70 - Ripple, 230 VAC, ½ Full Load. 5 ms, 100 mV / div.

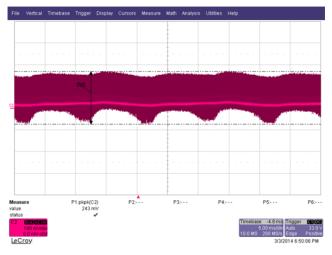


Figure 71 – Ripple, 230 VAC, ¼ Full Load. 5 ms, 100 mV / div.

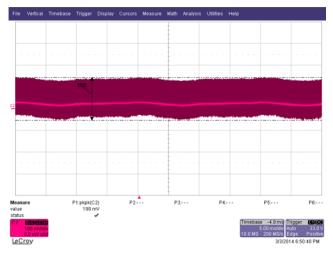


Figure 72 – Ripple, 230 VAC, 1/8 Full Load. 5 ms, 100 mV / div.

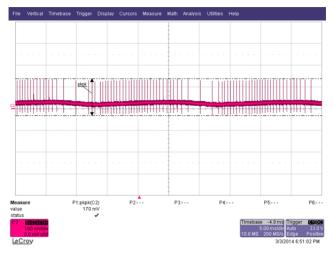
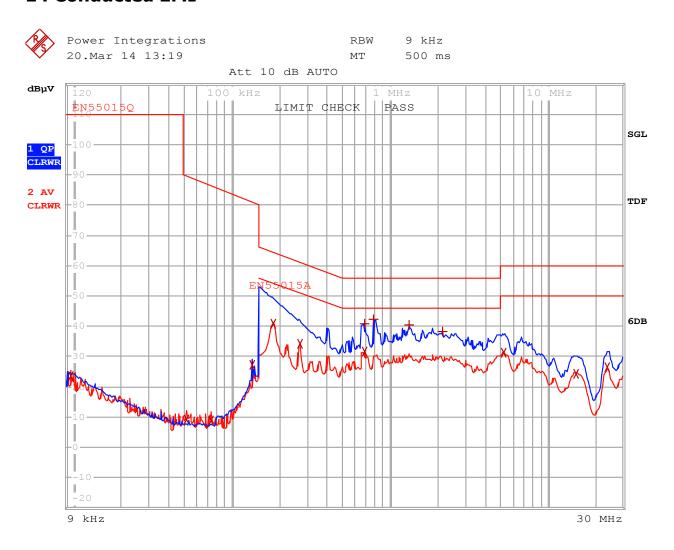


Figure 73 - Ripple, 230 VAC, No-Load. 5 ms, 100 mV / div.

13 Line Surge

Differential input line 1.2/50 μ s surge testing was completed on a single test unit to IEC61000-4-5. Input voltage was set at 230 VAC / 60 Hz. Output was loaded at full load and operation was verified following each surge event.

Surge Level (V)	Input Voltage (VAC)	Injection Location	Injection Phase (°)	Test Result (Pass/Fail)		
+250	230	L to N	90	Pass		
-250	230	L to N	90	Pass		
+500	230	L to N	90	Pass		
-500	230	L to N	90	Pass		
+750	230	L to N	90	Pass		
-750	230	L to N	90	Pass		
+1000	230	L to N	90	Pass		
-1000	230	L to N	90	Pass		


Unit passes under all test conditions.

Differential Ring input line surge testing was completed on a single test unit to IEC61000-4-5. Input voltage was set at 230 VAC / 60 Hz. Output was loaded at full load and operation was verified following each surge event.

Surge Level (V)	Input Voltage (VAC)	Injection Location	Injection Phase (°)	Test Result (Pass/Fail)	
+2500	230	L to N	90	Pass	
-25000	230	L to N	90	Pass	
+2500	230	L to N	0	Pass	
-25000	230	L to N	0	Pass	

Unit passes under all test conditions.

14 Conducted EMI

Figure 74 — Conducted EMI, Maximum Steady-State Load, 230 VAC, 60 Hz, and EN55015 B Limits. Unit on Top of Copper Plane.

	1	EDIT	PEAK LI	ST (F	inal	Measure	ment	Res	ults)
Tra	ce1:		EN55015Q	!					
Tra	ce2:		EN55015A						
Tra	ce3:								
	TRACE		FREQ	UENCY		LEVEL d	BμV		DELTA LIMIT dB
2	Average		9.459090	4509	kHz	23.72	L1	gnd	
2	Average		51.34319	86431	kHz	9.32	L1	gnd	
2	Average		73.46024	58683	kHz	8.87	L1	gnd	
2	Average		134.7895	36006	kHz	27.12	N	gnd	
2	Average		183.0285	05992	kHz	40.98	N	gnd	-13.36
2	Average		269.8064	40381	kHz	34.16	N	gnd	-16.96
1	Quasi Pea	k	687.4821	8373	kHz	40.89	N	gnd	-15.10
2	Average		687.4821	8373	kHz	31.76	N	gnd	-14.23
1	Quasi Pea	k	790.2430	42258	kHz	42.18	N	gnd	-13.81
1	Quasi Pea	k	1.325781	99726	MHz	40.35	N	gnd	-15.64
1	Quasi Pea	k	2.137460	3093	MHz	38.12	N	gnd	-17.87
2	Average		5.233855	15413	MHz	31.40	N	gnd	-18.59
2	Average		15.02752	02 M H	Z	24.45	N	gnd	-25.55
2	Average		23.75037	73643	MHz	26.52	L1	gnd	-23.47

Table 4 – Conducted EMI, Maximum Steady-State Load, 230 VAC, 60 Hz, and EN55015 B Limits. Unit on Top of Copper Plane.

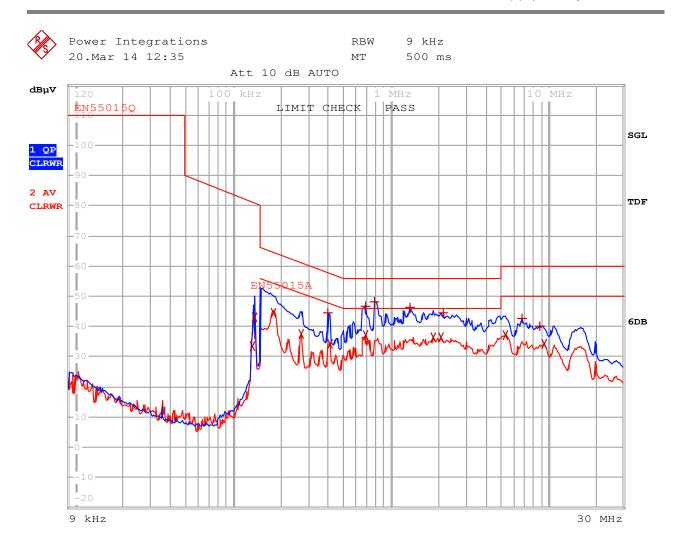


Figure 75 – Conducted EMI, Maximum Steady-State Load, 230 VAC, 60 Hz, and EN55015 B Limits. Unit on Top of Copper Plane that is Connected to Earth.

		EDIT	PEAK	LIST	(Fir	nal	Measureme	nt	Resul	ts)	
Trac	ce1:		EN550	015Q							
Trac	ce2:		EN550	015A							
Trac	ce3:										
	TRACE		I	FREQUEN	1CY		LEVEL dBp	ιV		DELTA	LIMIT dB
2	Average		130.8	3253956	591	kHz	33.39	N	gnd		
2	Average		136.	1374313	366	kHz	43.13	N	gnd		
2	Average		179.4	4221213	353	kHz	44.63	N	gnd	-9.88	1
2	Average		269.8	3064403	381	kHz	37.40	N	gnd	-13.72	2
1	Quasi Pea	ak	397.	7277467	704	kHz	44.42	N	gnd	-13.47	•
2	Average		409.7	7792951	L57	kHz	34.21	N	gnd	-13.43	3
1	Quasi Pea	ak	687.4	4821837	73 k	Ηz	46.75	N	gnd	-9.24	Į.
2	Average		687.4	4821837	73 k	Hz	37.01	N	gnd	-8.98	•
1	Quasi Pea	ak	790.2	2430422	258	kHz	48.05	N	gnd	-7.94	Į.
1	Quasi Pea	ak	1.325	5781997	726	MHz	46.42	N	gnd	-9.57	•
2	Average		1.841	1100314	189	MHz	36.42	N	gnd	-9.57	•
2	Average		2.074	4597917	78 M	Ηz	36.39	N	gnd	-9.60)
1	Quasi Pea	ak	2.158	3834912	24 M	Ηz	44.56	N	gnd	-11.43	3
2	Average		5.286	6193705	567	MHz	36.97	N	gnd	-13.02	!
1	Quasi Pea	ak	6.779	9183940	001	MHz	42.52	N	gnd	-17.47	•
1	Quasi Pea	ak	8.868	3588616	571	MHz	40.08	N	gnd	-19.91	-
2	Average		9.320	0975766	536	MHz	34.03	N	gnd	-15.96	<u>, </u>

Table 5 — Conducted EMI, Maximum Steady-State Load, 230 VAC, 60 Hz, and EN55015 B Limits. Unit on Top of Copper Plane that is Connected to Earth.

15 Revision History

Date	Author	Revision	Description & changes	Reviewed
07-Nov-14	JdC	1.0	Initial Release	Apps & Mktg

For the latest updates, visit our website: www.powerint.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits' external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.

The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, LYTSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS, HiperLCS, Ospeed, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2014 Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellver Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765

CHINA (SHANGHAI)

Rm 2410, Charity Plaza, No. 88, North Caoxi Road, Shanghai, PRC 200030 Phone: +86-21-6354-6323 Fax: +86-21-6354-6325 e-mail: chinasales@powerint.com

e-mail: usasales@powerint.com

CHINA (SHENZHEN)

17/F, Hivac Building, No. 2, Keji Nan 8th Road, Nanshan District, Shenzhen, China, 518057 Phone: +86-755-8672-8689 Fax: +86-755-8672-8690 e-mail: chinasales@powerint.com

GERMANY

Lindwurmstrasse 114 80337, Munich Germany Phone: +49-895-527-39110 Fax: +49-895-527-39200 e-mail:

eurosales@powerint.com

INDIA

#1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 Fax: +91-80-4113-8023 e-mail:

indiasales@powerint.com

Via Milanese 20, 3rd. Fl.

20099 Sesto San Giovanni (MI) Italy Phone: +39-024-550-8701 Fax: +39-028-928-6009

e-mail:

eurosales@powerint.com

1ΔΡΔΝ

Kosei Dai-3 Building 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 lanan

Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail:

japansales@powerint.com

KOREA

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 e-mail: koreasales@powerint.com

SINGAPORE

51 Newton Road, #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 e-mail:

singaporesales@powerint.com

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 11493, Taiwan R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 e-mail: taiwansales@powerint.com

First Floor, Unit 15, Meadway Court, Rutherford Close, Stevenage, Herts. SG1 2EF United Kingdom Phone: +44 (0) 1252-730-141 Fax: +44 (0) 1252-727-689 e-mail: eurosales@powerint.com

APPLICATIONS HOTLINE

World Wide +1-408-414-9660

APPLICATIONS FAX

World Wide +1-408-414-9760