

Design Example Report

Title	33W Dual Output DC-DC Power Forward Converter with Synchronous Rectification Forward using DPA425R			
Specification	Input: 36 - 72 VDC Output: 6.7V/4.2A, 11.1V/0.5A			
Application	Satellite Receiver			
Author	Power Integrations Applications Department			
Document Number	DER-29			
Date	March 30, 2004			
Revision	1.0			

Summary and Features

- Low Parts Count
- High Efficiency (90% at 48V with DPA425)
- Simple self-driven Synchronous Rectification
- 300kHz Operation
- Good Cross-regulation using Coupled Output Inductor
- Very low ripple on 6.7V output (<20mVp-p)
- Tight regulation (3% on 6.7V and 4% on 11.1V)

The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at <u>www.powerint.com</u>.

Power Integrations, Inc. 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 <u>www.powerint.com</u>

Table of Contents

1	Intro	oduction	3
2	Pow	er Supply Specification	4
	2.1	Schematic	5
	2.2	Circuit Operation	6
	2.3	Bill Of Materials	8
3	Lay	out	10
4	Des	ign Spreadsheet	11
5	Trar	sformer - T1	13
	5.1	Transformer Construction	14
6	Indu	ictor - L2	15
	6.1	Inductor Construction	16
7	Perf	ormance Data	17
	7.1	Efficiency	17
	7.2	Regulation	17
	7.2.	1 Load Regulation	17
	7.2.	2 Line Regulation	18
	7.3	Miscellaneous Performance	19
8	Perf	ormance Measurements	20
	8.1	Drain Voltage and Current, Normal Operation	20
	8.2	Output Voltage Startup	21
	8.3	Load Transient Response (10% to 100% Load Step on 6.7V Output - 1kHz)	22
	8.4	Load Transient Response (10% to 100% Load Step on the 6.7V Output) –	
	Alterna	ate repetition rate	23
	8.5	Output Ripple Measurements	24
	8.5.	1 Ripple and Transient Load Measurement Setup	24
	8.5.	2 High Frequency (Switching Ripple) - Measurement Results	25
	8.5.	3 Lower Frequency Ripple - Measurement Results	25
9	Rev	ision History	27

Important Notes:

Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolated source to provide power to the prototype board.

Design Reports contain a power supply design specification, schematic, bill of materials, and transformer documentation. Performance data and typical operation characteristics are included. Typically only a single prototype has been built.

1 Introduction

This document is an engineering report describing a dual output Forward converter using the DPA425R. The input voltage range is 36 to 72VDC providing two outputs of 6.7V and 11.1V at 33.7W. The power supply achieves approximately 89% efficiency with self-driven synchronous rectification on one output and a coupled output inductor for dual output regulation.

This document contains the power supply specification, schematic, and bill of materials, transformer documentation, printed circuit layout, and performance data .of the prototype supply.

Figure 1 - Populated Circuit Board.

2 Power Supply Specification

Description	Symbol	Min	Тур	Max	Units	Comment
Input						
Voltage	V _{IN}	36		72	V_{DC}	Startup specified at < 36V.
Overload Input Current			-	1.28	А	Maximum allowed input current (36 V – 72 V)
Output1						
Output Voltage 1	V _{OUT1}	6.50	6.7	6.90	V	± 3%
Output Ripple Voltage 1	V _{RIP1P-P}			20	mVp-p	20 MHz Bandwidth
	V _{RIP1RMS}				mVrms	20 MHz Bandwidth
Output Dynamic Resp Voltage 1	V _{DYN1}			±300	mVp-p	200us settle time at 25 ^o C 1A/us (10%-100% step, 1kHz)
Output Current 1	I _{OUT1}	0		4.2	Α	· · · · ·
Output Over Current 1	I _{OUT1OC}	120		200	%	Autorecovery
Output Voltage 2	V _{OUT2}	10.66	11.1	11.54	V	± 4%
Output Ripple Voltage 2	V _{RIP2P-P}			100	mVp-p	20 MHz Bandwidth
	V _{RIP2RMS}				mVrms	20 MHz Bandwidth
Output Dynamic Resp Voltage 2	V_{DYN2}			±500	mVp-p	200us settle time at 25 ^o C 1A/us (10%-100% step, 1kHz)
Output Current 2	I _{OUT2}	0.11		0.5	Α	
Output Over Current 2	I _{OUT2OC}	120		800	%	Autorecovery
Total Output Power						
Continuous Output Power	Pout			33.7	W	
Peak Output Power	P OUT_PEAK		-		W	
Efficiency	η	88			%	
Ambient Temperature	T _{AMB}	-40	25	90	°C	Free convection, Sea level

Desired physical dimensions: 6 x 2 x 0.5 inches

2.2 Circuit Operation

This circuit is design using synchronous rectification for the 6.7V and 11.1V outputs. The circuit also uses a coupled output inductor (L6) for better cross-regulation of both outputs, and the 11.1V is DC-stacked on top of the 6.7V output. Both outputs share regulation via the TL431.

The DPA425R is used to implement a forward converter with two outputs using a coupled inductor. The power supply also implements self-driven synchronous rectification to improve the efficiency. DPA425 is used for best efficiency.

The DC input voltage is filtered by C1, C2 and L1. The capacitor C1 is only present to minimize emissions back to the input line (it is not involved in the switching conversion). The zener diode VR1 is used to clamp the drain of the DPA-Switch to a safe level in the event of excessive voltage, though normally the resonant reset technique limits the voltage without the zener diode conducting.

The DPA-Switch has a local decoupling capacitor (C5) placed very close to Control and Source pins of the device. Also there is a larger decoupling capacitor (C6) which, in combination with R4, contributes to the control loop compensation. Resistor R3 sets the DPA-Switch external current limit to a safe level. This level will allow power delivery under normal operation, but programs the DPA-Switch maximum drain current to limit at a level above the normal operating peak current. This feature limits overload power delivery to the secondary during fault conditions and in-turn limits the maximum power that the supply will draw from the input line (even during fault conditions). The DPA-Switch also includes built-in short-circuit protection and other safety features. Resistor R1 programs the under-voltage and over-voltages start and stop thresholds for the device.

Capacitor C7 and resistor R7 are used to reduce common mode EMI emissions (and are optional). Under normal operation, the bias for the DPA-Switch comes directly from the 11.1V output. The transistor Q11 feeds back a current control signal from the secondary error signal circuit. The resistor R11 programs the high frequency gain of the secondary error signal circuit. Resistor R12 provides a connection to the TL431 error amplifier circuit. Due to the high gain of the transistor Q11, the resistor R12 can be chosen with a relatively high value also. If a low-value is chosen for the resistor R12 then the design may run into startup problems, whereby the parasitic collector-base diode of Q11 will load down the DPA-Switch control pin preventing startup. Therefore it is advisable to keep resistor R12 above 5 to 10kohm. The TL431 (U3) sinks a current through R12 to drive the transistor Q11. Capacitor C12 and resistor R15 provide compensation around the TL431. Resistor R18 is connected to the 6.7V output, R17 is connected to the 11.1V output and the resistor R16 provides the bottom resistor in the divider chain. These resistors control the TL431 thresholds which in turn control the DC-regulation point of the output voltages. Capacitor C13 and R13 provide phase boost to the control loop at higher frequencies

from the 11.1V output. This improves the transient response of the power supply. Capacitor C14 and R14 do the same from the 6.7V output.

The secondary is rectified using self-driven synchronous rectification. The 6.7V and 11.1V windings capacitively drive the two forward MOSFETs Q21 and Q23 through capacitors C22 and C23 with series resistors R22 and R25. The maximum voltage on the gate of Q21 and Q23 is clamped by Zener diodes VR21 and VR22. These diodes also provide a discharge path to deplete the charge in the C22 and C23 during the off-time for MOSFETs Q21 and Q23. The resistors R22 and R25 prevent low noise signals from interfering with the MOSFET drive (these resistor are optional). Resistor R23 and R27 ensure that the MOSFET is biased passively in the off-state to prevent accidental turn-on.

The catch MOSFETs Q22 and Q24 are driven directly from the 6.7V and 11.1V windings through series resistors R24 and R26. The catch MOSFETs do not conduct for the entire DPA-Switch off-time, and therefore parallel diodes D21 and D22 provide a conduction path for the remainder of the off-time when Q22 and Q24 are not active.

The two outputs are coupled through inductor L6. This inductor improves the crossregulation between the two outputs (over that of non-coupled inductors). The load current is filtered by capacitors C31 and C32 on the 6.7V and C33 on the 11.1V output. There is an additional high frequency decoupling capacitor (C35 for 6.7V and C34 for 11.1V), placed right at the output pins of the supply.

Output inductor L4 in the 6.7V output attenuates the switching noise. However this inductor has to be chosen with the power supply transient response in mind.

Note1: output capacitor C33 is sized to accommodate the ripple current that can flow in this capacitor during an overload on the 11.1V output. The other components on the 11.1V output are chosen to also withstand overload conditions.

2.3 Bill Of Materials

App140259 - 29W 6.4V/3.8A, 11.1V/0.5A - 061303c Revised: Thursday, June 12, 2003 Bill Of Materials

Item	Qua	ntity	Reference Part
1	1	C1	0.1u/100V/1206
2	1	C2	1µ/100V/1812
3	1	C5	220n/0805
4	1	C6	68u/10V
5	1	C7	1n/1.5kV/1808
6	3	C12	1u0/0805
		C34	1u0/0805
		C35	1u0/0805
7	2	C14	1uF/0805
		C13	1uF/0805
8	2	C23	3300pF/50V/0805
		C22	3300pF/50V/0805
9	2	C32	220uF/10V 40mohm (Kemet - T520D227M010ASE040)
		C31	220uF/10V 40mohm (Kemet - T520D227M010ASE040)
10	1	C33	47uF/16V 70mohm (Kemet - T520D476M016ASE070)
11	1	D21	4A/40V/SS44
12	1	D22	1A/30V/SS13
13	1	L1	1uH /2.5A
14	1	L4	Inductor (modified to 800nH/5A [3T 2x29AWG]– (Tokin SSBT84)
15	1	L6	Coupled Inductor 22uH (EFD20)
16	1	Q11	MMBT3906
17	1	Q21	SI4850EY
18	2	Q24	SI4896
		Q22	SI4896
19	1	Q23	SI4850EY
20	1	R1	619k/0805
21	1	R3	15k/0603
22	1	R4	1R0/0603
23	2	R13	10R/0603
		R7	10R/0603
24	1	R11	430/0603
25	1	R12	27k/0603
26	1	R14	100R/0603
27	1	R15	220/0603
28	1	R16	9.53k/1%/0603
29	1	R17	68.1k/1%/0603
30	1	R18	30.9k/1%/0603

31	1	R19	4.3k/0603
32	4	R22	10R/0805
		R24	10R/0805
		R25	10R/0805
		R26	10R/0805
33	2	R27	10k/0603
		R23	10k/0603
34	1	T1	Customer Transformer (EFD20)
35	1	U1	DPA425R
36	1	U3	TL431
37	1	VR1	150V Clamp Zener SMBJ150
38	2	VR22	15V/500mW
		VR21	15V/500mW

3 Layout

4 Design Spreadsheet

DCDC_DPAFwd_rev1.03_					
Integrations Inc. 2002	INPLIT				DPA 092702 R102vle: DPA-Switch Forward Transformer Design Spreadsheet
				UNIT	
		CURREI		Valta	
	0.7			VOIIS Amno	
	4.2			Volte	
	0.5			Ampe	
POUT	0.5		33.60	Watte	
	12.0		33.03	Volte	DC bias voltage from output inductor winding
VDIAG	12.0			VOIIS	
		v/Uv		DC valta	
	30			DC volto	Maximum DC input voltage
VIVIAA	75	min	may	DC VOIIS	
		20.34	22 25572		Minimum underveltage On-Off threshold
	1	29.04	32,33373	DC volte	Maximum undervoltage Off-On threshold (turn-on)
		73 06800		DC volte	Minimum evenueltage Off-On threshold
	1	-	- 02 36876	DC Volts	Maximum overvoltage On-Off threshold (turn-off)
RI		-	603 1461	kOhm	l ine Sense resistor value (L-nin) - goal seek (VLIV OEE) for std 1% resistor series
			000.1401	KOIIIII	
	itah VAD				
DRA Switch	dpa425	IADLES			26\/DC
Chapon Doving	401/A		Power	211/1	
	#N/A #DEEI	E 25	Fower	31W Ampo	From DBA Switch dotachaot
Eroquopoy $= (E) = 400kH$	#I\LI:			Amps	FIGHT DEA-SWICH datasheet
fS	#REFI	317000	300000	Hertz	From DPA-Switch datasheet
KI 10	0.45	317000	300000	TIEITZ	External limit reduction factor (KI=1.0 for default II IMIT, KI < 1.0 for lower II IMIT)
	0.40		2 0925	Amns	External current limit Use 1% resistor to set current limit
RX			14,99575	kOhm	Current Limit resistor value (X-pin) - assumes minimum datasheet curve (fig 32)
101			1.100010		
DUVON GOAL	0.67		0.67		Maximum allowed duty cycle at VUV ON MIN undervoltage threshold
KDI	0.15		0.15		Maximum current ripple factor
VDS			0.9	Volts	DPA-Switch average on-state Drain to Source Voltage
VDSOP		[174.6585	Volts	Required drain voltage for guaranteed transformer reset
	0.05		0.05	Volte	Main output diodes forward voltage drop
	0.05		0.05	Volts	Secondary output diodes forward voltage drop
VDB	- 0.00		0.03	Volts	Bias diode forward voltage drop
100			0.7	Volto	
TDANGEODMED	CODES		אר		
Core	eluzo	EED20		D/NI-	EED20-2E3-Exxx-xx
Bobbin		EFD20 Bo	hin	E/N.	
	1		0.31	r/n.	Core Effective Cross Sectional Area
	-		0.01	cm	Core Effective Path Length
	-		4.7	nH/TA2	
RW/	-		13.5	mm	Bobbin Physical Winding Width
	-		0.002	mm	Maximum actual can when zero can specified
	-		0.002		Duty cycle factor
	1 00		1		Transformer primary layers (split primary recommended)
- NMAIN	1.00		6		Main rounded turns
NS2	- 1		1		Vout2 rounded secondary turns (AC stacked winding)
			11 2	Volts	Approximate Output2 voltage of with NS2 = 4 turns (AC stacked secondary)
			11.2		

TRANSFORMER DESIG	N PARAME	TERS		
NP		18		Primary rounded turns
BM		1286.891	Gauss	Max operating flux density at minimum switching frequency
BP		2468.015	Gauss	Max transient flux density at minimum switching frequency
LP MIN		0.366237	mHenries	Minimum primary magnetizing inductance (assumes LG MAX=2um)
IMAG		0.184307	Amps	Peak magnetizing current at minimum input voltage
OD_P		0.825979	mm	Primary wire outer diameter
AWG_P	Warning	20	AWG	!!! Primary < 27AWG: decrease L, increase NP, consider multifilar winding
DUTY CYCLE VALUES				
DUVON MIN		0.662826		Duty cycle at minimum undervoltage threshold
DVMIN		0.576923		Duty cycle at minimum DC input voltage
DVMAX	Warning	0.273279		III DVMAX > derated duty cycle limit: decrease DUVON GOAL
DOVOFF MAX		0.221387		Duty cycle at maximum DC overvoltage threshold
CURRENT WAVESHAPE	E PARAME	TERS		
IP	Warning	1.890914	Amps	!!! Exceeds derated current limit: increase KI, decrease KDI, increase DPA-Switch s
IPRMS		1.274364	Amps	Maximum primary RMS current at minimum DC input voltage
COUPLED INDUCTOR C	UTPUT PA	RAMETE	RS	
LMAIN		21.65724	uHenries	Main / Output2 coupled output inductance (referred to Main winding)
WLMAIN		274.3371	uJoules	Main / Output2 coupled output inductor full-load stored energy
KDIMAIN		0.15		Current ripple factor of combined Main and Output2 outputs
nOUT2		1.651852		Approximate turns ratio for Output2 winding
nBIAS		1.881481		Approximate turns ratio for Bias winding
SECONDARY OUTPUT I	PARAMETE	RS		No derating
ISMAINRMSLL		3.569906	Amps	Maximum transformer secondary RMS current (AC stacked secondary)
ISOUT2RMSLL		0.379777	Amps	Maximum transformer secondary RMS current (AC stacked secondary)
IDAVMAIN		3.052227	Amps	Maximum average current, Main rectifier (single device rating)
IDAVOUT2		0.36336	Amps	Maximum average current, Main rectifier (single device rating)
IRMSMAIN		0.181865	Amps	Maximum RMS current, Main output capacitor
IRMSOUT2		0.021651	Amps	Maximum RMS current, Out2 output capacitor
VPIVMAIN		48.43949	Volts	Main rectifiers peak-inverse voltage
VPIVOUT2		80.73248	Volts	Output2 rectifiers peak-inverse voltage
VPIVB		56.77612	Volts	Bias output rectifier peak-inverse voltage

5 Transformer - T1

MATERIALS

ltem	Description
[1]	Core: EFD20 3F3 Material Ferroxcube P/N EFD20-3F3
	ungapped
[2]	Bobbin: 10 pin EFD20 surface mount B&B B-060 or equivalent
[4]	Magnet Wire: #30 AWG Double Coated
[5a]	Magnet Wire: #26 AWG Double Coated
[5b]	Magnet Wire: #28 AWG Double Coated
[6]	16.7mm Insulation Tape
[7]	Varnish

ELECTRICAL SPECIFICATIONS:

Electrical Strength	1 second, from Pins 1, 10 to	1500 VDC
	PINS 2,3,4,5,6,7,8,9	
Creepage	Between Pins 1,10 and Pins	N/A
	2,3,4,5,6,7,8,9	
Primary Inductance	Pins 1,10, all other windings open,	327 μH,
	measured at 100KHz, 400mVRMS	(384uH
		actual)
		±25 %
Resonant Frequency	Pins 1,10, all other windings open	2.006 MHz
		(Min.)
Primary Leakage	Pins 1,10, with Pins 2,3,4,5,6,7,8,9	0.900 μH
Inductance	shorted, measured at 100KHz,	(Max.)
	400mVRMS	

5.1 Transformer Construction

WINDING INSTRUCTIONS:

W2 (Sec1a)	With two windings in parallel:
	Start at Pin 2. Wind 6 turns quad item [5a] Finish on Pin 4
Insulation	Use two layers of item [6] for insulation.
W2 (Primary)	Start at Pin 10. Wind 17 turns bifilar of item [4] in 1 layer.
	Finish at Pin 1.
Insulation	Use two layers of item [6] for insulation.
W3 (Sec1b)	Start at Pin 3. Wind 6 turns quad item [5b] Finish on Pin 5
Insulation	Use two layers of item [6] for insulation.
W4 (Sec2)	Start at Pin 8. Wind 4 turns bifilar item [4] Finish on Pin 6.
	Spread evenly over single layer
Outer Wrap	Wrap windings with 3 layers of tape item [6].
Final Assembly	Assemble and secure core halves. Varnish impregnate (item
	[7]).

6 Inductor - L2

MATERIALS

ltem	Description
[1]	Core: EFD20 3F3 Material Ferroxcube P/N EFD20-3F3 gap for A, of 153 pH/T ²
[2]	Bobbin: 10 pin EFD20 surface mount B&B B-060 or equivalent
[3]	Magnet Wire: #26 AWG Double coated
[5]	Insulation Tape
[6]	Varnish

ELECTRICAL SPECIFICATIONS:

Electrical Strength		N/A
Creepage		N/A
Primary Inductance	Pins 1,2-3,4 all other windings	22µH,
	open, measured at 100KHz,	(actual
	400mVRMS	23.735uH)
		±25 %
Resonant Frequency	Pins 1,2-3,4, all other windings	8.366 MHz
	open	(Min.)
Primary Leakage		0.651uH
Inductance		

6.1 Inductor Construction

WINDING INSTRUCTIONS:

W1	With two windings in parallel: Start at Pin 1. Wind 12 turns trifilar item [3] Finish on Pin 3
Basic Insulation	Use layer of item [6] for basic insulation.
W2	With two windings in parallel: Start at Pin 2. Wind 12 turns trifilar item [3]. Finish on Pin 4
Basic Insulation	Use layer of item [6] for basic insulation.
W3	Start at Pin 10. Wind 8 turns trifilar item [4]. Finish on Pin 8
Outer Wrap	Wrap windings with 3 layers of tape item [5].
Final Assembly	Assemble and secure core halves. Varnish impregnate (item [6]).

7 Performance Data

All measurements performed at room temperature.

7.1 Efficiency

Efficiency vs. Load

Figure 3- Efficiency vs. Load, Room Temperature

7.2 Regulation

7.2.1 Load Regulation

Regulation vs Load

Figure 4 – Load Regulation, Room Temperature

7.2.2 Line Regulation

Figure 6 - Line Regulation, Room Temperature, Full Load

7.3 Miscellaneous Performance

Max/Min Regulation Performance over all Line and Load conditions

Description	Min	Max	Min	Max
6.7V Output	6.6825	6.775	99.7 %	101.1 %
11.1V Output	11.222	11.412	101.1 %	102.8 %

Max/Min Regulation Performance over all Line and Load conditions

Description	Input Current	Input	Output	% of Max
-	(Max)	Voltage	Current	load
6.7V Overload	1.27 A	36 V	5.88 A	140 %
11.1V Overload	1.25 A	36 V	3.53 A	706%

Line Under/Overvoltage

Description	V off (min)	V off (max)	V on (min)	V on (max)
Undervoltage	29.3 V	32.4 V	31.5 V	33.9 V
Overvoltage	73.1V	-	-	92.4 V

Performance Measurements 8

Drain Voltage and Current, Normal Operation 8.1

Figure 9 - 72 VDC, Full Load (6.7V/4.2 A,11.1V/0.5 A) Upper: I_{DRAIN}, 1 A/ div Lower: V_{DRAIN}, 50 V/ div, 1 µs / div

Figure 8 - 48 VDC, Full Load (6.7V/4.2 A,11.1V/0.5

A) Upper: I_{DRAIN}, 1 A/ div Lower: V_{DRAIN}, 50 V/ div, 1 µs / div

2003/07/02 00:20:02

Stopped

50ms/div

(50ms/div)

8.2 Output Voltage Startup

NORM:200kS/s

Figure 12 – 72 VDC Startup, Full Load (6.7V/4.2 A,11.1V/0.5 A) Upper: $V_{11.1V}$, 2 V / div Lower: V_{6V7} , 2 V/ div, 50 ms / div

Figure 11 – 48 VDC Startup, Full Load (6.7V/4.2 A,11.1V/0.5 A) Upper: $V_{11.1V}$, 2 V / div Lower: V_{6V7} , 2 V/ div, 50 ms / div

8.3 Load Transient Response (10% to 100% Load Step on 6.7V Output – 1kHz)

In these figures shown below, no averaging was used. .

Top: 6.7V Output Voltage 200 mV / div Lower : 11.1V Output Voltage 500 mV, 200 μ s / div.

Figure 15 – 72 VDC Load Transient, 6.7V output 4.2-0.42-4.2 Amp Load Step on (1A/us slewrate).

Top: 6.7V Output Voltage 200 mV / div Lower : 11.1V Output Voltage 500 mV, 200 μs / div.

Figure 14 – 48 VDC Load Transient, 6.7V output 4.2-0.42-4.2 Amp Load Step on (1A/us slewrate). Top: 6.7V Output Voltage 200 mV / div

Lower : 11.1V Output Voltage 500 mV, 200 μ s / div.

8.4 Load Transient Response (10% to 100% Load Step on the 6.7V Output) – Alternate repetition rate

In these figures shown below, no averaging was used. .

Top: 6.7V Output Voltage 200 mV / div Lower : 11.1V Output Voltage 500 mV, 500 μ s / div.

Figure 18 – 72 VDC Load Transient, 6.7V output 4.2-0.42-4.2 Amp Load Step on (1A/us slewrate). Top: 6.7V Output Voltage 200 mV / div Lower : 11 1V Output Voltage 500 mV

Lower : 11.1V Output Voltage 500 mV, 500 μ s / div.

Figure 17 – 48 VDC Load Transient, 6.7V output 4.2-0.42-4.2 Amp Load Step on (1A/us slewrate).

Top: 6.7V Output Voltage 200 mV / div Lower : 11.1V Output Voltage 500 mV, 500 μ s / div.

8.5 Output Ripple Measurements

8.5.1 Ripple and Transient Load Measurement Setup

Two copper strips are used at the output pins of the power supply. On these copper strips a 1uF ceramic capacitor is placed close to the output pins followed by a 10uF/50V capacitor. The voltage is remotely measured at the actual pins of the power supply. The electronic load is applied at the end of the copper strips.

Figure 19 - Transient load and ripple measurement set up

8.5.2 High Frequency (Switching Ripple) - Measurement Results

Figure 22 - Ripple, 72 VDC, Full Load (6.7V/4.2 A,11.1V/0.5 A) Upper: 6.7V Output 10 mV / div Lower: 11.1V Output, 2 us, 100 mV / div

Figure 21 - Ripple, 48 VDC, Full Load (6.7V/4.2 A,11.1V/0.5 A) Upper: 6.7V Output 10 mV / div Lower: 11.1V Output, 2 us, 100 mV / div

Figure 23 - Ripple, 36 VDC, Full Load (6.7V/4.2 A,11.1V/0.5 A) Upper: 6.7V Output 10 mV / div Lower: 11.1V Output, 1 ms, 100 mV / div

Figure 25 - Ripple, 72 VDC, Full Load (6.7V/4.2 A,11.1V/0.5 A) Upper: 6.7V Output 10 mV / div Lower: 11.1V Output, 1 ms, 100 mV / div

Figure 24 - Ripple, 48 VDC, Full Load (6.7V/4.2 A,11.1V/0.5 A) Upper: 6.7V Output 10 mV / div Lower: 11.1V Output, 1 ms, 100 mV / div

9 Revision History

Date	Author	Revision	Description & changes	Reviewed
March 30, 2004	RM	1.0	Initial release	VC / AM

For the latest updates, visit our Web site: www.powerint.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein, nor does it convey any license under its patent rights or the rights of others.

The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at *www.powerint.com*.

The PI Logo, **TOPSwitch, TinySwitch**, **LinkSwitch**, and **EcoSmart** are registered trademarks of Power Integrations, Inc. **PI Expert** and **DPA-Switch** are trademarks of Power Integrations, Inc. © Copyright 2003, Power Integrations, Inc.

WORLD HEADQUARTERS AMERICAS

Power Integrations, Inc. 5245 Hellyer Avenue San Jose, CA 95138 USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 *E-Mail:* usasales @powerint.com

CHINA

Power Integrations International Holdings, Inc. Rm# 1705, Bao Hua Bldg. 1016 Hua Qiang Bei Lu Shenzhen Guangdong, 518031, China Phone: +86-755-8367-5143 Fax: +86-755-8377-9610 *E-Mail: chinasales @powerint.com*

APPLICATIONS HOTLINE

World Wide +1-408-414-9660

EUROPE & AFRICA

Power Integrations (Europe) Ltd. Centennial Court Easthampstead Road Bracknell Berkshire RG12 1YQ, United Kingdom Phone: +44-1344-462-300 Fax: +44-1344-311-732 *E-Mail: eurosales @powerint.com*

KOREA

Power Integrations International Holdings, Inc. 8th Floor, DongSung Building 17-8, Yoido-dong, Youngdeungpo-gu, Seoul, 150-874, Korea Phone: +82-2-782-2840 Fax: +82-2-782-4427 *E-Mail: koreasales* @powerint.com

APPLICATIONS FAX World Wide +1-408-414-9760

SINGAPORE

Power Integrations, Singapore 51 Goldhill Plaza #16-05 Republic of Singapore 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 *E-Mail:* singaporesales@powerint.com

JAPAN

Power Integrations, K.K. Keihin-Tatemono 1st Bldg. 12-20 Shin-Yokohama 2-Chome, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033, Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 *E-Mail: japansales* @powerint.com

TAIWAN

Power Integrations International Holdings, Inc. 17F-3, No. 510, Chung Hsiao E. Rd., Sec. 5, Taipei, Taiwan 110, R.O.C. Phone: +886-2-2727-1221 Fax: +886-2-2727-1223 *E-Mail:* taiwansales@powerint.com

INDIA (Technical Support)

Innovatech #1, 8th Main Road Vasanthnagar Bangalore, India 560052 Phone: +91-80-226-6023 Fax: +91-80-228-9727 *E-Mail: indiasales* @powerint.com

