power integrations

Design Example Report

Title	10 W, 15 VDC Output Non-Isolated Automotive Power Supply for 400 V Systems Using LinkSwitch ${ }^{\text {TM }}$-TN2Q LNK3209GQ
Specification	$60 \mathrm{~V}_{D C}-550 \mathrm{~V}_{\text {DC }}$ Input; $15 \mathrm{~V}_{\mathrm{DC}} / 0.65$ A Output
Application	Non-Isolated Automotive Auxiliary Power Supply
Author	Automotive Systems Engineering Department
Document Number	DER-965Q
Date	July 31, 2023
Revision	2.0

Summary and Features

- Highly integrated solution for $400 \mathrm{~V}_{\mathrm{DC}}$ non-isolated BEV automotive applications
- Low component count design (26 total components; including connectors, heat sink, and thermal pads)
- Wide range input from $60 \mathrm{~V}_{\mathrm{DC}}$ to $550 \mathrm{~V}_{\mathrm{DC}}$
- $\geq 75 \%$ full load efficiency across input voltage range
- $< \pm 5 \%$ line and load regulation
- Ambient operating temperature from $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$
- Fully fault protected including output current limit and short-circuit protection
- Uses automotive qualified AEC-Q surface mount (SMD) components

Table of Contents

1 Introduction 4
2 Design Specification 6
2.1 Electrical Specifications 6
2.2 Isolation Coordination 7
2.3 Environmental Specifications 7
3 Schematic 8
4 Circuit Description 9
4.1 Input Filter 9
4.2 Power Stage 10
4.3 Output Rectification 10
4.4 Output Feedback 10
5 PCB Layout 11
6 Bill of Materials 13
7 Assembly Notes 14
7.1 Heat Sink Assembly 14
7.1.1 Material List 14
7.1.2 Heat Sink Assembly Instructions 14
8 Design Spreadsheet 16
8.1 PI Expert Online 16
9 Performance data 18
9.1 Efficiency 20
9.1.1 Line Efficiency 20
9.1.2 Load Efficiency 21
9.1.2.1 Efficiency vs. Load at $105^{\circ} \mathrm{C}$ Ambient 21
9.1.2.2 Efficiency vs. Load at $25^{\circ} \mathrm{C}$ Ambient 22
9.1.2.3 Efficiency vs. Load at $-40^{\circ} \mathrm{C}$ Ambient 23
9.2 Output Line and Load Regulation at $105^{\circ} \mathrm{C}$ Ambient. 24
9.3 Output Line and Load Regulation at $25^{\circ} \mathrm{C}$ Ambient 25
9.4 Output Line and Load Regulation at $-40^{\circ} \mathrm{C}$ Ambient 26
10 Thermal Performance 27
10.1 Thermal Data at $105^{\circ} \mathrm{C}$ Ambient Temperature 27
10.2 Thermals Data at $25^{\circ} \mathrm{C}$ Ambient Temperature 28
11 Waveforms 29
11.1 Start-Up Waveforms 29
11.1.1 Output Voltage and Current at $25^{\circ} \mathrm{C}$ Ambient Temperature 29
11.1.2 LinkSwitch-TN2Q Drain Voltage and Current at $25^{\circ} \mathrm{C}$ Ambient Temperature 30
11.1.3 Freewheeling Diode Voltages at $25^{\circ} \mathrm{C}$ Ambient Temperature 31
11.1.4 Output Voltage and Current at $-40^{\circ} \mathrm{C}$ Ambient Temperature 32
11.1.5 LinkSwitch-TN2Q Drain Voltage and Current at -40 ${ }^{\circ} \mathrm{C}$ Ambient Temperature 33
11.1.6 Freewheeling Diode Voltages at $-40^{\circ} \mathrm{C}$ Ambient Temperature 34
11.2 Steady-State Waveforms 35
11.2.1 Switching Waveforms at $105^{\circ} \mathrm{C}$ Ambient Temperature. 35
11.2.1.1 Normal Operation Component Stress 35
11.2.1.2 LinkSwitch-TN2Q Drain Voltage and Current 35
11.2.1.3 Freewheeling Diode Voltages 36
11.2.1.4 Short-Circuit Response 37
11.2.2 Switching Waveforms at $25^{\circ} \mathrm{C}$ Ambient Temperature. 38
11.2.2.1 LinkSwitch-TN2Q Drain Voltage and Current 38
11.2.2.2 Freewheeling Diode Voltages 39
11.3 Load Transient Response 40
11.3.1 10% to 50%. 41
11.3.2 50\% to 100% 42
11.3.3 10\% to 100% 43
11.4 Output Ripple Measurements. 44
11.4.1 Ripple Measurement Technique 44
11.4.2 Output Voltage Ripple Waveforms 45
11.4.2.1 Output Voltage Ripple at $105^{\circ} \mathrm{C}$ Ambient 45
11.4.2.2 Output Voltage Ripple at $25^{\circ} \mathrm{C}$ Ambient 46
11.4.2.3 Output Voltage Ripple at $-40^{\circ} \mathrm{C}$ Ambient 47
11.4.3 Output Ripple vs. Load 48
11.4.3.1 Output Ripple at $105^{\circ} \mathrm{C}$ Ambient 48
11.4.3.2 Output Ripple at $25^{\circ} \mathrm{C}$ Ambient 49
11.4.3.3 Output Ripple at $-40^{\circ} \mathrm{C}$ Ambient 50
11.5 Output Voltage Response due to Dynamic Inputs 51
11.5.1 Response to HV DC Ramp Up with Ripple 51
11.5.2 Response to Ripple on HV DC Net 53
11.5.2.1 Severity Level 1 Ripple on HV DC Net 53
11.5.2.2 Severity Level 2 Ripple Definition on HV DC Net 54
12 Revision History 55

Disclaimer:

The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may base on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information and recommendations contained herein.

No responsibility is accepted for the accuracy or sufficiency of any of the statements, technical information, recommendations, or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.

1 Introduction

This engineering report describes a 10 W non-isolated automotive power supply designed to provide a nominal output voltage of $15 \mathrm{~V}_{\mathrm{DC}}$ at a maximum load of 650 mA . It is intended for use in 400 V battery system electric vehicles. Typical applications include auxiliary supplies for active discharge blocks within onboard chargers or traction inverters, pyro disconnect in battery packs, control power for HVAC compressors, PTC auxiliary heaters, and body control modules.

This design utilizes the LNK3209GQ from the LinkSwitch-TN2Q family of automotive ICs.
The design provides functional isolation by observing the creepage and clearance requirements as indicated in IEC-60664 parts 1 and 4.

The report contains the power supply specification, schematic diagram, printed circuit board layout, bill of materials, magnetics specifications, and performance data.

Figure 1 - Populated Circuit Board, Entire Assembly.

Figure 2 - Populated Circuit Board with Heat Sink - Top.

Figure 3 - Populated Circuit Board with Heat Sink - Side.

2 Design Specification

The following tables below represent the minimum acceptable performance of the design. Actual performance is listed in the results section.

2.1 Electrical Specifications

Description	Symbol	Min.	Typ.	Max.	Units
Input Parameters					
Positive DC Link Input Voltage Referenced to HV - Switching Operation Conditions Operating Switching Frequency	$\begin{aligned} & \text { HV } \\ & \mathbf{f}_{\text {sw }} \end{aligned}$	60	400	$\begin{gathered} 550 \\ 70 \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DC}} \\ & \mathrm{kHz} \end{aligned}$
Output Parameters					
Output Voltage Parameters Regulated Output Voltage No Load Output Voltage Output Voltage Load and Line Regulation ${ }^{1}$ Ripple Voltage Measured on Board	Vout $V_{\text {REG }}$ $V_{\text {RIPPLE }}$	$\begin{gathered} 14.25 \\ -5 \end{gathered}$	15	$\begin{gathered} 15.75 \\ 18.5 \\ +5 \\ 240 \end{gathered}$	$\begin{gathered} V_{D C} \\ \% \\ \mathrm{mV} \end{gathered}$
Output Current Parameters Output Current	Iout	65		650	mA
Output Power Parameters Continuous Output Power at $60 \mathrm{~V}_{\mathrm{DC}}-550 \mathrm{~V} D$ Input	Pout		9.75	10	W
Output Overshoot and Undershoot During Dynamic Load Condition	$\Delta \mathrm{V}_{\text {out }}$			10	\%

Table 1 - Electrical Specifications.

[^0]
2.2 Isolation Coordination

Description	Symbol	Min.	Typ.	Max.	Units
Maximum Blocking Voltage of LNK3209GQ	BV $_{\text {DSs }}$			750	V
System Voltage	V $_{\text {System }}$			530	V
Working Voltage	V RMs			550	V
Pollution Degree	PD			2	
CTI for FR4	CTI	175		399	
Altitude Correction Factor for $\mathrm{h}_{\mathrm{a}}=5500 \mathrm{~m}$	Cha $_{\text {ma }}$			1.59	
Technical Cleanliness Requirement				1.0	mm
Clearance Distance Requirement	CLR	3.4			mm
Creepage Distance Requirement	CPG	4.2			mm

Table 2 - Isolation Coordination ${ }^{2}$.

2.3 Environmental Specifications

Description	Symbol	Min.	Typ.	Max.	Units
Ambient Temperature	T_{a}	-40		105	${ }^{\circ} \mathrm{C}$
Altitude of Operation	h_{a}			5500	m
Relative Humidity	Rh			85	$\%$

Table 3 - Environmental Specifications.
${ }^{2}$ Clearance and creepage distances are derived from IEC 60664-1 and IEC 60664-4.

3 Schematic

Figure 4 - DER-965Q Schematic.

4 Circuit Description

The design uses the LNK3209GQ IC in a high side drive buck converter. The circuit provides a non-isolated $15 \mathrm{~V}_{\mathrm{DC}}, 650 \mathrm{~mA}$ continuous output up to $85{ }^{\circ} \mathrm{C}$ ambient temperature for the entire input range of 60 to 550 VDC . At $105^{\circ} \mathrm{C}$ ambient temperature, the full 10 W can be delivered from 60 V to 400 V input and a derated 8.25 W at 550 V DC input.

The LinkSwitch-TN2Q family of ICs for automotive power supplies provides significant reduction in component count compared to traditional discrete solutions. Regulation is achieved using a low-cost resistor divider feedback network. The switching frequency jitter feature of the LinkSwitch-TN2Q family and the 66 kHz switching frequency of operation helps reduce EMI. Each device incorporates a 750 V power MOSFET, oscillator, On/Off control, a high-voltage switched current source for self-biasing, frequency jittering, fast (cycle-by-cycle) current limit, hysteretic thermal shutdown, and output and overvoltage protection circuitry onto a monolithic IC. A full suite of protection features enables safe and reliable power supplies; protecting the device and the system against device overtemperature faults, lost regulation, and power supply output overload or short-circuit faults.

4.1 Input Filter

Bypass capacitors C 1 and C2 placed near the LinkSwitch-TN2Q IC provides local instantaneous charge and a stable DC bus to the buck converter. These were selected so as not to exceed 65% of their voltage rating as well as to maintain enough pad-to-pad distance to meet creepage and clearance requirements.
NOTE: No dv/dt or inrush current limitation is provided. If the input is directly connected to HV DC (e.g., directly to the HV traction battery) without a pre-charge stage, then adding a series impedance is recommended to prevent damage to the ceramic input capacitors. The impedance should limit the peak capacitor dv/dt to $<8 \mathrm{kV} / \mu \mathrm{S}$ or as recommended by the capacitor manufacturer. The impedance can be either a discrete resistor or from part of the parasitic resistance of other components e.g., filter inductors. The use of an input resistor can also function as a fusing element to protect against failure of the power supply. Values in the range of 1-10 ohms are typical, though it is common to have multiple parts in series such that the voltage rating of each resistor is not exceeded.

4.2 Power Stage

The LinkSwitch-TN2Q automotive IC, freewheeling diodes D1 and D2, output inductor L1, and output capacitor C 5 , forms the power stage.
The LNK3209GQ IC is self-starting from the DRAIN (D) pin with local supply decoupling provided by capacitor C3 connected to the BYPASS (BP/M) pin when the input is first applied. During normal operation the IC is powered from the output via resistor R3. R3 is selected to allow the minimum current required by the IC as stated in the datasheet. The design operates in mostly continuous mode (MCM) due to the output load current requirement. The peak L1 inductor current is set by the LNK3209GQ internal current limit. The control scheme used is ON/OFF control. The switch on-time for every switching cycle is determined by the inductance value of L1, LinkSwitch-TN2Q current limit, and the high voltage DC input. Output regulation is accomplished by skipping switching cycles depending on the feedback signal applied to the FEEDBACK (FB) pin. This differs significantly from the traditional PWM schemes that control the duty cycle of each switching cycle.

4.3 Output Rectification

During the ON time of IC1, the current ramps due to L1 and is simultaneously delivered to the load. During the OFF time, the high voltage supply is cut off and the inductor current ramps down via the path provided by the freewheeling diodes D1 and D2 and is delivered to the load. Diodes D1 and D2 are selected as ultrafast diodes (${ }_{\text {RR }}$ of 35 ns or lower is recommended) due to the MCM operation and high ambient temperature requirement. Diodes with high blocking voltage and low $t_{R R}$ are uncommon and thus two diodes in series were implemented in order to meet 70% repetitive peak reverse voltage derating for the diodes. Capacitor C5 was selected to meet the output voltage ripple requirement. Other considerations for the selection include a minimum capacitor expected life of 40,000 hours and adequate capacitor ripple current rating. Capacitor C6 provides further filtering of high frequency output voltage ripple.

4.4 Output Feedback

During the IC1 off-time, capacitor C4 is charged to the output voltage via diode D3. This voltage is used to provide feedback to the IC via the resistor divider formed by resistors R1 and R2. The FEEDBACK (FB) pin is sampled by the controller during each switching cycle. A current greater than $49 \mu \mathrm{~A}$ into the FB pin will inhibit the switching of the internal power MOSFET while a current below will allow switching cycles to occur.

Due to the high difference between the input voltage and output voltage, the IC1 on-time becomes very low. Since the operation is on-off and highly dependent on the voltage on C4, the feedback response can be very aggressive resulting to pulse bunching and higher output ripple. To mitigate this, a resistor, R4, is placed in series with C4. Resistor R4 lessens feedback sensitivity and stabilizes the control loop resulting in a more even spread of switching pulses.

5 PCB Layout

Layers:
Four (4)
Board Material: FR4
Board Thickness: 1.6 mm
Copper Weight: 1 oz . (All layer)

Top Layer

Mid-Layer 2

Mid-Layer 1

Bottom Layer

Figure 5 - DER-965Q PCB Layout.

Figure 6 - DER-965Q PCB Assembly.

6 Bill of Materials

Item	Qty	Designator	Description	MFR Part Number	Manufacturer
1	2	C1, C2	Multilayer Ceramic Capacitors MLCC - SMD/SMT 630 V 100 nF X7R 1812 10\% AEC-Q200	GCJ43DR72J104KXJ1L	Murata
2	2	C3, C6	Multilayer Ceramic Capacitors MLCC - SMD/SMT 50 V 100 nF X7R 0603 10\% AEC-Q200	CL10B104KB8WPNC	Samsung
3	1	C4	Polymer Aluminum Capacitors - $50 \mathrm{~V} 22 \mu \mathrm{~F} 20 \%$ AEC-Q200	HHXC500ARA220MF61G	United Chemi-Con
4	1	C5	$\begin{aligned} & \text { Polymer Aluminum Capacitors - } 25 \mathrm{~V} 220 \mu \mathrm{~F} \\ & 20 \% \text { AEC-Q200 } \end{aligned}$	25PSV220M8X10.5	Rubycon
5	2	D1, D2	Diode Ultra-Fast Recovery 600 V 3 A SMT DO- 214AA (SMB) AEC-Q101	ES3JBHR5G	Taiwan Semi
6	1	D3	Diode Fast Recovery 1 kV 1 A SMT DO-214AC (SMA) AEC-Q101	ACURA107-HF	Comchip
7	1	D4	Zener Diode 17 V $500 \mathrm{~mW} \pm 2 \%$ SMT SOD-123 AEC-Q101	MMSZ5247C-HE3-08	Vishay
8	1	IC1	LinkSwitch-TN2Q, SMD-8C, AEC-Q100	LNK3209GQ	Power Integrations
9	1	L1	Shielded Power Inductor - $330 \mu \mathrm{H} 1.68 \mathrm{~A}$ MSS1812T AEC-Q200	MSS1812T-334KED	Coilcraft
10	1	R1	Thick Film Resistors - SMD $16.9 \mathrm{k} \Omega 0.1 \mathrm{~W} 0603$ 1\% AEC-Q200	ERJ-3EKF1692V	Panasonic
11	1	R2	$\begin{aligned} & \text { Thick Film Resistors - SMD } 2.49 \mathrm{k} \Omega 0.1 \mathrm{~W} 0603 \\ & 1 \% \text { AEC-Q200 } \end{aligned}$	ERJ-3EKF2491V	Panasonic
12	1	R3	Thick Film Resistors - SMD $36 \mathrm{k} \Omega 0.1 \mathrm{~W} 0603$ 1\% AEC-Q200	RMCF0603FT36K0	Stackpole
13	1	R4	Thick Film Resistors - SMD $15 \Omega 0.125$ W 0805 5% AEC-Q200	CRCW080515ROJNEA	Vishay
14	1	R5	Thick Film Resistors - SMD $160 \Omega 0.1 \mathrm{~W} 0603$ 1\% AEC-Q200	ERJ-3EKF1600V	Panasonic
15	1	X1	PCB Terminal Block - SMD 0.5 mm white	2059-301/998-403	WAGO Corporation
16	1	X2	PCB Terminal Block - SMD 0.5 mm black	2059-321/998-403	WAGO Corporation
17	1	X3	PCB Terminal Block - 1x2 pin 3.81 mm pitch	2383945-2	TE

Table 4 - DER-965Q Bill of Materials.

7 Assembly Notes

7.1 Heat Sink Assembly

7.1.1 Material List

Item	Description	Qty	Part Number	Manufacturer
[1]	Heat Sink: BGA Aluminum Top Mount 23x12 mm Front Push Pin	1	960-23-12-F-AB-0	Wakefield-Vette
[2]	Thermal Pad: A6200 $20 \times 20 \times 0.5 \mathrm{~mm}$	1	TG-A6200-20-20-0.5	t-Global Technology
[3]	Thermal Pad: A6200 $5 \times 5 \times 1.5 \mathrm{~mm}$	4	TG-A6200-5-5-1.5	t-Global Technology

Table 5 - Heat Sink Assembly Material List.

7.1.2 Heat Sink Assembly Instructions

Carefully place one piece of Item [2] on the bottom
side of the heat sink, Item [1]. Gently flatten it on
the surface of the heat sink to ensure that it sticks.
Use any appropriate tool. Do not use bare hands.
Using any appropriate tool, put 2 pieces of Item
[3], vertically stacked, on top of both the
freewheeling diodes D1 and D2.

With the heat sink oriented for top mounting, carefully align the heat sink's push pins on top of the two holes indicated in the picture. Slowly lower the heat sink until it touches the thermal pads (Item [3]) on top of the diodes.

8 Design Spreadsheet

8.1 PI Expert Online

PI Expert Online (https://www.power.com/design-support/pi-expert) is a web-based program that takes specifications and automatically generates a power conversion solution. Table 6 shows the generated design spreadsheet from PI Expert Online where the design was based on.

1	DCDC_LinkSwitchTN2- Automotive- Buck_082422; Rev.2.1; Copyright Power Integrations 2022	INPUT	OUTPUT	UNIT	DCDC LinkSwitchTN2-Automotive Buck Converter
2	APPLICATION VARIABLES				
3	VDCMIN	60.00	60.00	V	Minimum DC voltage
4	VDCMAX	550.00	550.00	V	Maximum DC input voltage
5	VOUT	15.00	15.00	V	Output voltage
6	IOUT	0.650	0.650	A	Average output current
7	EFFICIENCY_ESTIMATED		0.80		Efficiency estimate at output terminals
8	EFFICIENCY_CALCULATED		0.77		Calculated efficiency based on real components and operating point
9	POUT		9.75	W	Continuous output power
10	INPUT STAGE RESISTANCE		10	Ohms	Input stage resistance in ohms (includes thermistor, filtering components, etc)
11	PLOSS_INPUTSTAGE		0.413	W	Maximum input stage loss
15	CONTROLLER VARIABLES				
16	OPERATION MODE		MCM		Mostly continuous mode of operation
17	CURRENT LIMIT MODE	STD	STD		Choose 'RED' for reduced current limit or 'STD' for standard current limit
18	PACKAGE		SMD-8C		Select the device package
19	DEVICE SERIES	AUTO	LNK3209		Generic LinkSwitch-TN2 device
20	DEVICE CODE		$\begin{gathered} \hline \text { LNK3209G } \\ \mathrm{Q} \\ \hline \end{gathered}$		Required LinkSwitch-TN2 device
21	ILIMITMIN		1.079	A	Minimum current limit of the device
22	ILIMITTYP		1.300	A	Typical current limit of the device
23	ILIMITMAX		1.521	A	Maximum current limit of the device
24	RDSON		4.37	ohms	Primary switch on-time drain to source resistance at 125degC
25	FSMIN		62000	Hz	Minimum switching frequency
26	FSTYP		66000	Hz	Typical switching frequency
27	FSMAX		70000	Hz	Maximum switching frequency
28	BVDSS		750	V	Device breakdown voltage
32	PRIMARY SWITCH PARAMETERS				
33	VDSON		2.00	V	Primary switch on-time drain to source voltage estimate
34	VDSOFF		578	V	Primary switch off-time drain-to-source voltage stress
35	DUTY		0.290		Maximum duty cycle
36	TIME_ON_MIN		0.872	us	Primary switch minimum on-time
37	IPED_PRIMARYSWITCH		0.235	A	Maximum primary switch pedestal current
38	IRMS_PRIMARYSWITCH		0.436	A	Maximum primary switch RMS current
39	PLOSS_PRIMARYSWITCH		0.895	W	Maximum primary switch loss
43	BUCK INDUCTOR PARAMETERS				
44	INDUCTANCE_MIN		297	uH	Minimum design inductance required for current delivery. Note that the chosen inductor must be AECQ200 compliant
45	INDUCTANCE_TYP	330	330	uH	Typical design inductance required for current delivery. Note that the chosen inductor must be AEC-Q200 compliant

46	INDUCTANCE_MAX		363	uH	Maximum design inductance required for current delivery. Note that the chosen inductor must be AECQ200 compliant
47	TOLERANCE_INDUCTANCE		10	\%	Tolerance of the design inductance
48	DC RESISTANCE OF INDUCTOR	0.3	0.3	ohms	DC resistance of the buck inductor
49	FACTOR_KLOSS		0.50		Factor that accounts for "off-state" power loss to be supplied by inductor (usually between 50% to 66%)
50	IRMS_INDUCTOR		0.978	A	Maximum inductor RMS current
51	PLOSS_INDUCTOR		0.287	W	Maximum inductor losses
55	FREEWHEELING DIODE PARAMETERS				
56	VF_FREEWHEELING		2.60	V	Forward voltage drop across the two freewheeling diodes in series
57	PIV_RATING		600.00	V	Peak inverse voltage rating of each freewheeling diode
58	TRR		35	ns	Reverse recovery time of each freewheeling diode
59	PIV_CALCULATED		578	V	Computed peak inverse voltage across the freewheeling diodes
60	IRMS_DIODE		0.962	A	Maximum diode RMS current
61	PLOSS_DIODE		1.896	W	Maximum loss across both freewheeling diodes
62	RECOMMENDED DIODE	ES13 ${ }^{3}$	ES1J		Recommended freewheeling diode. Two of this diode in series must be implemented to pass 80% voltage derating and thermal requirements
66	BIAS/FEEDBACK PARAMETERS				
67	VF_BIAS		0.70	V	Forward voltage drop of the bias diode
68	RBIAS		2490	Ohms	Bias resistor
69	CBP		0.1	uF	BP pin capacitor
70	RFB		17400	Ohms	Feedback resistor
71	CFB		10	uF	Feedback capacitor
72	C_SOFTSTART		1-10	uF	If the output voltage is greater than 12 V or total output and system capacitance is greater than 100 uF , a soft start capacitor between 1 uF and 10 uF is recommended
73	PLOSS_FEEDBACK		0.011	W	Maximum feedback component losses
77	OUTPUT CAPACITOR				
78	OUTPUT VOLTAGE RIPPLE	240	240	mV	Desired output voltage ripple
79	IRMS_COUT		0.730	A	Maximum output capacitor RMS current
80	PLOSS_COUT		0.012	W	Maximum output capacitor power loss
81	ESR_COUT	22	22	mOhms	ESR of the output capacitor

Table 6 - DER-965Q PI Expert Online Spreadsheet.

[^1]
9 Performance data

Note: 1. Measurements were taken with the unit under test set-up inside a thermal chamber placed inside a High Voltage (HV) room.

Figure 7 - High Voltage Test Set-up.

Figure 8 - Test Set-up Inside the High Voltage Room.
2. Unit under test was placed under a box while inside the thermal chamber to eliminate the effect of any airflow.

Figure 9 - Unit under test placed under a box to eliminate the effect of airflow.
3. For data points showing performance across varying input line voltages and output load currents, the unit under test was soaked at full load condition for at least 5 min . for every change in the input voltage during the start of every test sequence. Also, for every loading condition, the unit under test was soaked for at least 20 s before measurements were taken.

9.1 Efficiency

9.1.1 Line Efficiency ${ }^{4}$

Line efficiency describes how the change in input voltage affects the overall efficiency of the unit.

Sudden increase of efficiency recorded at $550 \mathrm{~V}_{\mathrm{DC}}$ input and $105^{\circ} \mathrm{C}$ ambient temperature is due to a change of operation mode of the LNK3209GQ device and output power deration at 550 VDC, $105^{\circ} \mathrm{C}$ ambient temperature.

Figure 10 - Full Load Efficiency vs. Input Line Voltage.

[^2]
9.1.2 Load Efficiency

Load efficiency describes how the change in output loading conditions affects the overall efficiency of the unit.
9.1.2.1 Efficiency vs. Load at $105^{\circ} \mathrm{C}$ Ambient ${ }^{5}$

Figure 11 - Efficiency vs. Load at Different Input Voltages ($105^{\circ} \mathrm{C}$ Ambient).

[^3]
9.1.2.2 Efficiency vs. Load at $25^{\circ} \mathrm{C}$ Ambient

Figure 12 - Efficiency vs. Load at Different Input Voltages ($25^{\circ} \mathrm{C}$ Ambient).
9.1.2.3 Efficiency vs. Load at $-40^{\circ} \mathrm{C}$ Ambient

Figure 13 - Efficiency vs. Load at Different Input Voltages ($-40^{\circ} \mathrm{C}$ Ambient).

9.2 Output Line and Load Regulation at $105^{\circ} \mathrm{C}$ Ambient

Figure 14 - Output Regulation vs. Load at Different Input Voltages ($105^{\circ} \mathrm{C}$ Ambient).

9.3 Output Line and Load Regulation at $25^{\circ} \mathrm{C}$ Ambient

Figure 15 - Output Regulation vs. Load vs. Line Voltage ($25^{\circ} \mathrm{C}$ Ambient).

9.4 Output Line and Load Regulation at - $40^{\circ} \mathrm{C}$ Ambient

Figure 16 - Output Regulation vs. Load vs. Line Voltage ($-40^{\circ} \mathrm{C}$ Ambient).

10 Thermal Performance

10.1 Thermal Data at $105^{\circ} \mathrm{C}$ Ambient Temperature

The unit was placed inside a thermal chamber and soaked for at least 1 hour to allow component temperatures to settle. Figure 9 shows the set-up for thermal measurement. The unit was tested with the heat sink assembled.

Critical components	Input Voltage		
	$\mathbf{6 0} \mathbf{V}_{\mathbf{D C}}$	$\mathbf{4 0 0} \mathbf{V}_{\mathbf{D C}}$	$\mathbf{5 5 0} \mathbf{~ V C}^{\mathbf{6}}$
LinkSwitch-TN2Q (IC1)	130.9	126.9	131.2
Freewheeling Diode 1 (D1)	127.8	128.3	130.6
Freewheeling Diode 2 (D2)	125.2	126.4	128.1
Output Inductor (L1)	119.9	127.6	129.6
Ambient Temperature	105	104.9	105.1

Table 7 - Thermals Data at $105^{\circ} \mathrm{C}$ at Different Input Voltages.

Figure 17 - Component Temperatures at $105^{\circ} \mathrm{C}$ Ambient, 550 VDC Input, Output Derated to 550 mA (8.25 W).

[^4]
10.2 Thermals Data at $25^{\circ} \mathrm{C}$ Ambient Temperature

The following thermal scans are captured using a Fluke thermal imager after soaking for at least 1 hour in an enclosure to minimize the effect of air flow. The unit was tested without the heat sink to capture component temperatures via the Fluke thermal imager.

This indicates the design can deliver full power at an ambient of up to $50^{\circ} \mathrm{C}$ without the heatsink - with an estimated maximum temperature of for IC1 of $110{ }^{\circ} \mathrm{C}$.

In a final implementation in an automotive subsystem, it is expected that the heatsink is replaced by contact between the thermal pads and the outer enclosure wall.

Critical components	Input Voltage		
	$\mathbf{6 0} \mathbf{V D C}_{\mathbf{D C}}$	$\mathbf{4 0 0} \mathbf{V}_{\mathbf{D C}}$	$\mathbf{5 5 0} \mathbf{V D C}_{\mathbf{D C}}$
LinkSwitch-TN2Q (IC1)	63.0	60.8	85.7
Freewheeling Diode 1 (D1)	62.0	70.3	81.9
Freewheeling Diode 2 (D2)	57.2	66.4	73.4
Output Inductor (L1)	49.2	58	67.6
Ambient Temperature	24.5	24.4	26.0

Table 8 - Thermals Data at $25^{\circ} \mathrm{C}$ at Different Input Voltages.

Figure 18 - Top PCB Thermal Scans at 550 VDC Input.

11 Waveforms

11.1 Start-Up Waveforms

The following measurements were taken by hot plugging-in the unit under test to a DC link capacitor fully charged ${ }^{7}$ to a test input voltage of $\mathrm{HV}+$.

11.1.1 Output Voltage and Current at $25^{\circ} \mathrm{C}$ Ambient Temperature ${ }^{8}$

Figure 19 - Output Voltage and Current.
$60 \mathrm{~V}_{\mathrm{DC}}, 650 \mathrm{~mA}$ Load
CH1: Vin, $50 \mathrm{~V} / \mathrm{div}$.
CH2: Vout, $10 \mathrm{~V} / \mathrm{div}$.
CH3: Iout, $500 \mathrm{~mA} /$ div.
Time: 20 ms / div.

Figure $\mathbf{2 0}$ - Output Voltage and Current.
$400 \mathrm{~V}_{\mathrm{DC}} 650 \mathrm{~mA}$ Load.
CH1: Vin, $200 \mathrm{~V} / \mathrm{div}^{2}$
CH2: Vout, $10 \mathrm{~V} /$ div.
CH3: Iout, $500 \mathrm{~mA} /$ div.
Time: 20 ms / div.

Figure 21 - Output Voltage and Current.
$550 \mathrm{~V}_{\mathrm{DC}}, 650 \mathrm{~mA}$ Load.
CH1: Vin, $200 \mathrm{~V} /$ div.
CH2: Vout, $10 \mathrm{~V} /$ div.
CH3: Iout, $500 \mathrm{~mA} /$ div.
Time: $20 \mathrm{~ms} / \mathrm{div}$.
${ }^{7}$ Inrush current was limited by adding a 10Ω series resistor between the DC link capacitor and the unit under test.
${ }^{8}$ Voltage dip on the $V_{\text {IN }}$ waveform is due to the effective line impedance from the $D C$ link capacitor to the unit under test.

11.1.2 LinkSwitch-TN2Q Drain Voltage and Current at $25^{\circ} \mathrm{C}$ Ambient Temperature

Figure 22 - LNK3209GQ Drain Voltage and Current. 60 VDC 650 mA Load. CH 1 : $\mathrm{Id}, 1 \mathrm{~A} / \mathrm{div}$. $\mathrm{CH} 2: \mathrm{V}_{\mathrm{DS}}, 50 \mathrm{~V} / \mathrm{div}$. Time: $200 \mathrm{~ms} / \mathrm{div}$. Zoom: $200 \mu \mathrm{~s} /$ div.

A $\operatorname{Max}($ (C1) $2.488 \mathrm{~A} \quad \operatorname{Max}(\mathrm{C} 2) 503.0 \mathrm{~V}$
Figure 23 - LNK3209GQ Drain Voltage and Current. $400 \mathrm{~V}_{\mathrm{DC}}, 650 \mathrm{~mA}$ Load.
CH1: Id, 1 A / div.
CH2: Vds, $200 \mathrm{~V} /$ div.
Time: 200 ms / div.
Zoom: $200 \mu \mathrm{~s} / \mathrm{div}$.

A $\max (61) 3.070 \mathrm{~A} \quad \operatorname{Max}(C 2) 654.0 \mathrm{~V}$
Figure 24 - LNK3209GQ Drain Voltage and Current. 550 VDC, 650 mA Load.
CH1: Id, 1 A / div.
CH2: VDs, $200 \mathrm{~V} /$ div.
Time: $200 \mathrm{~ms} /$ div.
Zoom: $200 \mu \mathrm{~s} / \mathrm{div}$.

11.1.3 Freewheeling Diode Voltages at $25^{\circ} \mathrm{C}$ Ambient Temperature

($\max (\mathrm{Cl}) 37.4 \mathrm{~V} \quad \operatorname{Max}(\mathrm{C} 2) 54.0 \mathrm{~V}$
Figure 25 - Freewheeling Diode Voltages.
60 VDC, 650 mA Load.
CH1: V ${ }_{\text {D1 }}, 50 \mathrm{~V} /$ div.
CH : V D2, $50 \mathrm{~V} /$ div.
Time: 200 ms / div.

(1) max(ct) 266.5V max(c) 19.0 V

Figure 26 - Freewheeling Diode Voltages.
400 VDC, 650 mA Load.
CH1: VD1, $100 \mathrm{~V} /$ div.
CH2: VD2, $100 \mathrm{~V} / \mathrm{div}$.
Time: $200 \mathrm{~ms} / \mathrm{div}$.

A max(C1) $349.5 \mathrm{~V} \quad \max (02) 251.3 \mathrm{~V}$
Figure 27 - Freewheeling Diode Voltages. 550 VDC, 650 mA Load. CH1: VD1, $200 \mathrm{~V} /$ div.
CH2: VD2, $200 \mathrm{~V} / \mathrm{div}$.
Time: $200 \mathrm{~ms} /$ div.

11.1.4 Output Voltage and Current at $-40^{\circ} \mathrm{C}$ Ambient Temperature ${ }^{9}$

Figure 28 - Output Voltage and Current. $60 V_{D C}, 650 \mathrm{~mA}$ Load
CH1: Vin, $50 \mathrm{~V} /$ div.
CH2: Vout, $10 \mathrm{~V} / \mathrm{div}$.
CH3: Iout, $500 \mathrm{~mA} /$ div.
Time: $20 \mathrm{~ms} / \mathrm{div}$.

Figure 29 - Output Voltage and Current. 400 VDC, 650 mA Load.
CH1: Vin, $200 \mathrm{~V} / \mathrm{div}$.
CH2: Vout, $10 \mathrm{~V} / \mathrm{div}$.
CH3: Iout, $500 \mathrm{~mA} / \mathrm{div}$.
Time: $20 \mathrm{~ms} / \mathrm{div}$.

High(c2) 15.0 V
Figure 30 - Output Voltage and Current.
550 VDC, 650 mA Load.
CH1: Vin, $200 \mathrm{~V} /$ div.
CH2: Vout, $10 \mathrm{~V} / \mathrm{div}$.
CH3: Iout, $500 \mathrm{~mA} / \mathrm{div}$.
Time: $20 \mathrm{~ms} / \mathrm{div}$.
${ }^{9}$ Voltage dip on the $\mathrm{V}_{\text {IN }}$ waveform is due to the effective line impedance from the DC link capacitor to the unit under test.

11.1.5 LinkSwitch-TN2Q Drain Voltage and Current at -40 ${ }^{\circ} \mathrm{C}$ Ambient Temperature

igure 31 - LNK3209GQ Drain Voltage and Current.
60 VDC, 650 mA Load.
CH1: $I_{D}, 1$ A / div.
CH 2: V $\mathrm{VS}, 50 \mathrm{~V} /$ div.
Time: $200 \mathrm{~ms} /$ div.
Zoom: $200 \mu \mathrm{~s} / \operatorname{div}$.

(R) Max(cl) $2.50 \mathrm{~A} \quad \max (2) 196 \mathrm{~V}$

Figure 32 - LNK3209GQ Drain Voltage and Current. 400 VDC, 650 mA Load.
$\mathrm{CH} 1: \mathrm{Id}_{\mathrm{D}} 1 \mathrm{~A} / \mathrm{div}$.
CH2: VDs, $200 \mathrm{~V} /$ div.
Time: $200 \mathrm{~ms} /$ div.
Zoom: $200 \mu \mathrm{~s} /$ div.

A) $\max (41) 3.05 \mathrm{~A} \quad \operatorname{Max}(02) 656 \mathrm{~V}$

Figure 33 - LNK3209GQ Drain Voltage and Current. 550 Vdc, 650 mA Load.
CH1: Id, 1 A / div.
CH2: VDs, $200 \mathrm{~V} /$ div.
Time: $200 \mathrm{~ms} /$ div.
Zoom: $200 \mu \mathrm{~s} /$ div.

11.1.6 Freewheeling Diode Voltages at $-40^{\circ} \mathrm{C}$ Ambient Temperature

(a) maxcl) 12% $\max (2){ }^{2} 46 \mathrm{y}$
Figure 34 - Freewheeling Diode Voltages.
60 VDC, 650 mA Load.
CH1: V ${ }_{\text {D1 }}, 50 \mathrm{~V} /$ div.
CH 2: VD2, $50 \mathrm{~V} /$ div.
Time: $200 \mathrm{~ms} /$ div.

Figure 35 - Freewheeling Diode Voltages.
400 VDC, 650 mA Load.
CH1: VD1, $100 \mathrm{~V} /$ div.
CH2: VD2, $100 \mathrm{~V} / \mathrm{div}$.
Time: $200 \mathrm{~ms} /$ div.

Figure 36 - Freewheeling Diode Voltages. 550 VDC, 650 mA Load.
CH1: V ${ }^{1}, 200 \mathrm{~V} / \mathrm{div}$.
CH2: VD2, $200 \mathrm{~V} / \mathrm{div}$.
Time: $200 \mathrm{~ms} /$ div.

11.2 Steady-State Waveforms

11.2.1 Switching Waveforms at $105^{\circ} \mathrm{C}$ Ambient Temperature

11.2.1.1 Normal Operation Component Stress

Steady-State Switching Waveforms $105{ }^{\circ} \mathrm{C}$ Ambient, Full Load						
Input	LNK3209GQ		Freewheeling Diode 1		Freewheeling Diode 2	
$\begin{aligned} & \mathbf{V}_{\text {IN }} \\ & (\mathbf{V}) \end{aligned}$	$\begin{gathered} \text { IC1 } \\ \mathbf{V D S}^{(V)} \end{gathered}$	Vstress(\%)	$\begin{gathered} \mathrm{D} 1 \\ \mathrm{~V}_{\mathrm{DS}}(\mathrm{~V}) \end{gathered}$	Vstress(\%)	$\begin{gathered} \mathrm{D2} \\ \mathrm{~V}_{\mathrm{DS}}(\mathrm{~V}) \\ \hline \end{gathered}$	VSTRESS(\%)
60	89.9	11.99	36.6	6.10	66.6	11.10
200	287	38.27	126	21.00	114	19.00
400	483	64.40	258.3	43.05	171	28.50
550	648	86.40	357	59.50	346.5	57.75

Table 9 - Summary of Critical Component Voltage Stresses at $105^{\circ} \mathrm{C}$ Ambient Temperature.

11.2.1.2 LinkSwitch-TN2Q Drain Voltage and Current

Figure 37 - LinkSwitch-TN2Q Drain Voltage and Current. $60 \mathrm{~V}_{\mathrm{D}}, 650 \mathrm{~mA}$ Load, $105^{\circ} \mathrm{C}$ Ambient.
CH1: $I_{D}, 1 \mathrm{~A} / \mathrm{div}$.
$\mathrm{CH} 1: \mathrm{V}_{\mathrm{DS}}, 50 \mathrm{~V} /$ div.
Time: $5 \mathrm{~ms} /$ div.
Zoom: 5 $\mu \mathrm{s} /$ div.

Figure 38 - LinkSwitch-TN2Q Drain Voltage and Current. 200 VDC, 650 mA Load, $105^{\circ} \mathrm{C}$ Ambient.
CH1: ID, 1 A / div.
CH1: VDs, $100 \mathrm{~V} /$ div.
Time: $5 \mathrm{~ms} / \mathrm{div}$.
Zoom: 5 s / div.

Figure 39 - LinkSwitch-TN2Q Drain Voltage and Current. 400 VDC, 650 mA Load, $105^{\circ} \mathrm{C}$ Ambient.
CH1: Id, 1 A / div.
CH1: Vds, $200 \mathrm{~V} / \mathrm{div}$.
Time: $5 \mathrm{~ms} /$ div.
Zoom: 5 s / div.

11.2.1.3 Freewheeling Diode Voltages

Figure 41 - Freewheeling Diode Voltages.
60 V $\mathrm{DC}, 650 \mathrm{~mA}$ Load, $105^{\circ} \mathrm{C}$ Ambient.
$\mathrm{CH} 1: \mathrm{V}_{\mathrm{D} 1}, 50 \mathrm{~V} / \mathrm{div}$.
CH1: VD2, $50 \mathrm{~V} / \mathrm{div}$.
Time: $5 \mathrm{~ms} / \mathrm{div}$.
Zoom: $5 \mu \mathrm{~s} /$ div.

Figure 40 - LinkSwitch-TN2Q Drain Voltage and Current. 550 VDC, 650 mA Load, $105^{\circ} \mathrm{C}$ Ambient.
CH1: Id, 1 A / div.
CH1: VDs, $200 \mathrm{~V} / \mathrm{div}$.
Time: $5 \mathrm{~ms} / \mathrm{div}$.
Zoom: 5 нs / div.

Figure 42 - Freewheeling Diode Voltages.
$200 V_{D C}, 650 \mathrm{~mA}$ Load, $105^{\circ} \mathrm{C}$ Ambient.
$\mathrm{CH} 1: \mathrm{V}_{\mathrm{D} 1}, 50 \mathrm{~V} / \mathrm{div}$.
$\mathrm{CH} 1: \mathrm{V}_{\mathrm{D} 2}, 50 \mathrm{~V} / \mathrm{div}$.
Time: $5 \mathrm{~ms} / \mathrm{div}$.
Zoom: 5 s / div.

Figure 43 - Freewheeling Diode Voltages. 400 V $\mathrm{DC}, 650 \mathrm{~mA}$ Load, $105^{\circ} \mathrm{C}$ Ambient. CH1: VD1, $100 \mathrm{~V} /$ div.
CH1: VD2, $100 \mathrm{~V} / \mathrm{div}$.
Time: $5 \mathrm{~ms} / \mathrm{div}$.
Zoom: 5 s / div.

Figure 44 - Freewheeling Diode Voltages.
550 V $\mathrm{D}, 650 \mathrm{~mA}$ Load, $105^{\circ} \mathrm{C}$ Ambient.
CH1: VD1, $200 \mathrm{~V} / \mathrm{div}$.
CH1: VD2, $200 \mathrm{~V} / \mathrm{div}$.
Time: $5 \mathrm{~ms} / \mathrm{div}$.
Zoom: $5 \mu \mathrm{~s} / \mathrm{div}$.

11.2.1.4 Short-Circuit Response

The unit is tested by applying output short-circuit across the $15 \mathrm{~V}_{\mathrm{DC}}$ output terminals (X3A, X3B) during normal working conditions and then removing the short-circuit to see if the unit will recover and operate normally. The expected response during short-circuit is for the unit to go to AR (auto restart) mode.

Figure 45 - LinkSwitch-TN2Q Drain Voltage and Current. 60 Voc, Full Load-Short-Full Load, $105^{\circ} \mathrm{C}$ Ambient.
CH1: Id, 1 A / div.
CH2: Vvos, $50 \mathrm{~V} / \mathrm{div}$.
Time: 2 s / div.

Figure 46 - LinkSwitch-TN2Q Drain Voltage and Current. 200 VDC, Full Load-Short-Full Load, $105^{\circ} \mathrm{C}$ Ambient.
CH1: Id, 1 A / div.
CH2: Vvds, $100 \mathrm{~V} /$ div.
Time: $2 \mathrm{~s} / \mathrm{div}$.

Figure 47 - LinkSwitch-TN2Q Drain Voltage and Current. $400 \mathrm{~V}_{\mathrm{DC}}$, Full Load-Short-Full Load, $105^{\circ} \mathrm{C}$ Ambient.
CH1: Id, 1 A / div. CH2: Vvos, $200 \mathrm{~V} /$ div.
Time: 2 s / div.

Figure 48 - LinkSwitch-TN2Q Drain Voltage and Current. 550 VDC, Full Load-Short-Full Load, $105^{\circ} \mathrm{C}$ Ambient.
CH1: Id, 1 A / div.
CH2: Vvos, $200 \mathrm{~V} /$ div.
Time: $2 \mathrm{~s} / \mathrm{div}$.

11.2.2 Switching Waveforms at $25^{\circ} \mathrm{C}$ Ambient Temperature

11.2.2.1 LinkSwitch-TN2Q Drain Voltage and Current

Figure 49 - LinkSwitch-TN2Q Drain Voltage and Current.
$60 \mathrm{~V}_{\mathrm{DC}}, 650 \mathrm{~mA}$ Load.
CH1: Id, 1 A / div.
CH2: Vds, $50 \mathrm{~V} /$ div.
Time: $5 \mathrm{~ms} / \mathrm{div}$.
Zoom: $5 \mu \mathrm{~s} /$ div.

Figure 51 - LinkSwitch-TN2Q Drain Voltage and Current.
400 VDC, 650 mA Load.
CH1: Id, 1 A / div.
CH2: VDs, $200 \mathrm{~V} /$ div.
Time: $5 \mathrm{~ms} / \mathrm{div}$.
Zoom: 5 нs / div.

11.2.2.2 Freewheeling Diode Voltages

D
Figure 53 - Freewheeling Diode Voltages.
$60 \mathrm{~V}_{\mathrm{D}}, 650 \mathrm{~mA}$ Load.
$\mathrm{CH} 1: \mathrm{V}_{\mathrm{D}}, 50 \mathrm{~V} / \mathrm{div}$.
$\mathrm{CH} 2: \mathrm{V}_{\mathrm{D} 2}, 50 \mathrm{~V} / \mathrm{div}$.
Time: $5 \mathrm{~ms} / \mathrm{div}$.
Zoom: $10 \mu \mathrm{~s} / \mathrm{div}$.

Figure 52 - LinkSwitch-TN2Q Drain Voltage and Current.
550 VDC, 650 mA Load.
CH1: Id, 1 A / div.
CH2: VDs, $200 \mathrm{~V} /$ div.
Time: $5 \mathrm{~ms} / \mathrm{div}$.
Zoom: 5 s / div.

Figure $54-$ Freewheeling Diode Voltages
$200 \mathrm{~V}_{\mathrm{D}}, 650 \mathrm{~mA}$ Load.
CH1: V $\mathrm{V}_{1}, 100 \mathrm{~V} / \mathrm{div}$.
CH2: VD2, $100 \mathrm{~V} / \mathrm{div}$.
Time: $5 \mathrm{~ms} / \mathrm{div}$.
Zoom: $10 \mu \mathrm{~s} / \mathrm{div}$.

Figure 55 - Freewheeling Diode Voltages.
$400 \mathrm{~V}_{\mathrm{DC}}, 650 \mathrm{~mA}$ Load.
CH1: VD1, $200 \mathrm{~V} /$ div.
CH2: VD2, $200 \mathrm{~V} / \mathrm{div}$.
Time: $5 \mathrm{~ms} / \mathrm{div}$.
Zoom: $10 \mu \mathrm{~s} / \mathrm{div}$.

Figure 56 - Freewheeling Diode Voltages.
$550 \mathrm{~V}_{\mathrm{DC}}, 650 \mathrm{~mA}$ Load.
CH1: VD1, $200 \mathrm{~V} /$ div.
CH2: VD2, $200 \mathrm{~V} / \mathrm{div}$.
Time: $5 \mathrm{~ms} / \mathrm{div}$.
Zoom: $10 \mu \mathrm{~s} / \mathrm{div}$.

11.3 Load Transient Response

Output voltage waveform on the board was captured with dynamic load transient from 10% to $50 \%, 50 \%$ to 100%, and 10% to 100%. The duration for the load states is set to 100 ms and the load slew rate is $100 \mathrm{~mA} / \mu \mathrm{s}$. The test is done at $105{ }^{\circ} \mathrm{C}$ ambient temperature.

Dynamic Load Settings	$\mathbf{V}_{\text {IN }}$ (\mathbf{V})	$\mathbf{\Delta V}$ ($(\mathbf{m V})$	$\mathbf{V}_{\text {out(MIN) }}$ $\mathbf{(V)}$	Vout(MAX) (\mathbf{V})
$\mathbf{1 0 \%}$ to 50\%	60	514.00	15.30	15.81
	200	591.38	15.20	15.79
	400	554.25	15.22	15.78
	550	587.88	15.18	15.77
$\mathbf{5 0 \%}$ to 100\%	60	435.50	15.17	15.60
	200	464.75	15.13	15.59
	400	545.50	14.97	15.51
	550	684.25	15.91	15.59
$\mathbf{1 0 \%}$ to 100\%	60	686.00	15.14	15.82
	200	833.13	14.96	15.79
	400	972.38	14.82	15.79
	550	999.13	14.79	15.79

Table 10 - Load Transient Response.

11.3.1 10\% to 50\%

Figure 57 - Output Voltage and Current.
$60 \mathrm{~V}_{\mathrm{DC}}, 10 \%$ to 50% Transient Load, $105^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $2.5 \mathrm{~V} /$ div.
CH2: Iout, $500 \mathrm{~mA} / \mathrm{div}$.
Time: $10 \mathrm{~ms} / \mathrm{div}$.
$\Delta \mathrm{V}=514 \mathrm{mV}$.

Figure 58 - Output Voltage and Current.
200 VDC, 10\% to 50\% Transient Load, $105^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $2.5 \mathrm{~V} /$ div.
CH2: Iout, $500 \mathrm{~mA} /$ div.
Time: $10 \mathrm{~ms} / \mathrm{div}$.
$\Delta \mathrm{V}=591.38 \mathrm{mV}$.

11.3.2 50% to 100%

Figure 61 - Output Voltage and Current.
$60 V_{D C}, 50 \%$ to 100\% Transient Load, $105^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $2.5 \mathrm{~V} /$ div.
CH2: Iout, $500 \mathrm{~mA} / \mathrm{div}$.
Time: $10 \mathrm{~ms} / \mathrm{div}$.
$\Delta \mathrm{V}=435.5 \mathrm{mV}$.

Figure 62 - Output Voltage and Current.
200 VDC, 50\% to 100\% Transient Load, $105^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $2.5 \mathrm{~V} /$ div.
CH2: Iout, $500 \mathrm{~mA} / \mathrm{div}$.
Time: $10 \mathrm{~ms} / \mathrm{div}$.
$\Delta \mathrm{V}=464.75 \mathrm{mV}$.

11.3.3 10% to 100%

Figure 65 - Output Voltage and Current.
$60 V_{D C}, 10 \%$ to 100% Transient Load, $105^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $2.5 \mathrm{~V} / \mathrm{div}$.
CH2: Iout, $500 \mathrm{~mA} / \mathrm{div}$.
Time: $10 \mathrm{~ms} / \mathrm{div}$.
$\Delta \mathrm{V}=686.00 \mathrm{mV}$.

Figure 66 - Output Voltage and Current.
$200 \mathrm{~V}_{\mathrm{DC}}, 10 \%$ to 100% Transient Load, $105^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $2.5 \mathrm{~V} / \mathrm{div}$.
CH2: Iout, $500 \mathrm{~mA} / \mathrm{div}$.
Time: $10 \mathrm{~ms} / \mathrm{div}$.
$\Delta V=833.13 \mathrm{mV}$.

11.4 Output Ripple Measurements

11.4.1 Ripple Measurement Technique

For DC output ripple measurements, a modified oscilloscope test probe must be utilized to reduce spurious signals due to pick-up. Details of the probe modification are provided in Figure 69 and Figure 70 below.

A CT2708 probe adapter is affixed with a $1 \mu \mathrm{~F} / 50 \mathrm{~V}$ ceramic capacitor placed in parallel across the probe tip. A twisted pair of wires kept as short as possible is soldered directly to the probe and the output terminals.

Figure 69 - Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed.)

Figure $7 \mathbf{7 0}$ - Oscilloscope Probe with Cal Test CT2708 BNC Adapter. (Modified with Wires for Ripple Measurement, and a Parallel Decoupling Capacitor Added.)

11.4.2 Output Voltage Ripple Waveforms

Output voltage ripple waveform at full load was captured at the output terminals using the ripple measurement probe with decoupling capacitor.

11.4.2.1 Output Voltage Ripple at $105^{\circ} \mathrm{C}$ Ambient ${ }^{10}$

Figure 71 - Output Voltage Ripple.
60 VDC, Full Load, $105^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $50 \mathrm{mV} / \mathrm{div}$.
Time: $50 \mathrm{~ms} / \mathrm{div}$.
Zoom: $100 \mu \mathrm{~s} / \mathrm{div}$.
$V_{\text {RIPPLE }}=151.61 \mathrm{mV}$.

Figure 73 - Output Voltage Ripple. $400 \mathrm{~V}_{\mathrm{DC}}$, Full Load, $105^{\circ} \mathrm{C}$ Ambient.
CH1: V
Time: $50 \mathrm{~ms} / \mathrm{div}$.
Zoom: $100 \mu \mathrm{~s} / \mathrm{div}$.
$V_{\text {RIPPLE }}=169.77 \mathrm{mV}$.

Figure $\mathbf{7 2}$ - Output Voltage Ripple.
200 V ${ }_{D C}$, Full Load, $105^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $50 \mathrm{mV} /$ div.
Time: $50 \mathrm{~ms} /$ div.
Zoom: $100 \mu \mathrm{~s} / \mathrm{div}$.
$V_{\text {RIPPLE }}=177.16 \mathrm{mV}$.

Figure 74 - Output Voltage Ripple.
$550 \mathrm{~V}_{\mathrm{DC}}$, Full Load, $105^{\circ} \mathrm{C}$ Ambient.
CH1: V
Time: $50 \mathrm{~ms} / \mathrm{div}$.
Zoom: $100 \mu \mathrm{~s} / \mathrm{div}$.
$V_{\text {RIPPLE }}=181.08 \mathrm{mV}$.

[^5]
11.4.2.2 Output Voltage Ripple at $25^{\circ} \mathrm{C}$ Ambient ${ }^{11}$

Figure 75 - Output Voltage Ripple.
$60 V_{D C}$, Full Load, $25^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, 50 mV / div.
Time: $50 \mathrm{~ms} / \mathrm{div}$.
Zoom: $100 \mu \mathrm{~s} / \mathrm{div}$.
$V_{\text {RIPPLE }}=146.05 \mathrm{mV}$.

Figure 77 - Output Voltage Ripple.
400 Voc, Full Load, $25^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $50 \mathrm{mV} / \mathrm{div}$.
Time: $50 \mathrm{~ms} / \mathrm{div}$.
Zoom: $100 \mu \mathrm{~s} / \mathrm{div}$.
$V_{\text {RIPPLE }}=172.47 \mathrm{mV}$.

Figure 76 - Output Voltage Ripple.
200 VDC, Full Load, $25^{\circ} \mathrm{C}$ Ambient.
CH 1 : Vout, $50 \mathrm{mV} / \mathrm{div}$.
Time: $50 \mathrm{~ms} / \mathrm{div}$.
Zoom: $100 \mu \mathrm{~s} / \mathrm{div}$.
$V_{\text {RIPPLE }}=164.10 \mathrm{mV}$.

Figure 78 - Output Voltage Ripple.
550 VDC, Full Load, $25^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $50 \mathrm{mV} / \mathrm{div}$.
Time: $50 \mathrm{~ms} / \mathrm{div}$.
Zoom: $100 \mu \mathrm{~s} /$ div.
$V_{\text {RIPPLE }}=163.94 \mathrm{mV}$.
${ }^{11}$ Peak-to-peak voltage measurement recorded in each oscilloscope capture is the worst-case ripple which includes both the low frequency and high frequency switching voltage ripple (top portion of each capture).

11.4.2.3 Output Voltage Ripple at $-40^{\circ} \mathrm{C}$ Ambient ${ }^{12}$

Probe extension using twisted pair wires was implemented for the test performed at -40 ${ }^{\circ} \mathrm{C}$ ambient temperature due to the inaccessibility of the probing point once placed inside the thermal chamber. To compensate for the effects of the probe extension, values shown on the figures below must be decreased by $11.44 \mathrm{mV}_{\mathrm{PP}}{ }^{13}$.

Figure 79 - Output Voltage Ripple.
$60 V_{D C}$, Full Load, $-40^{\circ} \mathrm{C}$ Ambient.
CH1: V OUt, $50 \mathrm{mV} / \mathrm{div}$.
Time: $50 \mathrm{~ms} / \mathrm{div}$.
Zoom: $100 \mu \mathrm{~s} / \mathrm{div}$.
$\mathrm{V}_{\text {RIPPLE }}=162.95 \mathrm{mV}$.

Figure 81 - Output Voltage Ripple.
$400 \mathrm{~V}_{\mathrm{DC}}$, Full Load, $-40^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $50 \mathrm{mV} / \mathrm{div}$.
Time: $50 \mathrm{~ms} /$ div.
Zoom: $100 \mu \mathrm{~s} / \mathrm{div}$.
$V_{\text {RIPPLE }}=124.78 \mathrm{mV}$.

Figure 80 - Output Voltage Ripple.
$200 \mathrm{~V}_{\mathrm{DC}}$, Full Load, $-40^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $50 \mathrm{mV} / \mathrm{div}$.
Time: $50 \mathrm{~ms} / \mathrm{div}$.
Zoom: $100 \mu \mathrm{~s} / \mathrm{div}$.
$V_{\text {RIPPLE }}=131.13 \mathrm{mV}$.

Figure 82 - Output Voltage Ripple.
$550 \mathrm{~V}_{\mathrm{DC}}$, Full Load, $25^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $50 \mathrm{mV} /$ div.
Time: $50 \mathrm{~ms} / \mathrm{div}$.
Zoom: $100 \mu \mathrm{~s} / \mathrm{div}$.
$V_{\text {RIPPLE }}=146.21 \mathrm{mV}$.

[^6]
11.4.3 Output Ripple vs. Load

11.4.3.1 Output Ripple at $105^{\circ} \mathrm{C}$ Ambient

Figure 83 - Output Ripple Voltage ($105^{\circ} \mathrm{C}$ Ambient).

11.4.3.2 Output Ripple at $25^{\circ} \mathrm{C}$ Ambient

Figure 84 - Output Ripple Voltage ($25^{\circ} \mathrm{C}$ Ambient).

11.4.3.3 Output Ripple at $-40^{\circ} \mathrm{C}$ Ambient

Output voltage ripple data at $-40^{\circ} \mathrm{C}$ ambient temperature shown below includes the 11.44 $\mathrm{mV} \mathrm{PP}^{14}$ offset to compensate for the effect the probe extensions had on the voltage ripple values.

Figure 85 - Output Ripple Voltage ($-40^{\circ} \mathrm{C}$ Ambient).

[^7]
11.5 Output Voltage Response due to Dynamic Inputs

Figure 86 - Test Set-up Diagram.

11.5.1 Response to HV DC Ramp Up with Ripple

To test the output voltage response due to ripple at HV DC ramp up, the input voltage was ramped up from 0 V to 60 V at $100 \mathrm{~V} / \mathrm{s}$ and $50 \mathrm{~V} / \mathrm{s}$. A ripple modulation of $\pm 8 \mathrm{~V}$ was implemented on the input voltage using a Variable Voltage Generator. Waveforms were obtained under minimum load (Iout $=65 \mathrm{~mA}$) and full load (Iout $=650 \mathrm{~mA}$) conditions.

High(C1) $60.9 \mathrm{v} \quad$ Mean(C4) 10.2403 v
Figure $87-50 \mathrm{~V} / \mathrm{s}$ Ramp Up (Left) and $100 \mathrm{~V} / \mathrm{s}$ Ramp Up (Right). $0-60 \mathrm{~V}_{\mathrm{DC}}, 65 \mathrm{~mA}$ Load, $25^{\circ} \mathrm{C}$ Ambient.
CH 1: $\mathrm{V}_{\mathrm{IN},} 20 \mathrm{~V} / \mathrm{div}$.
CH 4: Vout, 10 V / div.
Time: $1 \mathrm{~s} / \mathrm{div}$.

Figure 88-50 V / s Ramp Up (Left) and $100 \mathrm{~V} / \mathrm{s}$ Ramp Up (Right).
$0-60 \mathrm{~V}_{\mathrm{Dc}}, 650 \mathrm{~mA}$ Load, $25^{\circ} \mathrm{C}$ Ambient.
CH 1: $\mathrm{V}_{\mathrm{IN}}, 20 \mathrm{~V} /$ div.
CH 4: Vout, 10 V / div.
Time: $1 \mathrm{~s} / \mathrm{div}$.
The waveforms from Figure 87 and Figure 88 show no influence on the output voltage caused by the ripple modulation on the input voltage. The triggering of the "auto-restart" (AR) feature observed during the input voltage ramp up at full load condition and ramp down at both loading conditions is expected to happen when the output voltage regulation is not reached within a 50 ms period.

11.5.2 Response to Ripple on HV DC Net

11.5.2.1 Severity Level 1 Ripple on HV DC Net

A severity level 1 ripple was applied on the input voltage after 10 minutes of running the unit at normal operation to test the unit's output voltage response to ripple on the HV DC net. Waveforms were obtained under minimum load (Iout $=65 \mathrm{~mA}$) and full load (Iout = 650 mA) conditions.
A severity level 1 ripple is a ripple profile with voltage ripple magnitudes of $\pm 0.5 \mathrm{~V}$ to ± 8 V and increasing frequency from 15 Hz to 200 kHz . The parameters implemented for the test performed are usual customer specifications.

Figure 89 - Severity Level 1 on HVDC Net. 420 V $\mathrm{dc}, 65 \mathrm{~mA}$ Load, $25^{\circ} \mathrm{C}$ Ambient.
CH 1: Vin, 100 V / div.
CH 4: Vout, $10 \mathrm{~V} /$ div.
Time: $20 \mathrm{~s} /$ div.

Figure 90 - Severity Level 1 on HVDC Net. 420 VDC, 650 mA Load, $25^{\circ} \mathrm{C}$ Ambient.
CH 1: Vin, 100 V / div.
CH 4: Vout, $10 \mathrm{~V} /$ div.
Time: $20 \mathrm{~s} / \mathrm{div}$.

The waveforms from Figure 89 and Figure 90 show no influence on the output voltage caused by the $420 \mathrm{~V}_{\mathrm{Dc}}$ input voltage with a severity level 1 ripple.

11.5.2.2 Severity Level 2 Ripple Definition on HV DC Net

A severity level 2 ripple was applied on the input voltage after 10 minutes of running the unit at normal operation to test the unit's output voltage response to ripple on the HV DC net. Waveforms were obtained under minimum load (Iout $=65 \mathrm{~mA}$) and full load (Iout = 650 mA) conditions.
A severity level 2 ripple is a ripple profile with voltage ripple magnitudes of $\pm 0.5 \mathrm{~V}$ to ± 16 V and increasing frequency from 15 Hz to 200 kHz . The parameters implemented for the test performed are usual customer specifications.

High(C1) 431 V
Mean(C4) 15.8445 V
Figure 91 - Severity Level 2 on HVDC Net.
420 V $\mathrm{DC}, 65 \mathrm{~mA}$ Load, $25^{\circ} \mathrm{C}$ Ambient.
CH 1: Vin, $100 \mathrm{~V} / \mathrm{div}$.
CH 4: Vout, $10 \mathrm{~V} /$ div.
Time: $20 \mathrm{~s} / \mathrm{div}$.

High(C1) $433 \mathrm{~V} \quad$ Meann(C4) 15.5374 V
Figure 92 - Severity Level 2 on HVDC Net.
420 V $\mathrm{D}, 650 \mathrm{~mA}$ Load, $25^{\circ} \mathrm{C}$ Ambient.
CH 1: Vin, $100 \mathrm{~V} / \mathrm{div}$.
CH 4: Vout, $10 \mathrm{~V} / \mathrm{div}$.
Time: $20 \mathrm{~s} / \mathrm{div}$.

The waveforms from Figure 91 and Figure 92 show no influence on the output voltage caused by the $420 V_{D C}$ input voltage with a severity level 2 ripple modulation.

12 Revision History

Date	Author	Revision	Description \& Changes	Reviewed
$07-$ Feb-23	JB	1.0	Initial Release.	Apps \& Mktg
$09-\mathrm{Jul}-23$	JS	2.0	Updated and added sections and figures for the data at $-40^{\circ} \mathrm{C}$ ambient temperature test condition.	Apps \& Mktg

For the latest updates, visit our website: www.power.com

Reference Designs are technical proposals concerning how to use Power Integrations' gate drivers in particular applications and/or with certain power modules. These proposals are "as is" and are not subject to any qualification process. The suitability, implementation and qualification are the sole responsibility of the end user. The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may be based on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information and recommendations contained herein. No responsibility is accepted for the accuracy or sufficiency of any of the statements, technical information, recommendations or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

Patent Information

The products and applications illustrated herein (including transformer construction and circuits' external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.power.com/ip.htm.

Power Integrations, the Power Integrations logo, CAPZero, ChiPhy, CHY, DPA-Switch, EcoSmart, E-Shield, eSIP, eSOP, HiperLCS, HiperPLC, HiperPFS, HiperTFS, InnoSwitch, Innovation in Power Conversion, InSOP, LinkSwitch, LinkZero, LYTSwitch, SENZero, TinySwitch, TOPSwitch, PI, PI Expert, PowiGaN, SCALE, SCALE-1, SCALE-2, SCALE-3 and SCALE-iDriver, are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©2022, Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Worldwide: +1-65-635-64480
Americas: +1-408-414-9621
e-mail: usasales@power.com

CHINA (SHANGHAI)

Rm 2410, Charity Plaza, No. 88, North Caoxi Road,
Shanghai, PRC 200030
Phone: +86-21-6354-6323
e-mail:chinasales@power.com

CHINA (SHENZHEN)

17/F, Hivac Building, No. 2, Keji Nan 8th Road, Nanshan District, Shenzhen, China, 518057
Phone: +86-755-8672-8689
e-mail: chinasales@power.com

GERMANY

(AC-DC/LED/Motor Control Sales) Einsteinring 24
85609 Dornach/Aschheim Germany
Tel: +49-89-5527-39100
e-mail: eurosales@power.com

GERMANY (Gate Driver Sales)
HellwegForum 3
59469 Ense
Germany
Tel: +49-2938-64-39990
e-mail: igbt-driver.sales@ power.com

INDIA

\#1, $14^{\text {th }}$ Main Road
Vasanthanagar
Bangalore-560052
India
Phone: +91-80-4113-8020
e-mail: indiasales@power.com

ITALY

Via Milanese 20, $3^{\text {rd }}$. Fl.
20099 Sesto San Giovanni (MI) Italy
Phone: +39-024-550-8701
e-mail: eurosales@power.com

JAPAN

Yusen Shin-Yokohama 1-chome Bldg.
1-7-9, Shin-Yokohama, Kohoku-ku Yokohama-shi,
Kanagawa 222-0033 Japan
Phone: +81-45-471-1021
e-mail: japansales@power.com

KOREA

RM 602, 6FL
Korea City Air Terminal B/D,
159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728 Korea
Phone: +82-2-2016-6610
e-mail: koreasales@power.com

SINGAPORE

51 Newton Road,
\#19-01/05 Goldhill Plaza
Singapore, 308900
Phone: +65-6358-2160
e-mail: singaporesales@power.com

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu District
Taipei 11493, Taiwan R.O.C.
Phone: +886-2-2659-4570
e-mail: taiwansales@power.com

UK

Building 5, Suite 21
The Westbrook Centre
Milton Road
Cambridge
CB4 1YG
Phone: +44 (0) 7823-557484
e-mail: eurosales@power.com

[^0]: ${ }^{1}$ Not including no load condition.

[^1]: ${ }^{3}$ Freewheeling diode used for the design has similar relevant parameters as the recommended diode.

[^2]: ${ }^{4}$ Power is derated to 8.25 W at $550 \mathrm{~V}_{\mathrm{DC}}$ input, $105^{\circ} \mathrm{C}$ ambient temperature.

[^3]: ${ }^{5}$ Power is derated to 8.25 W at $550 \mathrm{~V}_{\mathrm{DC}}$ input, $105^{\circ} \mathrm{C}$ ambient temperature.

[^4]: ${ }^{6}$ Power is derated to 8.25 W at $550 \mathrm{~V}_{\mathrm{DC}}$ input, $105^{\circ} \mathrm{C}$ ambient temperature.

[^5]: ${ }^{10}$ Peak-to-peak voltage measurement recorded in each oscilloscope capture is the worst-case ripple which includes both the low frequency and high frequency switching voltage ripple (top portion of each capture).

[^6]: ${ }^{12}$ Peak-to-peak voltage measurement recorded in each oscilloscope capture is the worst-case ripple which includes both the low frequency and high frequency switching voltage ripple (top portion of each capture).
 ${ }^{13} 11.44 \mathrm{mV}_{\mathrm{Pp}}$ is the average value of the difference between the output voltage ripple measurement obtained while using a short and extended probe at $25^{\circ} \mathrm{C}$ ambient temperature.

[^7]: ${ }^{14} 11.44 \mathrm{mV}_{\mathrm{PP}}$ is the average value of the difference between the output voltage ripple values obtained while using a short and extended probe at $25^{\circ} \mathrm{C}$ ambient temperature.

