

DESIGN EXAMPLE REPORT

Title20 W Power Supply with Very Low No-Io Power Consumption Using TOP255PN				
Specification 85 – 265 VAC Input; 12 V, 1.67 A Output				
Application Various				
Author	Applications Engineering Department			
Document number	DER-188			
Date	September 30, 2008			
Revision	1.0			

Summary and Features

- Very low no-load consumption: <100 mW at 230 VAC
- High active-on average efficiency: 85% / 86% at 115 VAC / 230 VAC
 Exceeds ENERGY STAR 2.0 efficiency requirement of 81%
 - High available standby output power at 115 VAC / 230 VAC:
 - 0.75 W at 1.0 W input power
 - 0.35 W at 0.5 W input power
 - 0.2 W at 0.3 W input power
- Line sensing
 - Line feed-forward for excellent line ripple rejection
 - Intelligent brown-out protection (undervoltage lockout (UVLO), with auto-restart)
 - Extended line surge immunity (overvoltage shutdown)
- No heat sink necessary, by design
- Hysteretic thermal over load and output short-circuit protection

PATENT INFORMATION

•

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.

> Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com

Table of Contents

1 Intro	oduction	3
	ре	
3 Pow	ver Supply Specification	5
4 Sch	ematic	6
5 Circ	uit Description	7
5.1	TOP255PN Operation	7
5.2	Input Filtering	7
5.3	TOP255PN Primary	7
5.4	TOP255PN Secondary	9
5.5	Output Rectification and Filtering	9
6 PCE	3 Layout	10
7 Bill	of Materials	11
8 Trai	nsformer Details	12
8.1	Electrical and Mechanical Diagram	12
8.2	Electrical Specifications	
8.3	Materials	12
8.4	Build Diagram	13
8.5	Transformer Construction	13
9 Des	ign Spreadsheet	14
	ower Supply Performance	
10.1	Energy Efficiency	18
10.2	Output Regulation and Quality	
10.3	Transient Load	
10.4	Startup	
11 C	onducted EMI	26
11.1	Waveform Plots	
12 R	evision History	
	•	

Important Note:

Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

1 Introduction

This engineering report describes a generic universal input, 12 V, 20 W output power supply employing the Power Integrations[®] TOPSwitch[®]-HX integrated off-line switcher TOP255PN. This power supply provides very low no-load power consumption and excellent standby efficiency.

Figure 1 – Populated Circuit Board Photograph.

This document contains the specifications, schematic, bill of materials, transformer construction details, and performance data for designing this power supply. This document also includes design considerations specific to addressing low no-load power consumption.

2 Scope

This report focuses on energy efficiency with special considerations given to the no-load input power consumption of this design. Performance test data is contained in this report with the exception of thermal tests. The conducted EMI test results suggest radiated EMI would be passed without significant additional work.

The following calibrated test equipment was used in gathering data for this report:

- Power meter Yokogawa WT210
- Programmable AC source Chroma model # 61502
- Programmable DC load Chroma model # 6314/63103
- Digital Storage Oscilloscope Yokogawa DL1740
- Current probe Tektronix A6302 and current probe amplifier Tektronix AM503
- Voltage probe 10:1 Tektronix P6105A
- DMM Fluke 87
- EMI test receiver Rhode & Schwarz ESPC
- Two-line V-Network Rhode & Schwarz ESH 3-Z5

Description	Min.	Тур.	Max.	Peak	Unit	Notes
Input						
Voltage	85	115/230	265		VAC	2 wire input
Frequency	47	50	63		Hz	
Output						
Output Voltage	11.4	12.0	12.6		V	±5%
Output Voltage Ripple			120		mVpp	1%, 20 MHz bandwidth
Output Current	0		1.67		Α	
Total Output Power	0		20		W	
Energy Efficiency						
Full load efficiency	81%	84%				Measured at 20 W, +25 °C
						25%, 50%, 75%, 100% at
Average active-on	81%	84%				115/230 VAC per ENERGY
Ctandley autout navior	0.70	0.75			\A/	STAR 2.0 (March 6, 2008)
Standby output power	0.70	0.75			W	At 1.0 W input power
	0.30	0.35			W	At 0.50 W input power
No lood consumption	0.15	0.20	0.1		W W	At 0.30 W input power
No-load consumption		0.08	0.1		VV	At 230 VAC
Environmental						
Conducted EMI	Meets EN 55022 Class B					
Safety	Designed to meet EN 60950, Class II					
Ambient Temperature		Clas		1	~	
Ambient Temperature	0		+50		℃	Free convection, sea level

3 Power Supply Specification

 Table 1 – Power Supply Specification.

4 Schematic

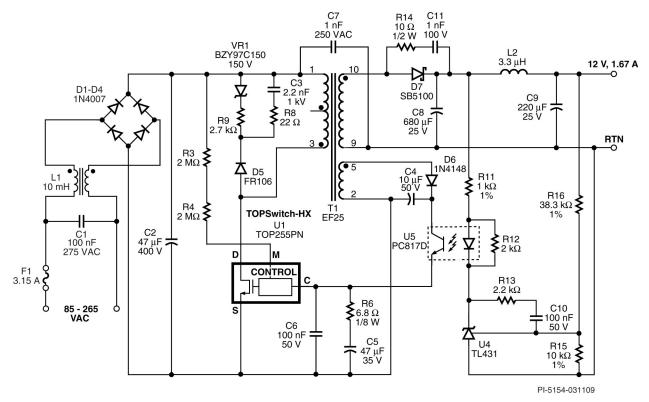


Figure 2 – Power Supply Schematic.

5 Circuit Description

This design centers around the TOP255PN in a flyback topology for a very low no-load power supply operating from universal inputs and providing a 12 V, 20 W output.

5.1 TOP255PN Operation

The TOP255PN (U1) converts a current at the CONTROL pin to a duty cycle at the open drain output of its integrated, high-power MOSFET. IC U1 also provides high-voltage start-up, cycle-by-cycle current limiting, loop compensation circuitry, and auto-restart and thermal shutdown. The high-voltage (700 V) MOSFET and all low-voltage control circuitry are cost-effectively integrated onto a single monolithic IC.

IC U1 uses the Multi-function (M) pin to combine the features normally requiring several pins onto one. The M pin acts as the single input for line overvoltage (OV), line undervoltage (UV), line feed-forward with DC_{MAX} reduction, output overvoltage protection (OVP), external current-limit adjustment, remote ON/OFF, and device reset functions.

In this design only the UV, OV and DC_{MAX} reduction features are used, via R3 and R4.

During normal MOSFET operation, duty cycle decreases linearly with increasing C-pin current. See Figure 9 in the TOPSwitch-HX data sheet for details.

Capacitor C6 is the decoupling capacitor for U1. Capacitor C5 both sets the auto-restart timing and, with R6, provides control loop compensation.

5.2 Input Filtering

Fuse F1 provides catastrophic fault protection to the circuit, and isolates it from the AC source. X-capacitor C1 reduces differential-mode EMI. Y-capacitor C7 (across the isolation barrier) and common-mode inductor L1 filter common-mode EMI. The value of C1 is sufficiently low to allow safe removal of the AC source without bleed resistors, in compliance with UL standard 60950-1. Diodes D1 through D4 rectify the AC input. Capacitor C2 filters the resulting DC.

5.3 TOP255PN Primary

A clamp network formed by VR1, R9, C3, R8, and D5 protects U1 from voltage spikes caused by leakage inductance on the transformer primary side at MOSFET turn off. Resistors R3 and R4 sense the DC bus voltage to provide line feed-forward information (for improved line ripple rejection), set the UVLO startup voltage threshold (intelligent brown-out protection), and provide extended line surge immunity via the OV shutdown feature.

The current fed from the DC bus into U1's M pin is proportional to the DC voltage across capacitor C2. When this voltage reaches approximately 95 V DC, the current through this resistor becomes greater than 25 μ A. This causes the line under-voltage threshold to be exceeded, enabling U1. Resistors R3 and R4 are rated for 1/4 W each to withstand the DC voltage expected across them.

The TOPSwitch HX regulates the output using PWM-based voltage-mode control. At high loads the controller operates at full switching frequency (66 kHz for this design). Changes in the CONTROL pin current cause changes to the duty cycle. This regulates the output voltage.

The internal current limit provides cycle-by-cycle peak current limit protection. The integrated controller has a second current limit comparator for monitoring the actual peak drain current (I_P) relative to the programmed current limit $I_{LIMITEXT}$. When the ratio $I_P/I_{LIMITEXT}$ falls below 55%, the peak drain current is held constant and the TOPSwitch operates in a fixed duty cycle variable frequency mode (variable frequency PWM control mode). As the load continues to decrease, the switching frequency also decreases linearly down to 30 kHz.

Once the switching frequency drops to 30 kHz, the controller keeps it constant and reduces the peak current to regulate the output (reverting to a fixed frequency, direct duty-cycle PWM control mode).

As the load continues to decrease and the ratio $I_P/I_{LIMITEXT}$ reaches 25%, the controller enters multi-cycle-modulation mode. This mode offers excellent efficiency under light-load conditions (such as in standby operation), and low no-load input power consumption.

Using a fast-recovery (rather than an ultra-fast) diode for D5 allows some of the clamp energy to be recovered. This improves efficiency at light loads and reduces the no-load consumption of the power supply. Resistor R8 limits reverse diode current and dampens high-frequency ringing. Zener diode VR1 reduces no-load dissipation effectively disconnecting R9 when the voltage across C3 falls below 150 V.

The bias winding of transformer T1 bias winding is designed such that during no-load the bias voltage supplying optocoupler U5 drops to approximately 8.5 V. This reduces the power drawn from the bias winding to supply U1 and moves its operation into multi-cycle-modulation mode during this load condition. As a consequence the power supply no-load consumption is reduced and the standby efficiency is increased.

The output of the bias winding is rectified by diode D6 and filtered by capacitor C4. Optocoupler U5 supplies the control and supply current directly to the CONTROL (C) pin of U1.

The power supply's output voltage is regulated by the feedback circuit on the secondary side, which controls the output voltage by changing the optocoupler current. A change in the optocoupler current causes a change in current flowing into the CONTROL pin. Variation of the current into the C pin results in a variation of the duty cycle, which changes the power supply's output voltage.

5.4 TOP255PN Secondary

Optocoupler U5 supplies the necessary IC supply and feedback current to the CONTROL pin. Using a high-gain optocoupler, such as the PC817D, with a CTR of 300% to 600% reduces secondary side dissipation. A high CTR also allows a higher value for R11, which reduces no-load input power even further (by approximately 30 mW) at 265 VAC.

Reference IC (shunt regulator) U4 has a 400 μ A typical minimum cathode current requirement for correct operation which is provided via R12. Resistors R15 and R16 form a voltage divider which is used to sense the output. Resistor R13 and capacitor C10 are compensation elements around U4 which set the feedback circuit frequency response. Resistor R11 sets the overall DC loop gain and limits the current through U5 during transient state conditions.

5.5 Output Rectification and Filtering

A snubber network on the output formed by R14 and C11 attenuates high-frequency ringing for reduced EMI. These two components were chosen with smaller values to allow high-frequency ringing to be damped while keeping any power dissipation they cause at no-load to a minimum. Inductor L2 and capacitor C9 form an output second-stage filter.

6 PCB Layout

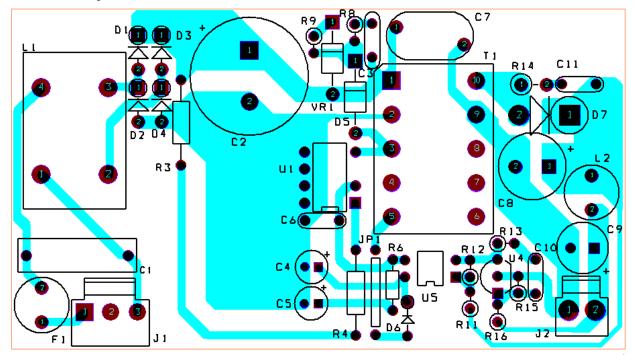


Figure 3 – Printed Circuit Board Layout.

7 Bill of Materials

Item	Item Qty Ref Des		Description	Mfg Part Number	Mfg
1	1	C1	100 nF, 275 VAC, Film, X2	ECQ-U2A104ML	Panasonic
2	1	C2	47 μF, 400 V, Electrolytic, Low ESR, 750 mΩ, (18 x 20)	EKMX401ELL470MM20S	Nippon Chemi-Con
3	1	C3	2.2 nF, 1 kV, Disc Ceramic	NCD222K1KVY5FF	NIC Components Corp
4	1	C4	10 μF, 50 V, Electrolytic, Gen. Purpose, (5 x 11)	KME50VB10RM5X11LL	Nippon Chemi-Con
5	1	C5	47 μF, 35 V, Electrolytic, Gen. Purpose, (5 x 11)	EKMG350ELL470ME11D	Nippon Chemi-Con
6	2	C6 C10	100 nF, 50 V, Ceramic, X7R	B37987F5104K000	Epcos
7	1	C7	1 nF, Ceramic, Y1	440LD10-R	Vishay
8	1	C8	680 μF, 25 V, Electrolytic, Very Low ESR, 23 mΩ, (10 x 20)	EKZE250ELL681MJ20S	Nippon Chemi-Con
9	1	C9	220 μF, 25 V, Electrolytic, Very Low ESR, 72 mΩ, (8 x 11.5)	EKZE250ELL221MHB5D	Nippon Chemi-Con
10	1	C11	1 nF, 100 V, Ceramic, COG	B37979G1102J000	Epcos
11	4	D1 D2 D3 D4	1000 V, 1 A, Rectifier, DO-41	1N4007-E3/54	Vishay
12	1	D5	800 V, 1 A, Fast Recovery Diode, 500 ns, DO-41	FR106	Diodes Inc.
13	1	D6	75 V, 300 mA, Fast Switching, DO-35	1N4148	Vishay
14	1	D7	100 V, 5 A, Schottky, DO-201AD1	SB5100	Fairchild
15	1	F1	3.15 A, 250V,Fast, TR5	37013150410	Wickman
16	1	J1	3 Position (1 x 3) header, 0.156 pitch, Vertical	26-48-1031	Molex
17	1	J2	2 Position (1 x 2) header, 0.156 pitch, Vertical, Straight-Friction Lock Header	26-48-1025	Molex
18	1	JP1	Wire Jumper, Insulated, 22 AWG, 0.5 in	C2004-12-02	Gen Cable
19	1	L1	10 mH, 0.7 A, Common Mode Choke	ELF15N007A	Panasonic
20	1	L2	3.3 μH, 5.5 A, 8.5 x 11 mm	R622LY-3R3M	Toko
21	2	R3 R4	2.0 MΩ, 5%, 1/4 W, Carbon Film	CFR-25JB-2M0	Yageo
22	1	R6	6.8 Ω, 5%, 1/8 W, Carbon Film	CFR-12JB-6R8	Yageo
23	1	R8	22 Ω, 5%, 1/4 W, Carbon Film	CFR-25JB-22R	Yageo
24	1	R9	2.7 kΩ, 5%, 1/4 W, Carbon Film	CFR-25JB-2K7	Yageo
25	1	R11	1 kΩ, 1%, 1/4 W, Metal Film	MFR-25FBF-1K00	Yageo
26	1	R12	2 kΩ, 5%, 1/4 W, Carbon Film	CFR-25JB-2K0	Yageo
27	1	R13	2.2 kΩ, 5%, 1/4 W, Carbon Film	CFR-25JB-2K2	Yageo
28	1	R14	10 Ω, 5%, 1/2 W, Carbon Film	CFR-50JB-10R	Yageo
29	1	R15	10 kΩ, 1%, 1/4 W, Metal Film	ERO-S2PHF1002	Panasonic
30	1	R16	38.3 kΩ, 1%, 1/4 W, Metal Film	MFR-25FBF-38K3	Yageo
31	1	T1	Bobbin, EF25/13/7, Vertical, 10 pins	FE0106	Miles-Platt
32	1	U1	TOPSwitch-HX, TOP255PN, DIP-8C	TOP255PN	Power Integrations
33	1	U4	2.495 V Shunt Regulator IC, 2%, 0 to 70C, TO- 92	TL431CLPG	On Semiconductor
34	1	U5	Opto coupler, 35 V, CTR 300-600%, 4-DIP	PC817X4	Sharp
35	1	VR1	150 V, 1.5 W, DO-41	BZY97C150	Fagor

8 Transformer Details

8.1 Electrical and Mechanical Diagram

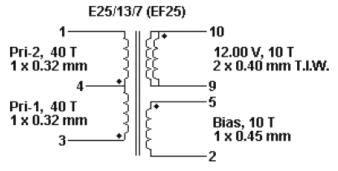


Figure 4 – Transformer Electrical Diagram.

8.2 Electrical Specifications

Electrical Strength	1 second, 60 Hz, from Primary to Secondary	3000 VAC
Primary Inductance	Pins 1 - 3, all other windings open, measured at	1.56 mH,
Fillinally inductance	66 kHz, 0.4 VRMS	±5%
Resonant Frequency	Pins 1 - 3, all other windings open	1500 kHz (Min.)
Brimary Lookago Inductoroo	Pins 1 - 3, with Pins 10 and 9 shorted, measured	14
Primary Leakage Inductance	at 66 kHz, 0.4 VRMS	14 μH (Max.)

8.3 Materials

Item	Description
[1]	Core: EF25, NC-2H or Equivalent, gapped for ALG of 244 nH/t ²
[2]	Bobbin: EF25, 5 pri. + 5 sec.
[3]	Barrier Tape: Polyester film 15.60 mm wide
[4]	Varnish
[5]	Magnet Wire: 0.32 mm, Solderable Double Coated
[6]	Magnet Wire: 0.45 mm, Solderable Double Coated
[7]	Triple Insulated Wire: 0.4 mm

8.4 Build Diagram

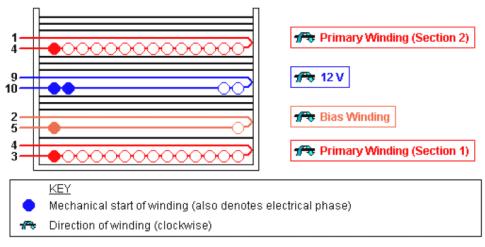


Figure 5 – Transformer Mechanical Drawing.

8.5 Transformer Construction

WD #1	Start on pin 3 and wind 40 turns (x 1 filar) of item [5] in 1 layer from left to right.
Primary Winding #1	On the final layer, spread the winding evenly across entire bobbin. Finish this
	winding on pin 4.
Insulation	Add 1 layer of tape, item [3], for insulation.
WD#2	Start on pin 5 and wind 10 turns (x 1 filar) of item [6]. Wind in same rotational
Feedback/Bias	direction as primary winding. Spread the winding evenly across entire bobbin.
	Finish this winding on pin 2.
Insulation	Add 3 layers of tape, item [3], for insulation.
WD #3	Start on pin 10 and wind 10 turns (x 2 filar) of item [7]. Spread the winding
Secondary Winding	evenly across entire bobbin. Wind in same rotational direction as primary
	winding. Finish this winding on pin 9.
Insulation	Add 3 layers of tape, item [3], for insulation.
WD #4	Start on pin 4 and wind 40 turns (x 1 filar) of item [5] in 1 layer from left to right.
Primary Winding #2	On the final layer, spread the winding evenly across entire bobbin. Finish this
	winding on pin 1.
Insulation	Add 3 layers of tape, item [3], for insulation.
Core Assembly	Assemble and secure core halves. Item [1].
Varnish	Dip varnish uniformly in item [4]. Do not vacuum impregnate.

9 Design Spreadsheet

ACDC_TOPSwitchHX_021308	INPUT	INFO	OUTP	UNIT	TOP_HX_021308: TOPSwitch-HX
; Rev.1.8; Copyright Power Integrations 2008			UT		Continuous/Discontinuous Flyback Transformer Design Spreadsheet
ENTER APPLICATION VARIABL	FC				Customer
VACMIN				Volts	Minimum AC Input Voltage
VACMAX	85 265			Volts	Maximum AC Input Voltage
fL	265			Hertz	AC Mains Frequency
VO	12.00			Volts	Output Voltage (main)
PO AVG	20.00			Watts	Average Output Power
PO_AVG PO_PEAK	20.00		20.00	Watts	Peak Output Power
	0.90		20.00	%/100	
n Z	0.80 0.50			76/100	Efficiency Estimate Loss Allocation Factor
VB	11	Info		Volts	Ensure proper operation at no load.
tC	3.00	1110		mSeconds	Bridge Rectifier Conduction Time Estimate
CIN	47.0		47	uFarads	Input Filter Capacitor
CIN	47.0		47	uraraus	
ENTER TOPSWITCH-HX VARIA	RIES				
TOPSwitch-HX	TOP255			Universal /	115 Doubled/230V
TOF SWICH-HX	PN/GN			Peak	115 Doubled/250V
Chosen Device	FIN/GIN	TOP255	Power	22 W / 35 W	30W
Chosen Device		PN/GN	Out	22 00 / 33 00	3000
KI	0.73	T W/GN	Out		External Ilimit reduction factor (KI=1.0 for
N	0.75				default ILIMIT, KI <1.0 for lower ILIMIT)
ILIMITMIN EXT			0.780	Amps	Use 1% resistor in setting external ILIMIT
ILIMITMAX EXT			0.899	Amps	Use 1% resistor in setting external ILIMIT
Frequency (F)=132kHz,	н		0.699 H	Amps	Half frequency option is only available for
(H)=66kHz			п		P, G and M packages in addition to
					TOP259-TOP261YN devices. For full
					frequency operation choose E package or
					TOP254-TOP258YN devices.
fS			66000	Hertz	TOPSwitch-HX Switching Frequency:
10			00000	TICITZ	Choose between 132 kHz and 66 kHz
fSmin			59400	Hertz	TOPSwitch-HX Minimum Switching
			55400	TICITZ	Frequency
fSmax			72600	Hertz	TOPSwitch-HX Maximum Switching
loniax			12000	1 Iontz	Frequency
High Line Operating Mode			FF		Full Frequency, Jitter enabled
VOR	100.00			Volts	Reflected Output Voltage
VDS			10	Volts	TOPSwitch on-state Drain to Source
			10	10110	Voltage
VD	0.50		1	Volts	Output Winding Diode Forward Voltage
	0.00			10110	Drop
VDB	0.70			Volts	Bias Winding Diode Forward Voltage Drop
KP	0.58		1	10110	Ripple to Peak Current Ratio (0.3 < KRP <
	0.00				1.0 : 1.0< KDP<6.0)
			1		/
PROTECTION FEATURES	ı l		. I		
LINE SENSING					Note - For P/G package devices only one
					of either Line sensing or Overload power
					limiting protection features can be used.
					For all other packages both these
					functions can be simultaneously used.
VUV_STARTUP			95	Volts	Minimum DC Bus Voltage at which the
—					power supply will start-up
VOV_SHUTDOWN			445	Volts	Typical DC Bus Voltage at which power
_					supply will shut-down (Max)
RLS			4.0	M-ohms	Use two standard, 2 M-Ohm, 5% resistors
					in series for line sense functionality.
OUTPUT OVERVOLTAGE					
VZ			20	Volts	Zener Diode rated voltage for Output
VZ					
RZ			5.1	k-ohms	Overvoltage shutdown protection Output OVP resistor. For latching

					shutdown use 20 ohm resistor instead
OVERLOAD POWER					
LIMITING					
Overload Current Ratio at			1.2		Enter the desired margin to current limit at
VMAX					VMAX. A value of 1.2 indicates that the current limit should be 20% higher than
					peak primary current at VMAX
Overload Current Ratio at VMIN			1.00		Margin to current limit at low line.
ILIMIT EXT VMIN			0.73	А	Peak primary Current at VMIN
ILIMIT EXT VMAX			0.75	A	Peak Primary Current at VMAX
RIL			8.65	k-ohms	Current limit/Power Limiting resistor.
RPL			N/A	M-ohms	Resistor not required. Use RIL resistor
					only
ENTER TRANSFORMER CORE	CONSTRU				
Core Type	Auto		EF25		Core Type
Core		EF25		P/N:	PC40EF25-Z
Bobbin		EF25 BOB		P/N:	*
		BĪN			
AE			0.518	cm^2	Core Effective Cross Sectional Area
LE			5.78	cm	Core Effective Path Length
AL			2000	nH/T^2	Ungapped Core Effective Inductance
BW			15.6	mm	Bobbin Physical Winding Width
Μ	0.00			mm	Safety Margin Width (Half the Primary to
L	2.00				Secondary Creepage Distance) Number of Primary Layers
NS	10	-	10		Number of Secondary Turns
113	10		10		
DC INPUT VOLTAGE PARAMET	TERS				
VMIN			84	Volts	Minimum DC Input Voltage
VMAX			375	Volts	Maximum DC Input Voltage
CURRENT WAVEFORM SHAPE	PARAMEI	ERS	0.50		Maximum Duty Quala (aslaulated at
DMAX			0.58		Maximum Duty Cycle (calculated at PO PEAK)
IAVG			0.30	Amps	Average Primary Current (calculated at
IAVG			0.30	Amps	average output power)
IP			0.73	Amps	Peak Primary Current (calculated at Peak
					output power)
IR			0.42	Amps	Primary Ripple Current (calculated at
					average output power)
IRMS			0.40	Amps	Primary RMS Current (calculated at
					average output power)
TRANSFORMER PRIMARY DES	GIGN PARA	METERS			
LP			1563	uHenries	Primary Inductance
LP Tolerance	5		5		Tolerance of Primary Inductance
NP			80		Primary Winding Number of Turns
NB			9		Bias Winding Number of Turns
ALG			244	nH/T^2	Gapped Core Effective Inductance
BM			2756	Gauss	Maximum Flux Density at PO, VMIN
BP			0550	Gauss	(BM<3000) Peak Flux Density (BP<4200) at
BP			3558	Gauss	ILIMITMAX and LP_MAX. Note:
					Recommended values for adapters and
					external power supplies <=3600 Gauss
BAC			799	Gauss	AC Flux Density for Core Loss Curves (0.5
					X Peak to Peak)
ur			1776		Relative Permeability of Ungapped Core
LG		ļ	0.23	mm	Gap Length (Lg > 0.1 mm)
BWE			31.2	mm	Effective Bobbin Width
OD			0.39	mm	Maximum Primary Wire Diameter including insulation
INS			0.06	mm	Estimated Total Insulation Thickness (= 2 *
			0.00		film thickness)
DIA		1	0.33	mm	Bare conductor diameter
	1	1	0.00		

AWG	28	AWG	Primary Wire Gauge (Rounded to next smaller standard AWG value)
СМ	161	Cmils	Bare conductor effective area in circular mils
СМА	399	Cmils/Amp	Primary Winding Current Capacity (200 < CMA < 500)
Primary Current Density (J)	5.03	Amps/mm^2	Primary Winding Current density (3.8 < J < 9.75)
TRANSFORMER SECONDARY DE	IGN PARAMETERS (SINGLE O		
ISP	5.85	Amps	Peak Secondary Current
ISRMS	2.78	Amps	Secondary RMS Current
IO PEAK	1.67	Amps	Secondary Peak Output Current
10	1.67	Amps	Average Power Supply Output Current
IRIPPLE	2.22	Amps	Output Capacitor RMS Ripple Current
CMS	556	Cmils	Secondary Bare Conductor minimum circular mils
AWGS	22	AWG	Secondary Wire Gauge (Rounded up to next larger standard AWG value)
DIAS	0.65	mm	Secondary Minimum Bare Conductor Diameter
ODS	1.56	mm	Secondary Maximum Outside Diameter for Triple Insulated Wire
INSS	0.46	mm	Maximum Secondary Insulation Wall Thickness
VOLTAGE STRESS PARAMETERS			
VDRAIN	575	Volts	Maximum Drain Voltage Estimate (Includes Effect of Leakage Inductance)
PIVS	59	Volts	Output Rectifier Maximum Peak Inverse Voltage
PIVB	55	Volts	Bias Rectifier Maximum Peak Inverse Voltage
TRANSFORMER SECONDARY DE	IGN PARAMETERS (MULTIPLE	EOUTPUTS)	
1st output			
VO1	12	Volts	Output Voltage
IO1_AVG	1.67	Amps	Average DC Output Current
PO1_AVG	20.00	Watts	Average Output Power
VD1	0.5	Volts	Output Diode Forward Voltage Drop
NS1	10.00	-	Output Winding Number of Turns
ISRMS1	2.778	Amps	Output Winding RMS Current
IRIPPLE1	2.22	Amps	Output Capacitor RMS Ripple Current
PIVS1	59	Volts	Output Rectifier Maximum Peak Inverse Voltage
CMS1	556	Cmils	Output Winding Bare Conductor minimum circular mils
AWGS1	22	AWG	Wire Gauge (Rounded up to next larger standard AWG value)
DIAS1	0.65	mm	Minimum Bare Conductor Diameter
ODS1	1.56	mm	Maximum Outside Diameter for Triple Insulated Wire
2nd output			
VO2		Volts	Output Voltage
IO2 AVG		Amps	Average DC Output Current
PO2 AVG	0.00	Watts	Average Output Power
VD2	0.7	Volts	Output Diode Forward Voltage Drop
NS2	0.56	- 5.60	Output Winding Number of Turns
ISRMS2	0.000	Amps	Output Winding RMS Current
IRIPPLE2	0.00	Amps	Output Capacitor RMS Ripple Current
PIVS2	3	Volts	Output Rectifier Maximum Peak Inverse Voltage
CMS2	0	Cmils	Output Winding Bare Conductor minimum circular mils

30-Sep-08 DER-188 – Generic 12 V, 20 W TOPSwitch-HX Low No-load Input Power Design

AWGS2	N/A	AWG	Wire Gauge (Rounded up to next larger standard AWG value)
DIAS2	N/A	mm	Minimum Bare Conductor Diameter
ODS2	N/A	mm	Maximum Outside Diameter for Triple Insulated Wire
3rd output			
VO3		Volts	Output Voltage
IO3 AVG		Amps	Average DC Output Current
PO3 AVG	0.00	Watts	Average Output Power
VD3	0.7	Volts	Output Diode Forward Voltage Drop
NS3	0.56		Output Winding Number of Turns
ISRMS3	0.000	Amps	Output Winding RMS Current
IRIPPLE3	0.00	Amps	Output Capacitor RMS Ripple Current
PIVS3	3	Volts	Output Rectifier Maximum Peak Inverse Voltage
CMS3	0	Cmils	Output Winding Bare Conductor minimum circular mils
AWGS3	N/A	AWG	Wire Gauge (Rounded up to next larger standard AWG value)
DIAS3	N/A	mm	Minimum Bare Conductor Diameter
ODS3	N/A	mm	Maximum Outside Diameter for Triple Insulated Wire
Total Continuous Output Power	20	Watts	Total Continuous Output Power
Negative Output	N/A		If negative output exists enter Output number; eg: If VO2 is negative output, enter 2

10 Power Supply Performance

All tests were performed open frame at room temperature (+25 $^{\circ}$ C) and 60 Hz line frequency, unless noted otherwise.

10.1 Energy Efficiency

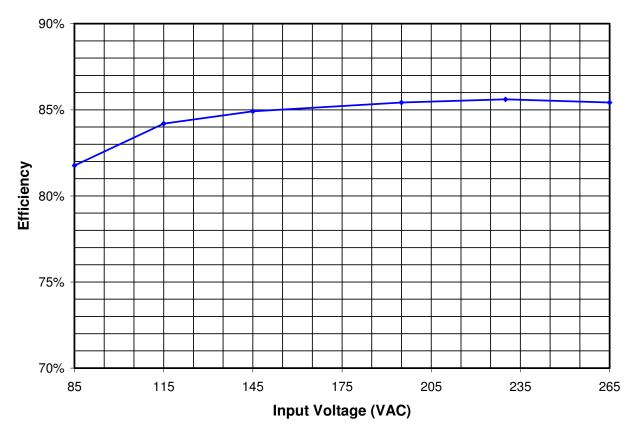
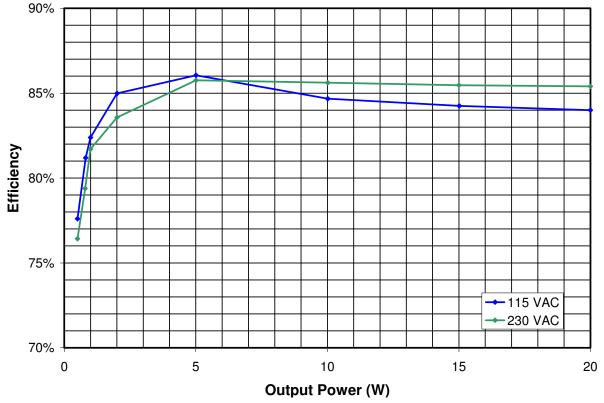



Figure 6 – Full Load Efficiency Over Input Voltage Range.

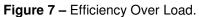


Table 2 lists the average active-on efficiency as defined by the Energy Star 2.0 specification (Final April 23, 2008).

Input	E	Average						
Voltage	25%	50%	75%	100%	Efficiency			
115 VAC	86.05%	84.67%	84.25%	84.00%	85%			
230 VAC	85.76%	85.61%	85.47%	85.40%	86%			
	Minimum effici	ency Energy Sta	ar 2.0: 0.0626 * L	N(20) + 0.622	81%			

 Table 2 – Average Active-on Efficiency.

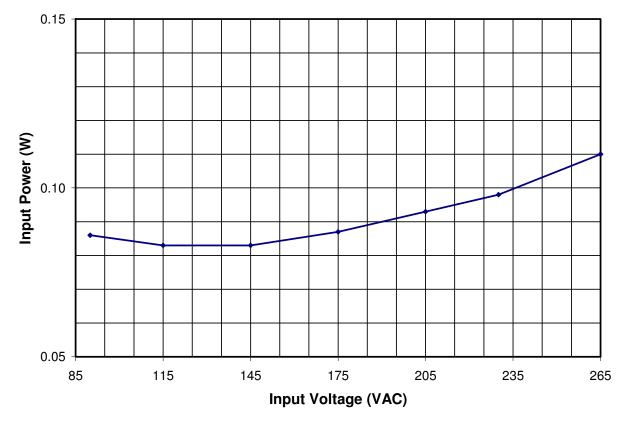


Figure 8 – No-load Input Power Consumption Over Line.

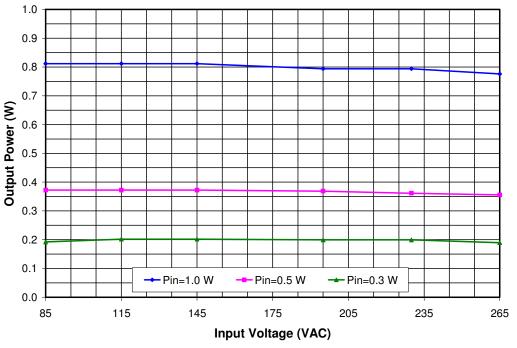
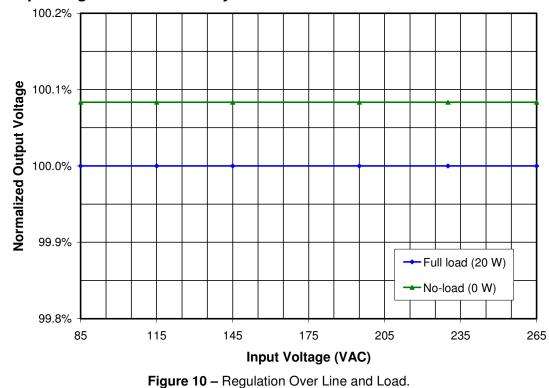
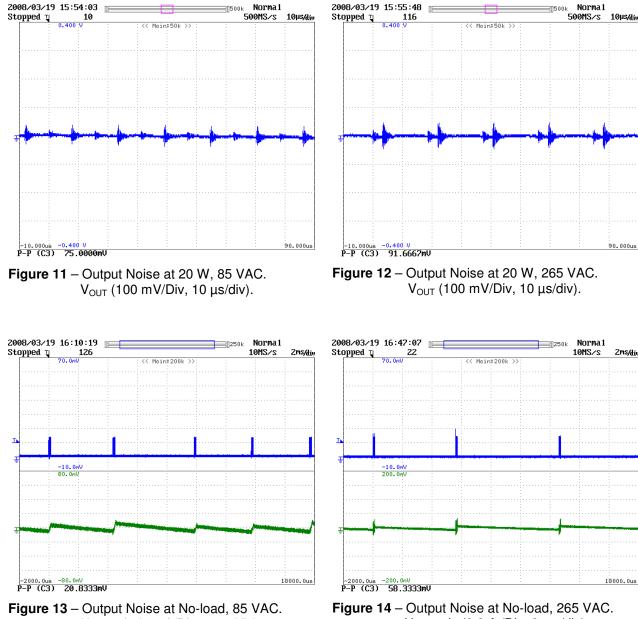
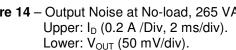



Figure 9 depicts the available output power in standby with the input power limited to 1.0 W.


Figure 9 – Standby Output Power Over Line and Input Power.


10.2 Output Regulation and Quality

Figures 11 to 15 depict output noise and ripple performance at various load and line conditions. The measurements were taken with a local voltage probe decoupling capacitance of 1 μ F/50 V (electrolytic) and 0.1 μ F/50 V (ceramic) with a 20 MHz DSO input filter.

Upper: I_D (0.2 A/Div, 2 ms/div). Lower: V_{OUT} (20 mV/div).

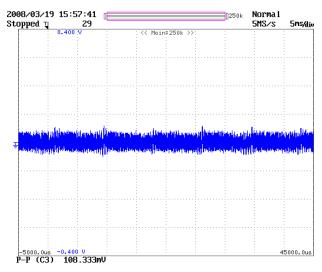
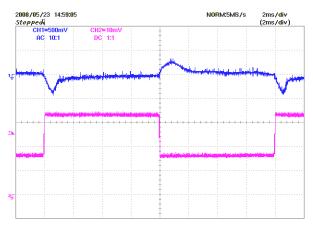



Figure 15 – Output Ripple at 20 W, 85 VAC. V_{OUT} (0.1 V/Div, 5 ms/div).

10.3 Transient Load

Figures 16 through 19 depict the step-load performance at various load combination and line-voltage conditions. The current slew rate was set to 10 mA/ μ s.

 $\label{eq:Figure 16} \begin{array}{l} \textbf{Figure 16} - \textbf{Step Load 50-100\%, 85 VAC.} \\ \textbf{Upper: } V_{\text{OUT}} \ (0.5 \ \text{V/div}, 2 \ \text{ms/div}). \\ \textbf{Lower: } \textbf{I}_{\text{LOAD}} \ (0.5 \ \text{A/div}). \end{array}$

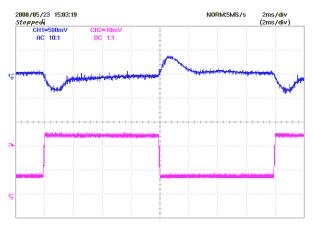


Figure 18 – Step Load 25-75%, 85 VAC. Upper: V_{OUT} (0.5 V/div, 2 ms/div). Lower: I_{LOAD} (0.5 A/div).

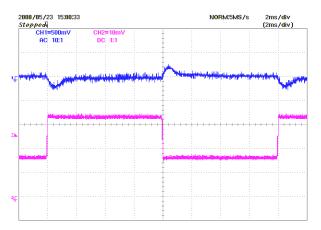


Figure 17 – Step Load 50-100%, 265 VAC. Upper: V_{OUT} (0.5 V/div, 2 ms/div). Lower: I_{LOAD} (0.5 A/div).

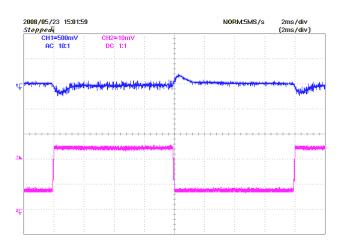
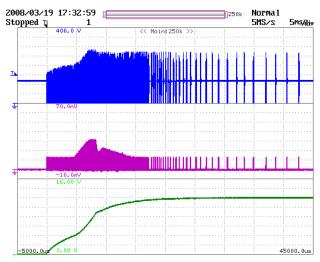
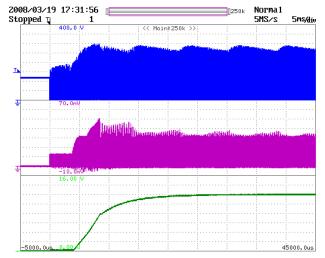
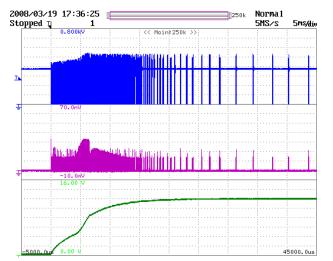
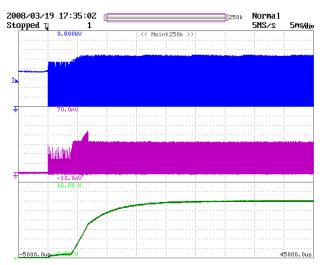



Figure 19 – Step Load 25-75%, 265 VAC. Upper: V_{OUT} (0.5 V/div, 2 ms/div). Lower: I_{LOAD} (0.5 A/div).



10.4 Startup


Figures 20 through 23 depict the startup performance at various load and line conditions.


 $\begin{array}{l} \mbox{Figure 20} - Startup \ at \ no-load, \ 85 \ VAC. \\ Upper: \ V_{DS} \ (50 \ V/div, \ 5 \ ms/div). \\ Middle: \ I_D \ (0.2 \ A/div). \\ Lower: \ V_{OUT} \ (2 \ V/div). \end{array}$

 $\begin{array}{l} \mbox{Figure 22} - Startup \ at \ 20 \ W, \ 85 \ VAC. \\ Upper: \ V_{DS} \ (50 \ V/div, \ 5 \ ms/div). \\ Middle: \ I_D \ (0.2 \ A/div). \\ Lower: \ V_{OUT} \ (2 \ V/div). \end{array}$

 $\begin{array}{l} \textbf{Figure 21}-Startup \ at \ no-load, \ 265 \ VAC.\\ Upper: \ V_{DS} \ (100 \ V/div, \ 5 \ ms/div).\\ Middle: \ I_D \ (0.2 \ A/div).\\ Lower: \ V_{OUT} \ (2 \ V/div). \end{array}$

 $\begin{array}{l} \textbf{Figure 23-} Startup at 20 \ W, 265 \ VAC.\\ Upper: \ V_{DS} \ (100 \ V/div, 5 \ ms/div).\\ Middle: \ I_{D} \ (0.2 \ A/div).\\ Lower: \ V_{OUT} \ (2 \ V/div). \end{array}$

11 Conducted EMI

Conducted EMI was measured with a 7.2 Ω resistive load (20 W).

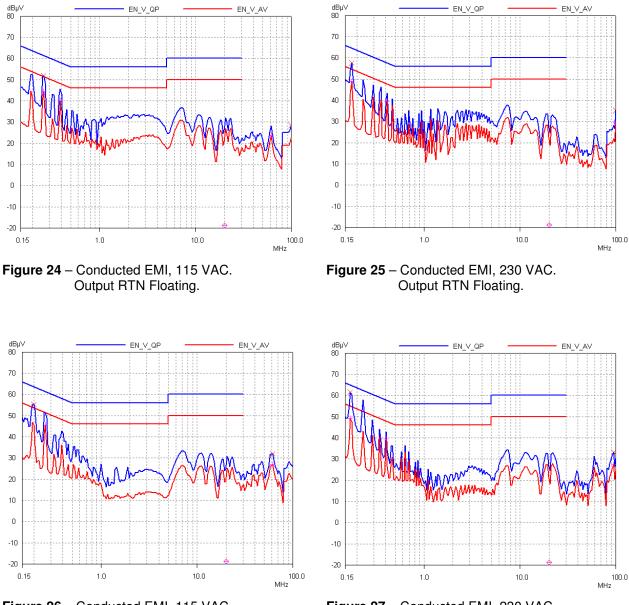
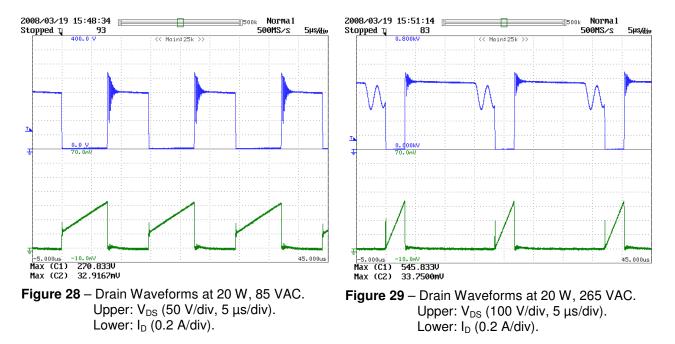
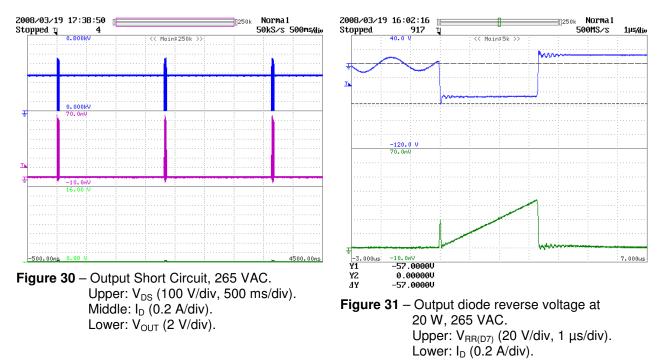
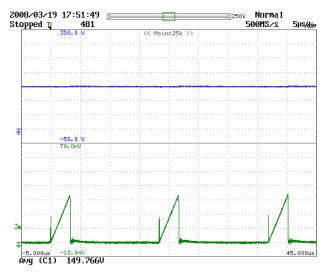
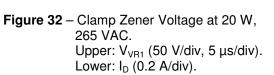
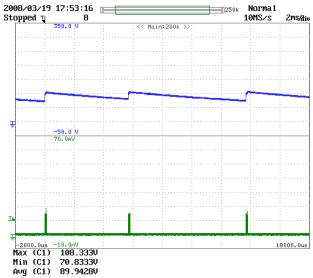


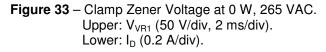
Figure 26 – Conducted EMI, 115 VAC. Output RTN Connected to Artificial Hand.

Figure 27 – Conducted EMI, 230 VAC. Output RTN Connected to Artificial Hand.

11.1 Waveform Plots


Figure 32 depicts the output voltage and Drain waveforms during an output short circuit (applied at the DC load). The input power under this condition is 0.9 W.



12 Revision History

Date	Author	Rev.	Description & changes	Reviewed
30-Sep-08	SGK	1.0	Initial Release	

For the latest updates, visit our website: www.powerint.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.

The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2008 Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 *e-mail: usasales@powerint.com*

CHINA (SHANGHAI)

Rm 807-808A, Pacheer Commercial Centre, 555 Nanjing Rd. West Shanghai, P.R.C. 200041 Phone: +86-21-6215-5548 Fax: +86-21-6215-2468 *e-mail: chinasales@powerint.com*

CHINA (SHENZHEN)

Room A, B & C 4th Floor, Block C Elec. Sci. Tech. Bldg. 2070 Shennan Zhong Rd. Shenzhen, Guangdong, China, 518031 Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 *e-mail: chinasales@powerint.com*

GERMANY

Rueckertstrasse 3 D-80336, Munich Germany Phone: +49-89-5527-3911 Fax: +49-89-5527-3920 *e-mail: eurosales@powerint.com*

INDIA

#1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-41138020 Fax: +91-80-41138023 *e-mail: indiasales@powerint.com*

ITALY

Via De Amicis 2 20091 Bresso MI – Italy Phone: +39-028-928-6000 Fax: +39-028-928-6009 *e-mail: eurosales@powerint.com*

JAPAN

Kosei Dai-3 Bldg., 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 Phone: +81-45-471-1021 Fax: +81-45-471-3717 *e-mail: japansales@powerint.com*

KOREA

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728, Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 *e-mail: koreasales@powerint.com*

SINGAPORE

51 Newton Road, #15-08/10 Goldhill Plaza, Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 *e-mail: singaporesales@powerint.com*

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu Dist. Taipei, Taiwan 114, R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 *e-mail: taiwansales@powerint.com*

UNITED KINGDOM

1st Floor, St. James's House East Street, Farnham Surrey, GU9 7TJ United Kingdom Phone: +44 (0) 1252-730-141 Fax: +44 (0) 1252-727-689 *e-mail: eurosales@powerint.com*

APPLICATIONS HOTLINE

World Wide +1-408-414-9660

APPLICATIONS FAX World Wide +1-408-414-9760

