

Design Example Report

Title	240 W LLC CV/CC Power Supply Using HiperLCS [™] LCS708HG and LinkSwitch [™] -TN LNK302D
Specification	180 VAC – 264 VAC Input; 240 W (48 V at 5 A) Output
Application	Battery Charger
Author	Applications Engineering Department
Document Number	DER-850
Date	January 23, 2020
Revision	3.0

Summary and Features

- Integrated LLC stage for a very low component count design
- 180-264 VAC input (no PFC)
- 120 kHz LLC for wide input/output operating range
- >93% full load efficiency

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm>.

Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.power.com

Table of Contents

1	Intro	oduction	4
2	Powe	er Supply Specification	6
3		ematic	
4	Circu	uit Description	8
	4.1	General Topology	8
	4.2	EMI Filtering / Input Rectifier/Filter	8
		Primary Bias Supply	
		LLC Converter	
		Output Rectification	
	4.6	Output Current and Voltage Control	11
	4.7	Designing Input Undervoltage / Overvoltage Network for U1	11
	4.7.1	L Establishing Voltage Set Points	13
5	PCB	Layout	17
6	Bill c	of Materials	18
7		netics	
	7.1	LLC Transformer (T1) Specification	21
	7.1.1		
	7.1.2		
	7.1.3	3 Material List	21
	7.1.4		
	7.1.5		22
	7.1.6		
		Standby Transformer (T2) Specification	
	7.2.1		
	7.2.2		
	7.2.3		
	7.2.4		
	7.2.5		
_	7.2.6		
8		Transformer Design Spreadsheet	
9		dby Transformer Design Spreadsheet	
1(eat Sinks	
		Primary Heat Sink	
	10.1	- /	
	10.1		
	10.1		
		Secondary Heat Sink	
	10.2		
	10.2		
	10.2		
11		erformance Data	51
		Output Load Considerations for Testing a CV/CC Supply in Battery Charger	- 4
	Applica	itions	51

11.2 11.3		
11.5	/	
11.5	,	
11.6		
	Waveforms	
12.1	, 5	
12.2		60
12.3	,,,,,,, _	
	stant Voltage Output Load	
	Output Ripple Measurements	
12	2.4.1 Ripple Measurement Technique	64
12	2.4.2 Ripple Measurements	65
13	Temperature Profiles	68
13.1	Spot Temperature Measurements	68
13.2	• •	
13.3	, , , ,	
13.4		
	Constant Voltage Output Gain-Phase	
	Constant Current Output Gain-Phase	
	Conducted EMI	
17	Revision History	, J 76
1 /		,0

Important Notes:

Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. All testing should be performed using an isolation transformer or isolated sine wave source to provide the AC input to the prototype board.

1 Introduction

This engineering report describes a 48 V (nominal), 240 W reference design operating from 180 VAC to 264 VAC. The power supply is designed with a constant voltage / constant current output for use in battery charger applications. The supply is designed to charge a battery array of 3 parallel strings of X 10 pieces of Sanyo/Panasonic UR18650RX or equivalent cells in series, with a nominal voltage of 42V and a minimum voltage of 24V. The 48V rating of the supply supplies additional headroom.

The design is based on the LCS708HG operating directly from rectified mains, with no PFC input stage. A LNK302DG is utilized in a flyback standby/bias supply. This design poses special challenges in that the primary and secondary voltages of the LLC converter both vary over a wide range.

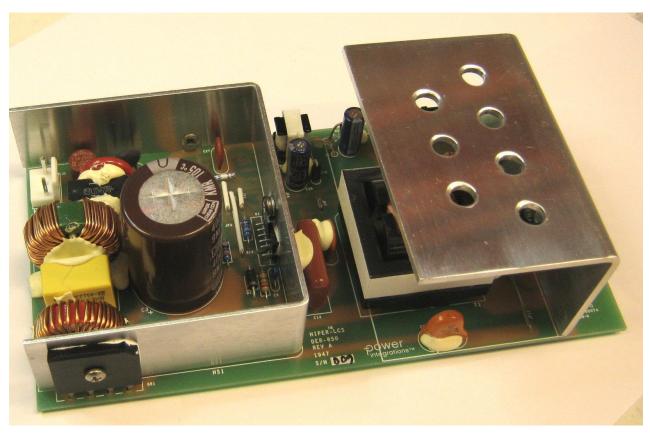


Figure 1 – Photograph, Top View.

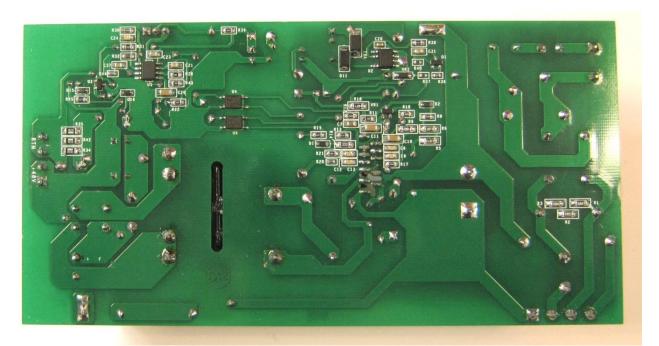
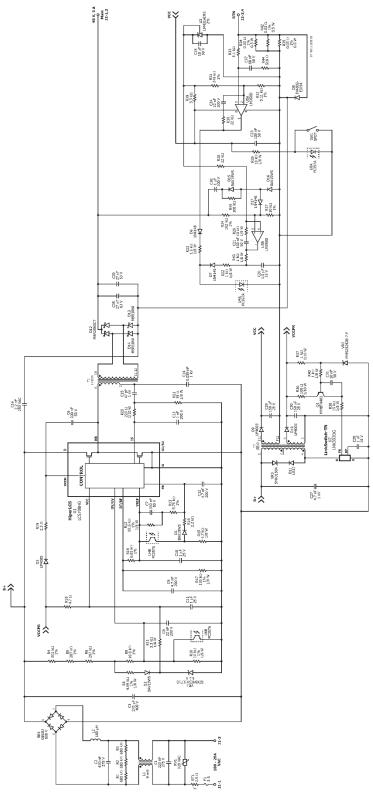


Figure 2 – Photograph, Bottom View.


2 Power Supply Specification

The table below represents the specification for the design detailed in this report. Actual performance is listed in the results section. Detailed customer specification is shown below.

Description	Symbol	Min	Тур	Max	Units	Comment
Input Voltage Frequency	V _{IN} f _{LINE}	180 47	50/60	264 64	VAC Hz	2 Wire Input.
Main Converter Output Output Voltage Output Current	V _{оит} I _{оит}	0 0		48 5	V A	48 VDC (Nominal – Otherwise Defined by Battery Load). Nominal Current Limit Setting for Design.
Total Output Power Continuous Output Power Peak Output Power	Р _{оит} Р _{оит(рк)}		240	N/A	W W	23 V / 8 A
Efficiency Total system at Full Load	η _{Main}		93		%	Measured at 230 VAC, Full Load.
Environmental Conducted EMI Safety Surge Differential Common Mode			De			5 / EN55022B 50 / UL1950 Class II 1.2/50 μs surge, IEC 1000-4-5, Differential Mode: 2 Ω Common Mode: 12 Ω
Ambient Temperature	Т _{АМВ}	0		60	°C	See Thermal Section for Conditions.

3 Schematic

4 Circuit Description

4.1 *General Topology*

The schematic in Figure 3 shows an LLC power supply utilizing the LCS708HG, powered by a full wave rectifier from 180 - 264 VAC without a PFC. The LNK302D is used in a flyback bias supply that provides power for both primary and secondary control circuitry. The secondary control circuitry provides CV/CC control for use in battery charger applications

4.2 *EMI Filtering / Input Rectifier/Filter*

Capacitors C1 and C2 are used to control differential mode noise. Resistors R1-3 discharge C1 and C2 when AC power is removed. Inductor L1 controls common mode EMI. The heat sink for U1 and BR1 is connected to primary return to eliminate the heat sink as a source of radiated/capacitive coupled noise. Thermistor RT1 provides inrush limiting. Capacitor C16 filters common mode EMI. Inductor L2 filters differential mode EMI. Capacitor C3 and BR1 form a full-wave rectifier circuit to provide a ~250-380 VDC B+ supply from the 180-264 VAC input.

4.3 *Primary Bias Supply*

Components U2, T2, Q1, VR2-3, D11, C27-28, C30-31, R36-38 and R40 comprise a regulated 12 V flyback bias supply for U1. Components D9 and C29 generate a 12 V bias supply for the secondary control circuitry via a triple insulated winding on T2. Zener diode VR3 and D11 protect the U2 drain from leakage spikes.

4.4 *LLC Converter*

The schematic in Figure 3 depicts a 48 V, 240 W LLC DC-DC converter with constant voltage/ constant current output implemented using the LCS708HG.

Integrated circuit U1 incorporates the control circuitry, drivers and output MOSFETs necessary for an LLC resonant half-bridge (HB) converter. The HB output of U1 drives output transformer T1 via a blocking/resonating capacitor (C14). This capacitor was rated for the operating ripple current and to withstand the high voltages present during fault conditions.

Transformer T1 was designed for a leakage inductance of ~40 μ H. This, along with resonating capacitor C14, sets the primary series resonant frequency at ~127 kHz according to the equation:

$$f_{R} = \frac{1}{6.28 \sqrt{L_{L} \times C_{R}}}$$

Where f_R is the series resonant frequency in Hertz, L_L is the transformer leakage inductance in Henries, and C_R is the value of the resonating capacitor (C14) in Farads.

An operating frequency of \sim 120 kHz was found to be a good compromise between transformer size and operating frequency dynamic range, in view of the wide variation of input and output voltage encountered in this application.

The number of secondary winding turns was chosen to provide a compromise between core and copper losses. AWG #42 Litz wire was used for the primary and AWG #38 for the secondary windings.

The core material selected was Ferroxcube 3F3. This material provided good (low loss) performance.

Components D3, R19, and C6 comprise the bootstrap circuit to supply the internal highside driver of U1.


Components R18 and C10 provide filtering and bypassing of the +12 V input and the V_{CC} supply for U1. *Note:* V_{CC} *voltage of >15 V may damage U3.*

Voltage divider resistors R4-10 set the high-voltage brown-in, brown-out, and overvoltage thresholds of U1. The voltage divider values are chosen to set the LLC brown-in at ~214 VDC, with an input overvoltage turn-off point (V_{OV}) at 281 VDC. Built-in hysteresis sets the input under voltage brownout point at 189 VDC.

Since a V_{OV} of 281 VDC would cause the power supply to go into overvoltage shutdown before the nominal input voltage of 230 VAC, a "soft clamp" network consisting of components VR1, D2, R8, and R11 is used to change the slope of the input voltage sensing network to allow U1 to operate over a wide range of input voltage without prematurely engaging the U1 OV shutdown. Without this clamp circuit, the supply would start at ~150 VAC, but would enter OV shutdown before the nominal 230 VAC operating voltage is reached. A detailed discussion of component selection for proper under and overvoltage points, as well as derivation of the soft clamp network, is shown in section 4.7.

Capacitor C15 forms a current divider with C14, and is used to sample a portion of the primary current. Resistor R21 senses this current, and the resulting signal is filtered by R20 and C13. Capacitor C15 should be rated for the peak voltage present during fault conditions, and should use a stable, low-loss dielectric such as metalized film, SL ceramic, or NPO/COG ceramic. The capacitor used in the DER-850 is a ceramic disc with "COG/NPO" temperature characteristic. The values chosen set the 1 cycle (fast) current limit at 19 A, and the 7-cycle (slow) current limit at 10.6 A, according to the equation:

 I_{CL} is the 7-cycle current limit in Amperes, R40 is the current limit resistor in Ohms, and C30 and C31 are the values of the resonating and current sampling capacitors in nanofarads, respectively. For the one-cycle current limit, substitute 0.9 V for 0.5 V in the above equation. The relatively high setting for the 7-cycle primary current allows sufficient margin for the supply to properly start into a low impedance constant voltage load like a battery.

Resistor R20 and capacitor C13 filter the primary current signal to the IS pin. Resistor R20 is set to 220 Ω , the minimum recommended value. The value of C13 is set to 1 nF to avoid nuisance tripping due to noise, but not so large as to substantially affect the current limit set values as calculated above. These components (R20 and C13) should be placed close to the IS pin for maximum effectiveness. Because the IS pin can tolerate negative currents, the current sense does not require a complicated rectification scheme.

The Thevenin equivalent combination of R16 and R17 sets the dead time at 320 ns and maximum operating frequency for U1 at 847 kHz. The DT/BF input of U1 is filtered by C9. The combination of R16 and R17 also selects burst mode "1" for U1. This sets the lower and upper burst threshold frequencies at 382 kHz and 437 kHz, respectively.

The FEEDBACK pin has an approximate characteristic of 2.6 kHz per μ A into the FEEDBACK pin. As the current into the FEEDBACK pin increases so does the operating frequency of U1, reducing the output voltage. The series combination of R12 and R13 sets the minimum operating frequency for U1 at 83 kHz. This value was set to be slightly lower than the frequency required for regulation at full load and minimum bulk capacitor voltage. Resistor R12 is bypassed by C7 to provide output soft start during start-up by initially allowing a higher current to flow into the FEEDBACK pin when the feedback loop is open. This causes the switching frequency to start high and then decrease until the output voltage reaches regulation. Resistor R16 is typically set at the same value as the parallel combination of R12 and R13 so that the initial frequency at soft-start is equal to the maximum switching frequency as set by R16 and R17. If the value of R16 is less than this, it will cause a delay before switching occurs when the input voltage is applied.

Optocoupler U4 drives the U1 FEEDBACK pin through R14, which limits the maximum optocoupler current into the FEEDBACK pin. Capacitor C12 filters the FEEDBACK pin. Resistor R15 loads the optocoupler output to force it to run at a relatively high quiescent current, increasing its gain. Resistors R14 and R15 also improve large signal step response and burst mode output ripple. Diode D1 isolates R15 from the F_{MAX} /soft start network.

4.5 *Output Rectification*

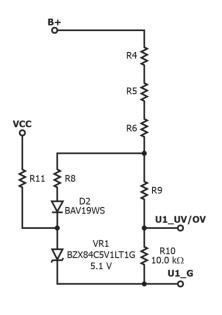
The output of transformer T1 is rectified and filtered by D12-14, C35, and C39. Capacitors C35 and C39 are aluminum polymer capacitors chosen for output ripple current rating. Output rectifiers D12-D14 are 60 V Schottky rectifiers chosen for high efficiency. Using a full-wave bridge rectifier instead of a full wave center-tapped configuration eliminates the need to twist transformer secondary winding halves together to improve balancing between phases (improving transformer manufacturability), at the cost of extra power loss in the output rectifier.

4.6 *Output Current and Voltage Control*

Output current is sensed via resistors R34 - R35 and R42. These resistors are clamped by diode D8 to avoid damage to the current control circuitry during an output short circuit. Components R29 and U3 provide a voltage reference for current sense and voltage sense amplifiers U5A and U5B. The reference voltage for current sense amplifier U5A is divided down by R31-32, and filtered by C26. Voltage from the current sense resistors is applied to the non-inverting input of U5A via R33. Opamp U5A drives optocoupler U4 via D6 and R23. Components R23, R30, R33, R44, C24, and C37 are used for frequency compensation of the current loop. Opamp U5B is used for output constant voltage control when the current limit is not engaged. Resistors R24 and R27 sense the output voltage. A reference voltage is applied to the inverting input of U5B from U3 via R28. Opamp U5B drives optocoupler U4 via D7, R22, and R43. Components R22, R26, R28, R43, C20, and C21 all affect the frequency compensation of the voltage control loop.

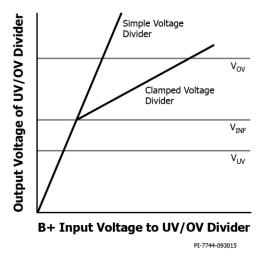
Components C38, R45, and D15-D17 comprise a soft – finish network to limit the output voltage rate of rise at startup, reducing the amount of output current overshoot when starting into a CV load such as a battery.

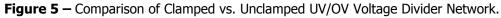
Components R39, SW1, and U6 provide remote start. When SW1 is opened, the output transistor of U6 pulls down on the OV/UV pin of U1, activating undervoltage shutdown. Closing SW1 turns off U6, allowing a normal start-up sequence for U1.


4.7 *Designing Input Undervoltage / Overvoltage Network for U1*

The UV/OV threshold voltages for the HiperLCS are set to a fixed ratio of 131% (nominal), optimized for operation with a boost PFC front end. If this part is used with a standard full-wave rectifier (high line operation) or voltage doubler (low line operation), the B+ voltage range is too wide to be accommodated by using a simple voltage divider to feed the OV/UV pin. If the voltage divider is set so that the HiperLCS starts properly at the low end of the operating range (<180 VAC), the HiperLCS B+ OV protection will cause the device to shut down before the nominal operating voltage of 230 VAC is reached.

There are two solutions to this problem – the first is to clamp the voltage at the UV/OV pin of the HiperLCS so as to disable the OV function. A more desirable solution is to use a


"soft clamp" to shape the output of the UV/OV voltage divider so that OV protection is reached at a higher B+ voltage while still retaining the original UV set point. A circuit to accomplish this is shown in Figure 4.



PI-7658a-082219

Figure 4 – UV/OV Divider Network.

Components R8, R9, R11, D2, and VR1 are used to shape the output voltage characteristics of the divider network as shown in Figure 5, introducing a change of slope that shifts the OV shutdown threshold to a higher B+ voltage.

In Figure 5, a clamped voltage divider is compared to a simple unclamped version, showing the curve shaping that allows a higher B+ V_{OV} setting than an unclamped divider while keeping the same V_{UV} set point.

4.7.1 *Establishing Voltage Set Points*

In order to properly calculate the values needed for the clamped voltage divider network, five voltage set points are needed. These are: the internal V_{UV} and V_{OV} threshold voltages for the HiperLCS IC, the desired B+ low voltage turn-on and OV shutdown thresholds (V_{ON} and V_{OFF}), and the inflection voltage (V_{INF}) where the voltage divider curve changes slope.

4.7.1.1 $\,V_{\text{UV}}$ and $\,V_{\text{OV}}$

Voltages V_{UV} and V_{OV} are preset inside the HiperLCS IC. The nominal V_{UV} threshold is set at 2.4 V. The nominal V_{OV} threshold is 131% of this value, or 3.14 V. This is covered in the HiperLCS data sheet.

4.7.1.2 V_{ON} and V_{OFF}

In this design example, the operating input voltage range is defined as 180-264 VAC. Since the AC input is feeding a full-wave rectifier, the B+ voltage will be 1.4 X V_{IN}, so the nominal B+ will vary from 252-370 VDC. For this exercise, the V_{OFF} point will be set at 400 VDC, sufficiently out of the way of normal operating range to prevent nuisance tripping, but low enough to protect against input voltage swells and surges.

The V_{BROWNIN} voltage is determined by experiment to result in a V_{BROWNOUT} voltage that allows the power supply to start up at low line (180 VAC) when powering up into a voltage source load like a battery. The combined conditions of low line and a voltage source load can prevent the supply from starting. This occurs because the output current overshoots the set value when starting into a voltage source load, due to the finite response time of the CVCC current sense amplifier and the low impedance of the CV output load. This current surge can drag the B+ supply below the brownout threshold at low line, causing the supply to shut down and "hiccup" in a manner similar to an autorestart event generated by primary overcurrent protection. It is important to place a resistance in series with the electronic load to emulate the characteristic impedance of the battery to be charged, as many electronic loads have impedance on the order of 1 $m\Omega$ in CV mode, greatly exacerbating current overshoot. Using the proper impedance in series with the electronic load limits the startup current overshoot to realistic values. In the case of the battery array specified in the introduction of this report, the impedance is ~ 80 m Ω (25 m Ω per cell, 3 parallel strings of 10 cells each). Accordingly, three paralleled 0.24 Ω , 2W resistors were placed in series with the load to approximate the battery impedance.

It is important to remember to adjust the transformer parameters in the design spreadsheet from the initially obtained values so that the power supply will shut down due to $V_{BROWNOUT}$ before gain reversal.

To choose the V_{ON} or V_{BROWNIN} point, PIXIs was used. A V_{BULK_NOM} of 230 VDC was chosen in the PIXIs input parameters – this yields a V_{ON}/V_{BROWNIN} of 214 VDC, as shown in Figure 6, and yields a value of V_{BROWNOUT} that allow the supply to start up into a CV load (with 80 m Ω series impedance) at 180 VAC. The warning for CBULK value shown in Figure 6 should be ignored, as the spreadsheet assumes that the supply is delivering the full power (47 V, 5 A) at brown-in, when in fact the output voltage will be clamped to 42 V or lower.

1	HiperLCS_042413; Rev.1.3; Copyright Power Integrations 2013	INPUTS	INFO	OUTPUTS	UNITS	HiperLCS_042413_Rev1-3.xls; HiperLCS Half-Bridge, Continuous mode LLC Resonant Converter Design Spreadsheet
2	Enter Input Parameters					Design Title
3	Vbulk_nom	230		230	V	Nominal LLC input voltage
4	Vbrownout			169	V	Brownout threshold voltage. HiperLCS will shut down if voltage drops below this value Allowable value is between 65% and 76% of Vbulk_nom. Set to 65% for max holdup time
5	Vbrownin			214		Startup threshold on bulk capacitor
6	VOV shut			281	V	OV protection on bulk voltage
7	VOV_restart			271	V	Restart voltage after OV protection.
8	CBULK	270.00	Warning	270	uF	111 Warning. CBULK is too small. Recommended value should be greater than 0.7 uF/W
9	tHOLDUP			13.2	ms	Bulk capacitor hold up time
10						

Figure 6 – Using PIXIs to Determine V_{ON}/V_{BROWNIN}.

4.7.1.3 Inflection Voltage (V_{INF})

The HiperLCS PIXIs spreadsheet assumes that a normal unclamped voltage divider is used to feed the HiperLCS UV/OV pin. A $V_{BROWNIN}/V_{ON}$ voltage of 214 V, allowing the HiperLCS to turn on and run reliably at 180 VAC, will result in a overvoltage shutdown point (V_{OV_SHUT}) of 281 VDC, as shown on line 6 of Figure 6. For a nominal 230 VAC operating voltage, the B+ is already at 230 X 1.4 = 322 VDC, so the OV shutdown feature of the HiperLCS would cause the supply to shut down even before a normal AC operating voltage is reached. This is the reason for using a clamped voltage divider to push up the B+ voltage value where OV shutdown occurs.

To design a clamped voltage divider a voltage V_{INF} (short for $V_{INFLECTION}$) is defined, which sets the B+ voltage at which the V_{OUT} vs. V_{IN} curve of the UV/OV voltage divider changes slope. This should happen somewhat above the nominal low line operating B+ of 230 VDC shown in Figure 6, but comfortably below the unclamped V_{OV_SHUT} of 281 VDC as defined in Figure 6. **For this design example, a V_{INF} of 250 VDC was chosen.**

Table 1 summarizes the voltages necessary for calculating the clamped voltage divider in this design example.

Voltages for Calculating Clamped Voltage Divider							
V _{UV} V _{OV} V		$V_{ON}/V_{BROWNIN}$	V _{OFF}				
2.4 VDC	3.14 VDC	214 VDC	400 VDC	250 VDC			

Table 1 – Voltages for Calculating Clamped Voltage Divider Network and Setting Initial Voltage Divider Values.

In order to set the total values for voltage divider string R4-R6, R9, and R10, an initial value for R10 is chosen. In this example, R10 = 10 k Ω was chosen. This yields realizable 1% resistor values for the rest of the resistors in the network. Once R10 is chosen, the top half of the voltage divider (R4 + R5 + R6 + R9 = R_{SUM}) can be calculated using the values for V_{UV} and V_{ON}:

 $R_{SUM} = [R10 (V_{ON}-V_{UV})]/V_{UV} = [10 (214 - 2.4)]/2.4 \approx 882 \text{ k}\Omega$

This value for R_{SUM} can then be used with the Value for V_{INF} to calculate the value necessary for R9.

 V_{INF} is defined as the point at which the slope of the voltage divider changes. This happens when the voltage drop across R9 and R10 is equal to the combined voltage drops of VR1 and D2. VR1 is pre-biased by R11 to its nominal voltage drop of 5.1 V. Diode D2 will barely start conducting at ~0.5 V. Given this, the combined voltage drops add up to 5.6 V, and the value for R9 can be calculated as:

 $R9 = [5.6(R_{SUM} + R10)-(V_{INF} \times R10)]/V_{INF} = [(5.6 \times 892)-2500]/250 = 9.98 \text{ k}\Omega$

The closest 1% resistor value is 10 k Ω .

Resistor R11 is used to pre-bias Zener diode VR1. This bias current not only applies reverse bias to diode D2 to keep it from conducting prematurely, but also establishes a well-defined voltage drop across VR1. The value chosen for R11 results in a bias current of \sim 2 mA through VR1.

Since R9 and R_{SUM} are both defined, the rest of the resistors in the R_{SUM} chain can be calculated.

 $R4-R6 = (R_{SUM} - R9)/3 = (882 - 10)/3 = 290.6$

The closest 1% value is 287 k Ω . Three resistors of this value in series yields 861 k Ω for R_{SUM}, short of the necessary value of 872 k Ω . To adjust the value of R_{SUM} closer to the required value, R4 is changed to 301 k Ω , yielding 875 k Ω for R_{SUM}. These values will be used in subsequent calculations (R4 = 301 k Ω , R5-6 – 287 k Ω).

4.7.1.4 Setting Clamp Resistor R8

In order to set the proper value for clamp resistor R8, it first necessary to find the voltage V_{SD} across R9 and R10 that will result in OV shutdown for U1. This will be the voltage across R9 and R10 that will provide 3.14 V to the U1 UV/OV pin.

 $V_{SD} = V_{OV} [1 + (R9/R10)] = 3.14 (1 + 1) = 6.28 V$

This is the voltage across R9 and R10 necessary to reach the OV threshold at the UV/OV pin of U1.

It is next necessary to calculate voltage V_{SD}' at the junction of R6 and R9 at the B+ shutdown voltage V_{OFF} of 400 VDC. This voltage is calculated as if R8 is open.

 $V_{SD}' = 400[(R9 + R10)/(R4 + R5 + R6 + R9 + R10)] = 8.94 V$

Using V_{SD} and V_{SD}' , we can now set up the calculation for R8.

The voltage divider of R4-6, R9, and R10 driven by the V_{OFF} B+ value of 400 V can be reexpressed as a voltage source V_{SD} ' driving a Thevenin equivalent resistance. The Thevenin resistance R_{TH} is equivalent to the parallel combination of the top and bottom halves of the voltage divider:

 $R_{TH} = (R4 + R5 + R6) // (R9 + R10) = 875 k // 20 k = 19.55 k\Omega$

Once this is determined, the voltage divider and clamp can be reduced to the schematic shown in Figure 7.

From the simple equivalent schematic of Figure 7, it is straightforward to calculate R8:

 $R8 = R_{TH} (V_{SD} - 5.6) / (V_{SD}' - V_{SD}) = (19.55(6.28 - 5.6)) / (8.94 - 6.28) = 4.99 \text{ k}\Omega$

The nearest 1% value is 4.99 k $\!\Omega$

PI-7659a-082219

Figure 7 – Voltage Divider and Clamp Thevenin Equivalent for Calculating R8.

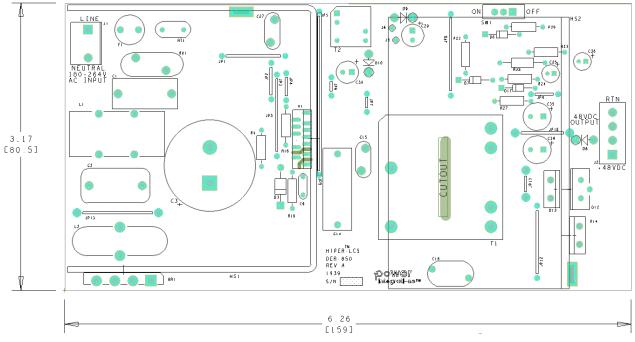


Figure 8 – Printed Circuit Layout, Top Side.

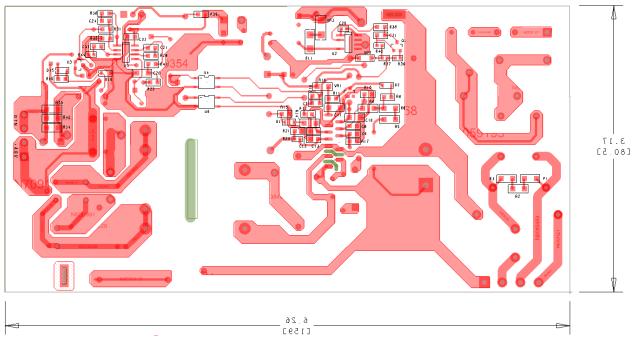


Figure 9 – Printed Circuit Layout, Bottom Side.

6 Bill of Materials

Item	Qty	Ref Des	Description	Mfg Part Number	Mfg
1	1	BR1 600 V, 8 A, Bridge Rectifier, GBU Case		GBU8J-BP	Micro Commercial
2	1	C1	220 nF, 275 VAC, Film, X2	ECQ-U2A224ML	Panasonic
3	1	C2	470 nF, 275 VAC, Film, X2	PX474K31D5	Carli
4	1	C3	270 μF, 400 V, Electrolytic, (25.4 x 35)	EKMR401VSN271MQ35S	UCC
5	1	C6	330 nF, 50 V, Ceramic, X7R	FK24X7R1H334K	TDK
6	1	C7	330 nF, 50 V, Ceramic, X7R, 0805	GRM219R71H334KA88	Murata
7	2	C8 C24	22 nF, 200 V, Ceramic, X7R, 0805	08052C223KAT2A	AVX
8	2	C9 C12	4.7 nF, 200 V, Ceramic, X7R, 0805	08052C472KAT2A	AVX
9	2	C10 C11	1 μF, 25 V, Ceramic, X7R, 1206	C3216X7R1E105K	TDK
10	1	C13	1 nF, 200 V, Ceramic, X7R, 0805	08052C102KAT2A	AVX
11	1	C14	0.039 $\mu\text{F},$ ±3%, 1000 V, Metal Polypropylene Film, (23.00 mm x 8.00 mm)	ECW-H10393HV	Panasonic
12	1	C15	47 pF, 1000 V, Disc Ceramic	561R10TCCQ47	Vishay
13	1	C16	2.2 nF, Ceramic, Y1	440LD22-R	Vishay
14	1	C20	1.5 μF, ±20%, 25 V, Ceramic, X7R, 1206	CGA5L2X7R1E155M160AA	TDK
15	1	C21	150 nF, 50 V, Ceramic, X7R, 0805	CL21B154KBFNNNE	Samsung
16	1	C23	100 nF, 50 V, Ceramic, X7R, 0805	CC0805KRX7R9BB104	Yageo
17	1	C25	10 μ F, 50 V, Electrolytic, Gen. Purpose, (5 x 11)	EKMG500ELL100ME11D	Nippon Chemi-Con
18	1	C27	4.7 nF, 1 kV, Thru Hole, Disc Ceramic	562R5GAD47	Vishay
19	1	C28	1 μF, 16 V, Ceramic, X5R, 0603	GRM188R61C105KA93D	Murata
20	2	C29 C30	150 μ F, 25 V, Electrolytic, Low ESR, 180 m Ω , (6.3 x 15)	ELXZ250ELL151MF15D	Nippon Chemi-Con
21	1	C31	10 nF, 50 V, Ceramic, X7R, 0805	C0805C103K5RACTU	Kemet
22	2	C35 C39	27 μ F, 20%, 63 V, Aluminum Polymer Electrolytic, Low ESR, 33 m Ω , 3000 Hrs @ 105°C, (8 x 12)	PLV1J270MDL1TD	Nichicon
23	1	C37	68 nF, 50 V, Ceramic, X7R, 0805	C0805C683K5RACTU	Kemet
24	1	C38	1 μ F, 100 V, Electrolytic, Gen. Purpose, (5 x 11)	EKMG101ELL1R0ME11D	Nippon Chemi-Con
25	4	D1 D2 D15 D16	100 V, 0.2 A, Fast Switching, 50 ns, SOD-323	BAV19WS-7-F	Diode Inc.
26	1	D3	600 V, 1 A, Ultrafast Recovery, 75 ns, DO-41	UF4005-E3	Vishay
27	3	D6 D7 D17	75 V, 300 mA, Fast Switching, DO-35	1N4148TR	Vishay
28	1	D8	100 V, 1 A, Rectifier, DO-41	1N4002-E3/54	Vishay
29	2	D9 D10	200 V, 1 A, Ultrafast Recovery, 50 ns, DO-41	UF4003-E3	Vishay
30	1	D11	DIODE ULTRA FAST, SW 600 V, 1A, SMA	US1J-13-F	Diodes, Inc.
31	1	D12	60 V, 20 A, Dual Schottky, TO-220AB	MBR2060CT	Vishay
32	2	D13 D14	60 V, 10 A, Schottky, TO-220AC	MBR1060	Vishay
33	1	ESIP CLIP1	Heat sink, Edge Clip, 12.40 mm x 6.50 mm	TRK-24	Kang Tang Hardware
34	1	F1	5 A, 250V, Slow, TR5	37215000411	Wickman
35	1	HS1	FAB, Heat sink, BRIDGE_Esip, DER447		Custom
36	1	HS2	FAB, Secondary Heat sink, DER850_PRIMARY		Power Integrations
37	1	J1	3 Position (1 x 3) header, 0.156 pitch, Vertical	B3P-VH	JST
38	1	J2	4 Position (1 x 4) header, 0.156 pitch, Vertical	26-48-1045	Molex
39	1	JP1	Wire Jumper, Insulated, TFE, #22 AWG, 0.7 in	C2004-12-02	Alpha
40	1	JP2	Wire Jumper, Non insulated, #22 AWG, 0.4 in	298	Alpha
41	2	JP3 JP8	Wire Jumper, Insulated, #24 AWG, 0.9 in	C2003A-12-02	Gen Cable
42	1	JP4	Wire Jumper, Insulated, #24 AWG, 0.3 in	C2003A-12-02	Gen Cable
43	1	JP5	Wire Jumper, Insulated, #24 AWG, 1.8 in	C2003A-12-02	Gen Cable
44	2	JP6 JP7	Wire Jumper, Non insulated, #22 AWG, 0.2 in	298	Alpha
45	1	JP9	Wire Jumper, Non insulated, #22 AWG, 0.3 in	298	Alpha
46	1	JP10	Wire Jumper, Insulated, TFE, #18 AWG, 0.6 in	C2052A-12-02	Alpha

47	1	JP11	Wire Jumper, Insulated, TFE, #18 AWG, 0.3 in	C2052A-12-02	Alpha
48	1	JP12	Wire Jumper, Non insulated, #22 AWG, 0.8 in	298	Alpha
49	1	JP13	Wire Jumper, Insulated, TFE, #18 AWG, 0.9 in	C2052A-12-02	Alpha
50	1	L1	9 mH, 5 A, Common Mode Choke	T22148-902S P.I. Custom	Fontaine Tech
51	1	L2	100 μ H, 5 A, INDUCTOR TORD HI AMP 100 UH VERT	7447070	Wurth
52	3	NUT1 NUT2 NUT3	Nut, Hex, Kep 4-40, S ZN Cr3 plating RoHS	4CKNTZR	Any RoHS Compliant Mfg.
53	1	Q1	PNP, Small Signal BJT, 40 V, 0.6 A, SOT-23	MMBT4403-7-F	Diodes, Inc.
54	3	R1 R2 R3	RES, 680 kΩ, 5%, 1/4 W, Thick Film, 1206	ERJ-8GEYJ684V	Panasonic
55	1	R4	RES, 301 kΩ, 1%, 1/4 W, Metal Film	MFR-25FBF-301K	Yageo
56	2	R5 R6	RES, 287 kΩ, 1%, 1/4 W, Thick Film, 1206	ERJ-8ENF2873V	Panasonic
57	1	R8	RES, 4.99 k Ω , 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF4991V	Panasonic
58	1	R9	RES, 10.0 k Ω , 1%, 1/4 W, Thick Film, 1206	ERJ-8ENF1002V	Panasonic
59	1	R10	RES, 10.0 kΩ, 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF1002V	Panasonic
60	1	R10 R11	RES, 3.3 k Ω , 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ332V	Panasonic
61	1	R11 R12	RES, 82.5 k Ω , 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF8252V	Panasonic
62	1	R12 R13	RES, 52.5 K2, 1%, 1/8 W, Thick Film, 0805 RES, 5.76 k Ω , 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF5761V	Panasonic
62	1		RES, 33 kΩ, 5%, 1/4 W, Thick Film, 1206		
		R14		ERJ-8GEYJ222V	Panasonic
64	1	R15	RES, 4.7 kΩ, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ472V	Panasonic
65	1	R16	RES, 6.81 kΩ, 1%, 1/4 W, Metal Film	MFR-25FBF-6K81	Yageo
66	1	R17	RES, 130 kΩ, 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF1303V	Panasonic
67	1	R18	RES, 4.7 Ω, 5%, 1/4 W, Thick Film, 1206	ERJ-8GEYJ4R7V	Panasonic
68	1	R19	RES, 2.2 Ω, 5%, 1/4 W, Carbon Film	CFR-25JB-2R2	Yageo
69	1	R20	RES, 220 Ω, 5%, 1/10 W, Thick Film, 0603	ERJ-3GEYJ221V	Panasonic
70	1	R21	RES, 39 Ω, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ390V	Panasonic
71	2	R22 R43	RES, 1 kΩ, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ102V	Panasonic
72	1	R23	RES, 1.3 kΩ, 5%, 1/4 W, Carbon Film	CFR-25JB-1K3	Yageo
73	1	R24	RES, 182 kΩ, 1%, 1/4 W, Metal Film	MFR-25FBF-182K	Yageo
74	2	R26 R39	RES, 10 kΩ, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ103V	Panasonic
75	1	R27	RES, 10.0 kΩ, 1%, 1/4 W, Metal Film	MFR-25FBF-10K0	Yageo
76	1	R28	RES, 22 kΩ, 5%, 1/4 W, Carbon Film	CFR-25JB-22K	Yageo
77	1	R29	RES, 3.3 kΩ, 5%, 1/4 W, Carbon Film	CFR-25JB-3K3	Yageo
78	1	R30	RES, 22 kΩ, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ223V	Panasonic
79	1	R31	RES, 249 kΩ, 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF2493V	Panasonic
80	1	R32	RES, 5.11 k Ω , 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF5111V	Panasonic
81	1	R32	RES, 5.1 k Ω , 5%, 1/4 W, Carbon Film	CFR-25JB-5K1	Yageo
82	3	R34 R35 R42	RES, 0.03 Ω, 1%, 1/4 W, Thick Film, 1206, ±100ppm/°C,-55°C ~ 155°C	PF1206FRF070R03L	Yageo
83	1	R36	RES, 100 Ω , 5%, 1/10 W, Thick Film, 0603	ERJ-3GEYJ101V	Panasonic
84	2	R37 R40	RES, 1 k Ω , 5%, 1/10 W, Thick Film, 0603	ERJ-3GEYJ101V ERJ-3GEYJ102V	Panasonic
85	1	R38	RES, 15 kΩ, 5%, 1/10 W, Thick Film, 0005 RES, 15 kΩ, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ153V	Panasonic
86	1	R44	RES, 510 Ω , 5%, 1/10 W, Thick Film, 0603	ERJ-3GEYJ511V	Panasonic
87	1	R44 R45	RES, 100 k Ω , 5%, 1/10 W, Thick Film, 0005 RES, 100 k Ω , 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ104V	Panasonic
88		RT1	NTC Thermistor, 2.5 Ω , 5 A	SL10 2R505	Ametherm
88 89	1 1				
89 90	1	RTV1 RV1	Thermally conductive Silicone Grease 320 VAC, 80 J, 14 mm, RADIAL	120-SA V320LA20AP	Wakefield Littlefuse
90 91	2	SCREW1	SCREW MACHINE PHIL 4-40 X 5/16 SS	PMSSS 440 0031 PH	Building Fasteners
		SCREW2	-		-
92	1	SCREW3	SCREW MACHINE PHIL 4-40 X 3/8 SS	PMSSS 440 0038 PH	Building Fasteners
93	1	SCREW4	SCREW MACHINE PHIL 4-40 X 1/2 SS	PMSSS 440 0050 PH	Building Fasteners
94	1	SW1	SWITCH SLIDE SPDT 30V .2A PC MNT	EG1218	E-Switch
95	1	T1	DER-850 LLC Transformer Rev 3	25-01172-00	PI
96	1	T2	DER-850 Bias Transformer Rev 1	25-01168-00	PI
97	3	TO-220 PAD1 TO-	THERMAL PAD TO-220 .009" SP1000	1009-58	Bergquist

		220 PAD2 TO-220 PAD3			
98	1	U1	HiperLCS, ESIP16/13	LCS708HG	Power Integrations
99	1	U2	LinkSwitch-TN, SO-8	LNK302DN	Power Integrations
100	1	U3	IC, REG ZENER SHUNT ADJ SOT-23	LM431AIM3/NOPB	National Semi
101	2	U4 U6	Optoisolator, Transistor Output, 3750 Vrms, 1 Channel, 4-Mini-Flat	PC357N1J000F	Sharp
102	1	U5	DUAL Op Amp, Single Supply, SOIC-8	LM358D	Texas Instruments
103	1	VR1	5.1 V, 5%, 250 mW, SOT23	BZX84C5V1LT1G	On Semi
104	1	VR2	DIODE ZENER 12 V 500 mW SOD123	MMSZ5242B-7-F	Diodes, Inc.
105	1	VR3	150 V, 1 W, 243 V, SMA, DO214AC (SMA)	SMAJ150A-13-F	Diodes, Inc.
106	6	WASHER1 WASHER2 WASHER3 WASHER4 WASHER5 WASHER6	WASHER FLAT #4 Zinc, OD 0.219, ID 0.125, Thk 0.032,Yellow Chromate Finish	5205820-2	Тусо
107	3	WASHER7 WASHER8 WASHER9	Washer ,Shoulder, #4, 0.032 Shoulder x 0.116" Dia, Polyphenylene Sulfide PPS	7721-7PPSG	Aavid Thermalloy

7 Magnetics

7.1 LLC Transformer (T1) Specification

7.1.1 Electrical Diagram

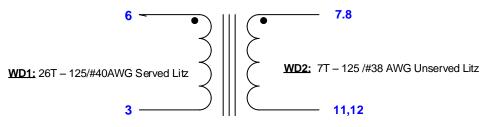
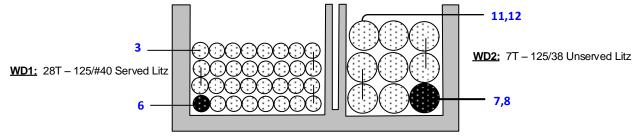


Figure 10 – LLC Transformer Schematic.

7.1.2 *Electrical Specifications*


Electrical Strength	1 second, 60 Hz, from pins 3-6 to pins 7-12.	3000 VAC
Primary Inductance	Pins 3-6 all other windings open, measured at 100 kHz, 0.4 $V_{\text{RMS.}}$	160 μH ±10%
Resonant Frequency	Pins 3-6, all other windings open.	2,400 kHz (Min.)
Primary Leakage Inductance	Pins 3-6, with pins 7,8 and 11,12 shorted, measured at 100 kHz, 0.4 $V_{\text{RMS.}}$	40 µH ±5%

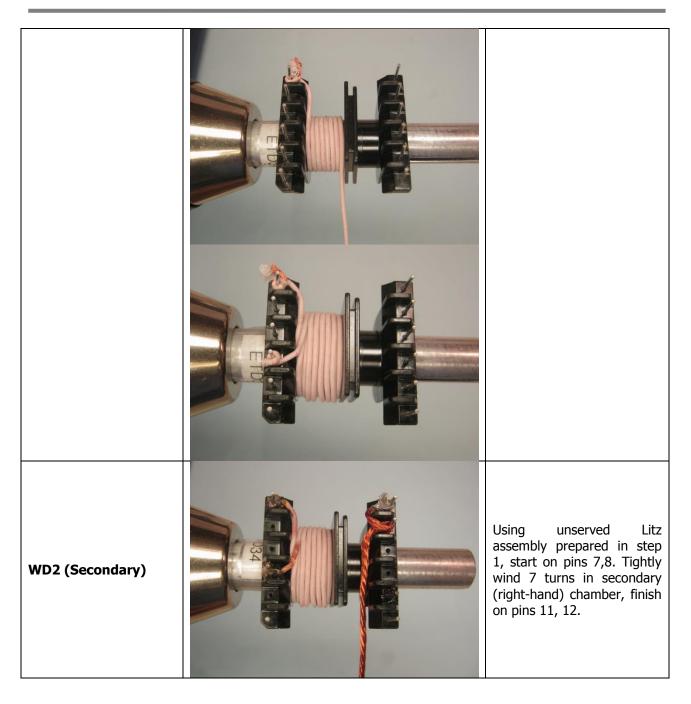
7.1.3 Material List

Item	Description	
[1]	Core Pair ETD34: Ferroxcube 3F3 or equivalent, gap for A _{LG} of 237 nH/T ² .	
[2]	Bobbin: Winshine WS-53404; PI#: 25-01048-00.	
[3]	Bobbin Cover: Winshine WS-53404-1.	
[4]	Litz Wire: 125/#38 Single Coated, Unserved.	
[5]	Litz Wire: 125/#40Single Coated, Served.	
[6]	Tape: Polyester Film, 3M 1350F-1 or equivalent, 10.0 mm wide.	
[7]	Varnish: Dolph BC-359, or equivalent.	

7.1.4 Build Diagram

Figure 11 – LLC Transformer Build Diagram.

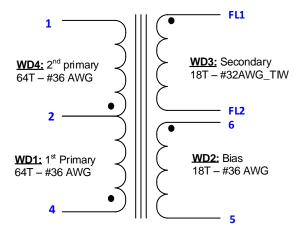
7.1.5 *Winding Instructions*


Secondary Wire Preparation	Prepare 1 strand of wire Item [4] 16" length, tin ends.
WD1 (Primary)	Place the bobbin Item [2] on the mandrel with larger chamber on the left side. Note: chamber used for primary winding is wider than chamber used for secondary. Pins 1-6 will be on left side. Starting on pin 6, wind 26 turns of served Litz wire Item [5] in ~4 layers, and finish on pin 3.
WD2 (Secondary)	Using unserved Litz assembly prepared in step 1, start on pins 7,8. Tightly wind 7 turns in secondary (right-hand) chamber, finish on pins 11, 12.
Bobbin Cover	Slide bobbin cover Item [3] into grooves in bobbin flanges as shown. Make sure cover is securely seated.
Finish	Remove pins 2,4,5,9, and 10 of bobbin. Grind core halves Item [1] for specified inductance. Assemble and secure core halves using circumferential turn of tape Item [6] as shown. Dip varnish Item [7].

7.1.0 Winding 1	
Secondary Wire Preparation	Prepare 1 strand of wire Item [4] 16" length, tin ends.
WD1 (Primary)	Place the bobbin Item [2] on the mandrel with larger chamber on the left side. Note: chamber used for primary winding is wider than chamber used for secondary. Pins 1-6 will be on left side Starting on pin 6, wind 26 turns of served Litz wire Item [5] in ~ 4 layers, and finish on pin 3.

7.1.6 *Winding Illustrations*

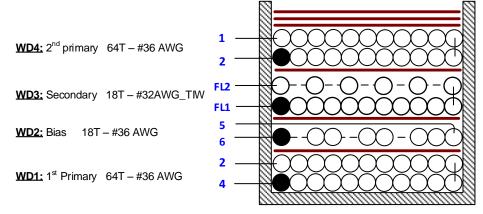
Bobbin Cover	Slide bobbin cover Item [3] into grooves in bobbin flanges as shown. Make sure cover is securely seated.
Finish	Remove pins 2,4,5,9, and 10 of bobbin. Grind core halves Item [1] for specified inductance. Assemble and secure core halves using circumferential turn of tape Item [6] as shown. Dip varnish Item [7].



7.2 Standby Transformer (T2) Specification

7.2.1 *Electrical Diagram*

7.2.2 *Electrical Specifications*


Electrical Strength	1 second, 60 Hz, from pins 1-4 to FL1-2	3000 V
Primary Inductance	Pins 1-4, all other windings open, measured at 100 kHz, 0.4 V_{RMS} .	1.5 mH ±10%
Resonant Frequency	Pins 1-4, all other windings open	600 kHz (Min.)
Primary Leakage Inductance	Pins 1-4, with pins 5-8, FL1,FL2 shorted, measured at 100 kHz, 0.4 $V_{\text{RMS}}.$	20 µH (Max.)

7.2.3 *Material List*

Item	Description
[1]	Core: EE10, TDK PC40 material, (PI#: 99-00037-00) or equivalent. Gap for inductance coefficient (A_L) of 92 nH/T ²
[2]	Bobbin: EE10, vertical, 8 pins (4/4). TDK BE10-118CPSFR, Taiwan Shulin TF-10 (PI#: 25-00877-00); or equivalent.
[3]	Tape: Polyester film, 3M 1350F-1 or equivalent, 6.5 mm wide.
[4]	Wire: Magnet #36 AWG, solderable double coated.
[5]	Wire: Triple Insulated, Furukawa TEX-E or equivalent, #32 AWG.
[6]	Transformer Varnish, Dolph BC-359 or equivalent.

7.2.4 *Build Diagram*

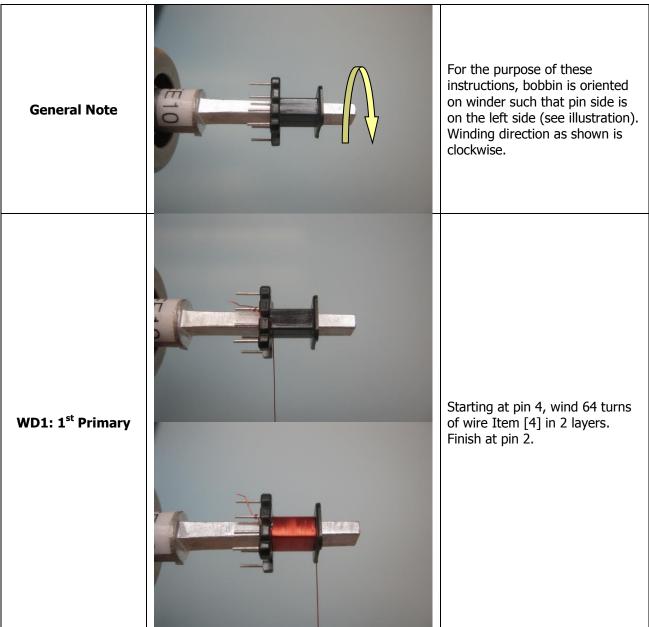
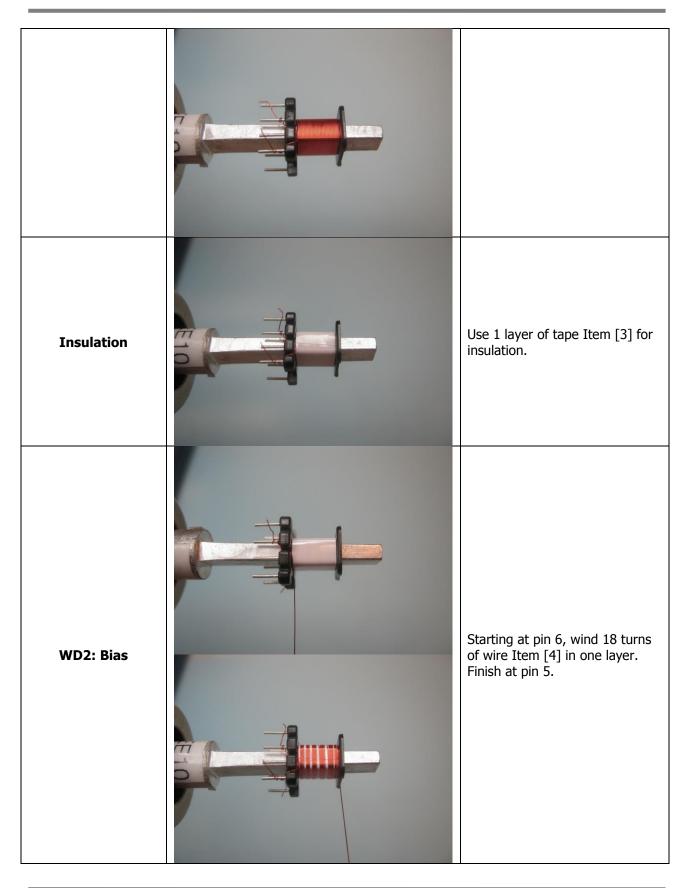
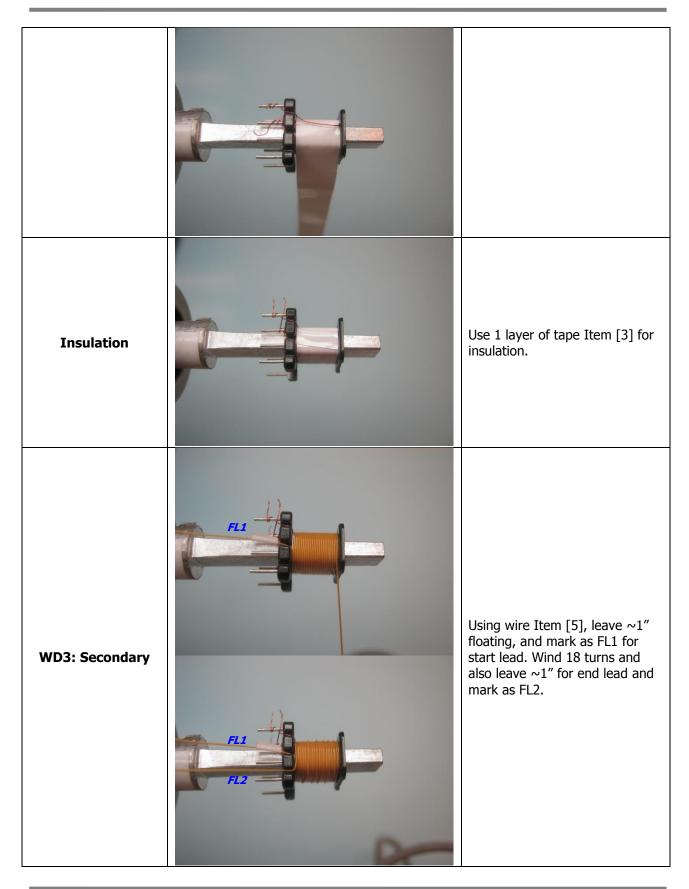


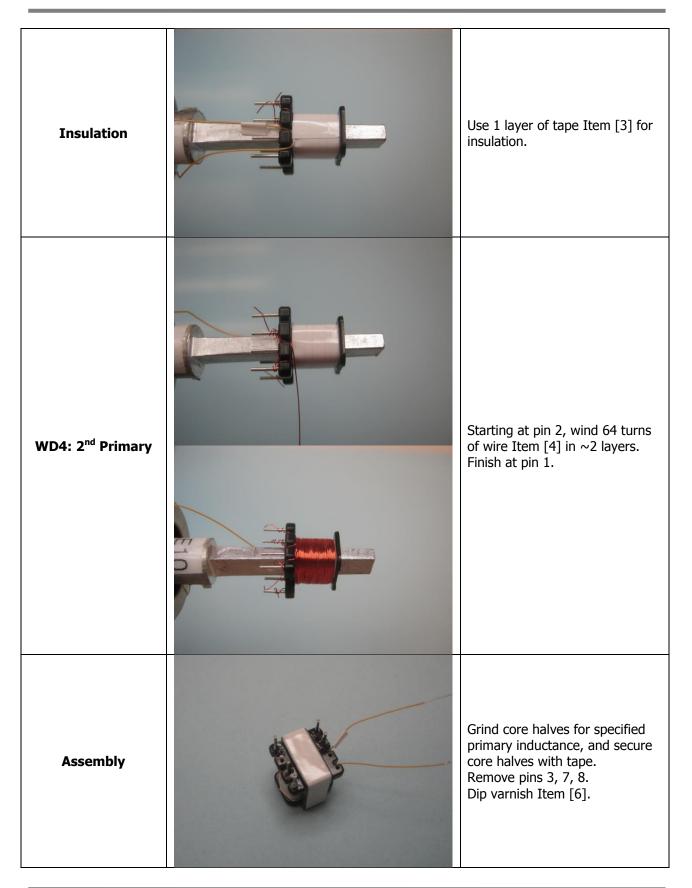
Figure 13 – Transformer Build Diagram.

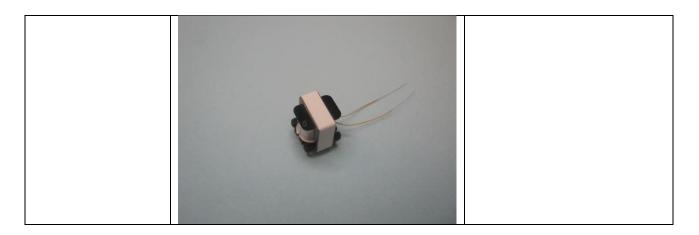
7.2.5 *Winding Instructions*


General Note For the purpose of these instructions, bobbin is oriented on winder such the side is on the left side (see illustration). Winding direction as shown is cloced					
WD1: 1 st Primary Starting at pin 4, wind 64 turns of wire Item [4] in 2 layers. Finish at pin 2.					
Insulation	lation Use 1 layer of tape Item [3] for insulation.				
WD2: Bias	Starting at pin 6, wind 18 turns of wire Item [4] in one layer. Finish at pin 5.				
Insulation	Use 1 layer of tape Item [3] for insulation.				
WD3: Secondary Using wire Item [5], leave $\sim 1''$ floating, and mark as FL1 for start lead. W turns and also leave $\sim 1''$ for end lead and mark as FL2.					
Insulation	Use 1 layer of tape Item [3] for insulation.				
WD4: 2 nd Primary	Starting at pin 2, wind 64 turns of wire Item [4] in ~2 layers. Finish at Pin 1.				
Insulation	Use 3 layers of tape Item [3] to secure the windings.				
Assembly	Grind core halves for specified primary inductance, and secure core halves with tape. Remove pins 3, 7, 8. Dip varnish Item [6].				



7.2.6 *Transformer Illustrations*





8 LLC Transformer Design Spreadsheet

Ybuk_nom 322 322 V Nominal LLC input Voltage Vbrownout 237 V Rorwnout threshold voltage, Merce Science Vbrownin 237 V Rorwnout threshold voltage, Merce Science Vbrownin 299 V Start-up threshold voltage Available Science VOV_shut 394 V OV protection on bulk capacitor Vov VBUK 180.00 180 V Restart voltage after OV protection. CBULK 180.00 180 UF requirement; Adjust holdup time and Vbrow change bulk cap value The spreadsheet assumes AC stacking or secondaries Secondaries Secondaries V01 48.00 48.0 V Main output Voltage. Spreadsheet assumes this is the regulated output I01 5.00 5.0 A Main output voltage of diode in Main output V02 0.0 V Forward voltage of diode in Main output V01 48.00 48.0 V Forward voltage of diode in Main output V02 0.0 V Second Output Voltage. Spreadsheet assumes AC stacking or spr	HiperLCS_042413; Rev.1.3; Copyright Power Integrations 2013	INPUTS	INFO	OUTPUTS	UNITS	HiperLCS_042413_Rev1-3.xls; HiperLCS Half-Bridge, Continuous mode LLC Resonant Converter Design Spreadsheet
Vorownout 237 V Brownout threshold voltage. HiperLCS wills down if voltage drops below this value. Allo voltage drops below the voltage after OV protection. VOV_restart 380 V OV protection on bulk capacitor. CBULK 180.00 180 uff requirement; Adjust holdup to meet holdup to requirement; Adjust holdup to work change bulk cap value. HOLDUP 17.0 ms Bulk capacitor hold up time and Vorow change bulk cap value. HOLDUP 17.0 ms Bulk capacitor hold up time and Vorow change bulk cap value. HOLDUP 17.0 ms Bulk capacitor hold up time. Inter LLC (secondary) outputs secondaries Main Output Voltage. Spreadsheet assumes this is the regulated output. V01 48.00 48.0 V Main Output Voltage. Spreadsheet assumes the voltage of dide upput maximum current VD2 0.0 A Second Output Voltage. Second Output Voltage. V02 0.0 <	Enter Input Parameters					
Vbrownout 237 V down if voltage drops below this value. Allor value is between 65% and 76% of Volue, not 65% for max holdup time. VDrownin 299 V Start-up threshold on bulk capacitor VOV_shut 394 V OV protection on bulk voltage VDV_restart 380 V Restart voltage after OV protection. CBULK 180.00 180 UF requirement; Adjust holdup time and Vbrow change bulk cap value CBULK 180.00 180 UF requirement; Adjust holdup time and Vbrow change bulk cap value tHOLDUP 17.0 ms Bulk capactor hold up time Enter LLC (secondary) outputs The spreadsheat assumes AC stacking of secondaries V01 48.00 48.0 V Main Output Voltage. Spreadsheat assumes AC stacking of secondaries V01 1.00 1.00 V Forward voltage of dide in thein output Voltage I02 0.0 A Second Output voltage Iod output Voltage V02 0.0 A Second Output voltage Iod output Voltage V02 0.0 A Second Output voltage Iod output Voltage V02 0.0 A Second Output Voltage Iod output Voltage V02 0.0 0.0 W Output Power from se	Vbulk_nom	322		322	V	
VOV_shut 394 V OV protection on bulk voltage VOV_restart 380 V Restart voltage after OV protection. CBULK 180.00 180 uF Restart voltage after OV protection. CBULK 180.00 180 uF Minimum value of bulk cap value Enter LLC (secondary) outputs Bulk capacitor hold up time The spreadsheet assumes AC stacking used to the secondaries V01 48.00 48.0 V Main output Power from first LLC output IO1 5.00 5.0 A Main output Power from first LLC output V01 1.00 1.00 V Forward voltage of diode in Main output V02 0.0 A Second Output Voltage Second output Voltage V02 0.0 A Second Output Voltage Moin output Power from first LLC output V02 0.70 V Forward voltage of diode used in second output Power VD2 0.70 V Forward voltage of diode used in second output Power VD2 0.70 V Forward voltage of diode used in second output Power Device LCS708	Vbrownout			237	V	down if voltage drops below this value. Allowable value is between 65% and 76% of Vbulk_nom. Set
VOV_restart 380 V Restart voltage after OV protection. CBULK 180.00 180 uF minimum value of bulk cap to meet holdup time and Vbrow change bulk cap value CBULK 180.00 17.0 ms Bulk capacitor hold up time Enter LLC (secondary) outputs The spreadsheet assumes AC stacking secondaries V01 48.00 48.0 V Main Output Voltage. Spreadsheet assumes AC stacking secondaries V01 1.00 5.0 A Main Output Voltage. Spreadsheet assumes this is the regulated output assume current VD1 1.00 1.00 V Forward voltage of diode in Main output Voltage V02 0.0 V Second Output Voltage Ioda used output Voltage IO2 0.0 V Forward voltage of diode used in second output Voltage Ioda used output Voltage IO2 0.00 W Output Power from first LLC output POWER V Forward voltage of diode used in second output Voltage PuLC 240 W Specified used used used used used used used us	Vbrownin			299	V	Start-up threshold on bulk capacitor
CBULK 180.00 180 uF Minimum value of bulk cap to meet holdup time and Vbrow change bulk cap value tHOLDUP 17.0 ms Bulk capacitor hold up time and Vbrow change bulk cap value Enter LLC (secondary) outputs The spreadsheet assumes AC stacking secondaries V01 48.00 48.0 V D1 5.00 5.0 A V01 1.00 1.00 V V01 1.00 1.00 V V01 0.0 5.0 A V01 1.00 1.00 V V01 0.0 0.0 V V01 0.0 V Second Output Voltage. Spreadsheet assumes AC stacking second bulk cap to the second bulk	VOV_shut			394	V	OV protection on bulk voltage
CBULK 180.00 180 uF requirement; Adjust holdup time and Vbrow change bulk cap value tHOLDUP 17.0 ms Bulk capacitor hold up time Enter LLC (secondary) outputs The spreadsheet assumes AC stacking uscondaries V01 48.00 48.0 V Main Output Voltage. Spreadsheet assumes AC stacking uscondaries 101 5.00 5.0 A Main output maximum current VD1 1.00 1.00 V Forward voltage of diode in Main output V01 0.0 V Forward voltage of diode used in second output V02 0.0 V Second Output Voltage V02 0.0 V Second Output Voltage V02 0.00 W Output Power from first LLC output V02 0.00 W Output Power from second LLC output P2LC 240 W Output Power from second LLC output power Device LCS708 Warning LCS708 "!!!! Warning. Device may be too large. Select for Csp 249 pF Equivalent Coss of selected device Forward voltage of diode used in second output formary. Coss 749 pF Equivalent Coss of selected device Forward voltage of diode used in second autput formary. Pood Joss <	VOV_restart			380	V	
Enter LLC (secondary) outputs The spreadsheet assumes AC stacking of secondaries V01 48.00 48.0 V Main Output Voltage. Spreadsheet assumes this is the regulated output I01 5.00 5.0 A Main output maximum current VD1 1.00 1.00 V Forward voltage of diode in Main output P01 0.0 V Forward voltage of diode in Main output P01 0.0 A Second Output Voltage I02 0.0 A Second Output Voltage I02 0.0 A Second Output Voltage I02 0.00 W Output Power from first LLC output VD2 0.00 W Second output Corrent P02 0.00 W Specified LLC output Power from second LLC output PciLC 240 W Specified LLC output Power from second LLC output Device LCS708 Warning LCS708 II!! Warning. Device may be too large. Select smaller device Coss 0.46 ohms RDS-ON (max) of selected device Coss of selected device	CBULK	180.00		180	uF	requirement; Adjust holdup time and Vbrownout to
Enter LLC (secondary) outputs The spreadsheet assumes AC stacking of secondaries V01 48.00 48.0 V Main Output Voltage. Spreadsheet assumes this is the regulated output I01 5.00 5.0 A Main output maximum current VD1 1.00 1.00 V Forward voltage of diode in Main output P01 0.0 V Forward voltage of diode in Main output V02 0.0 A Second Output Voltage. I02 0.0 A Second Output Voltage. VD2 0.00 A Second Output Voltage. P02 0.00 W Output Power from first LLC output P02 0.00 W Specified LLC output Power from second LLC output P02 0.00 W Specified LLC output Power from second LLC output Device LCS708 Warning LCS708 III Warning. Device may be too large. Select smaller device Coss 749 pF Equivalent Coss of selected device Conduction loss of selected device Coss 2.9 W Conduction loss at nomi	tHOLDUP			17.0	ms	Bulk capacitor hold up time
VOI48.0048.0048.0Vthis is the regulated outputIO15.005.0AMain output maximum currentVD11.001.00VForward voltage of diode in Main outputPO1240WOutput Power from first LLC outputVO20.0ASecond Output VoltageIO20.0ASecond Output VoltageVD20.00WOutput Power from second LLC outputPQ20.00WOutput Power from second LLC outputPLIC240WSpecified LLC output powerLCS Device SelectionLCS708I!! Warning. Device may be too large. Select smaller deviceRDS-ON (MAX)0.46ohmsRDS-ON (max) of selected deviceCpri40pFEquivalent Coss of selected deviceCpri40pFStray Capacitance at transformer primaryPcond_loss2.9WConduction loss at nominal line and full loadTmax-hs90deg C/WThermal resistance junction to heatsink (witd grease and no insulator)Expected Junction temperature113deg CExpected max ambient temperatureTheta J-HS320.00320VDesired Input voltage at which power train operates at resonance. If greater than Voluk LC operates below resonance at VBUK.Po245WLLC output voltage at which power train operates at resonance. If greater than Voluk to 300 kHz, recommended 180-250 kHzParallel119WHParallel inductance. (Lpar = Logen - Leres for to	Enter LLC (secondary) ou	tputs				The spreadsheet assumes AC stacking of the
VD11.001.00VForward voltage of diode in Main output PO1PO1240WOutput Power from first LLC outputV020.0VSecond Output VoltageIO20.00ASecond output VoltageVD20.70VForward voltage of diode used in second out POLLCPO10.70VForward voltage of diode used in second out POLLCPO20.70VForward voltage of diode used in second out POLLC output powerDeviceLCS708WarningLCS708RD5-ON (MAX)0.46ohmsRD5-ON (max) of selected device smaller deviceCoss749pFStray Capacitance at transformer primary Pcond, loss2.9Cond, loss2.9WConduction loss at nominal line and full load max-hsTheta J-HS8.0deg C/WThermal resistance junction to heatsink (witt grease and no insulator)Expected Junction temperature113deg CExpected max ambient temperatureTa max50deg CWDesired Input voltage at which power train operates at resonance. If greater than Voulk LLC output power including diode lossVo49.00VDesired Input voltage (includes diode drop) fc calculating Nesc and turns ratioTa max220320VDesired Selevit thermal resistance temperatureTa max120.00120kHzDesired Selevit thermal resistance talk of power train to 300 kHz, recommended 180-250 kHzPo245WLLC output power	VO1	48.00		48.0	۷	Main Output Voltage. Spreadsheet assumes that this is the regulated output
PO1240WOutput Power from first LLC outputVO20.0VSecond Output VoltageIO20.0ASecond Output CurrentVD20.70VForward voltage of diode used in second outPO20.00WOutput Power from second LLC outputP_LLC240WSpecified LLC output powerLCS Device SelectionU240WDeviceLCS708WarningLCS708RDS-ON (MAX)0.46ohmsRDS-ON (max) of selected deviceCoss749pFEquivalent Coss of selected deviceCoss2.9WConduction loss at nominal line and full loadTmax-hs90deg CMaximum heatsink temperatureTheta J-HS8.0deg C/WThermal resistance junction to heatsink (witd grase and no insulator)Expected Junction temperature113deg CExpected max ambient temperatureTheta HS-A14deg C/WRequired Input voltage at which power train operates at resonance at VBULK.Po22.00320VDesired Input voltage at which power train operates shelow resonance at VBULK.Po245WLC output voltage at which power train to 300 kHz, recommend 180-250 kHzParet120.00120kHzDesired switching frequency at Vbulk, nom. to 300 kHz, recommended 180-250 kHzParet119uHParallel Inductance, (Lpar = Lopen - Lres for integrated transformer, Lpar = Lmag for no integrated transformer, Lpar = Lmag for no integrated transformer						
VO2 0.0 V Second Output Voltage IO2 0.0 A Second output current VD2 0.70 V Forward voltage of diode used in second output PO2 PO2 0.00 W Output Power from second LLC output PLIC 240 W Specified LLC output power LCS Device Selection 240 W Specified LLC output power Device LCS708 Warning LCS708 I!!! Warning. Device may be too large. Select RDS-ON (MAX) 0.46 ohms RDS-ON (max) of selected device Coss Coss 749 pF Equivalent Coss of selected device Conduction loss at nominal line and full load Tmax-hs 90 deg C Maximum heatsink temperature Thermal resistance junction to heatsink (with grease and no insulator) Expected Junction temperature 113 deg C Expected max ambient temperature Theta HS-A 14 deg C/W Required thermal resistance heatsink to ant LLC Resonant Parameter and Transformer Calculations (generates red curve) Vres_target 320.00 320 V Desired Input voltage at which power train operates at resonance. If greater than Voluk LLC operate		1.00				
IO2 0.0 A Second output current VD2 0.70 V Forward voltage of diode used in second output PO2 0.00 W Output Power from second LLC output P_LLC 240 W Specified LLC output power LCS Device Selection 240 W Specified LLC output power Device LCS708 Warning LCS708 I!!! Warning. Device may be too large. Select RDS-ON (MAX) 0.46 ohms RDS-ON (max) of selected device Smaller device Coss 749 pF Equivalent Coss of selected device Equivalent Coss of selected device Cord Loss 2.9 W Conduction loss at nominal line and full load fmax-hs Pocnd Loss 2.9 W Conduction loss at nominal line and full load fmax-hs Theta J-HS 8.0 deg C/W Thermal resistance junction to heatsink (witt grease and no insulator) Expected Junction temperature 113 deg C/W Required thermal resistance heatsink to antherestance heatsink to antherestance LLC Resonant Parameter and Transformer Calculations (generates red curve) Desired Input voltage at which power train operates at resonance. If greater than Voluk </td <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>				-		
VD20.70VForward voltage of diode used in second out 0.00WPQ20.00WOutput Power from second LLC output 240VP_LLC240WSpecified LLC output powerLCS Device SelectionWarningLCS708!!! Warning. Device may be too large. Select smaller deviceDeviceLCS7080.46ohmsRDS-ON (max) of selected deviceCoss749pFEquivalent Coss of selected deviceCpri40pFStray Capacitance at transformer primaryPcond_loss2.9WConduction loss at nominal line and full loadTmax-hs90deg C/WMaximum heatsink temperatureTheta J-HS8.0deg C/WThermal resistance junction to heatsink (with grease and no insulator)Expected Junction temperature113deg CExpected Junction temperatureTa max50deg C/WRequired thermal resistance heatsink to amb uter deg C/WDesired Input voltage at which power train operates at resonance. If greater than Vbulk LLC operates below resonance at VBULK.Po245WLLC output power including diode lossVo49.00VMain Output voltage (includes diode drop) fc calculating Nsec and turns ratiof_target120.00120kHzParallel inductance. (Lpar = Lopen - Lres for integrated transformer)Luce119uHParallel inductance for integrated transformer)Primary open circuit inductance for integrated119Parallel inductance for integrated for large for nor <br< td=""><td></td><td></td><td></td><td></td><td></td><td></td></br<>						
PO2 0.00 W Output Power from second LLC output P_LLC 240 W Specified LLC output power LCS Device Selection UCS708 Warning LCS708 I!! Warning. Device may be too large. Select smaller device RDS-ON (MAX) 0.46 ohms RDS-ON (max) of selected device Coss 749 pF Equivalent Coss of selected device Coss 749 pF Equivalent Coss of selected device Conduction loss at nominal line and full load Tmax-hs 90 deg C/W Maximum heatsink temperature Theta J-HS 8.0 deg C/W Thermal resistance junction to heatsink (with grease and no insulator) Expected Junction temperature 1113 deg C Expected Junction temperature That HS-A 114 deg C/W Required thermal resistance heatsink to anthe temperature Theta HS-A 120 320.00 320 V Desired Input voltage at which power train operates at resonance. If greater than Vbulk LLC operates below resonance at VBULK. Po 2445 W LLC operates below resonance at VBULK. Vo 49.00 V Main Output voltage at which power train operates at resonance. If greater than Vbulk LLC						
P_LLC 240 W Specified LLC output power LCS Device Selection III Warning LCS708 III Warning. Device may be too large. Select smaller device RDS-ON (MAX) 0.46 ohms RDS-ON (max) of selected device Coss 749 pF Equivalent Coss of selected device Coss 749 pF Equivalent Coss of selected device Coss 2.9 W Conduction loss at nominal line and full load Tmax-hs 90 deg C Maximum heatsink temperature Theta J-HS 8.0 deg C/W Thermal resistance junction to heatsink (with grease and no insulator) Expected Junction temperature 113 deg C Expected max ambient temperature Ta max 50 deg C/W Required thermal resistance heatsink to ambient temperature Vres_target 320.00 320 V Desired Input voltage at which power train operates at resonance. If greater than Vbulk, LLC output power including diode loss Vo 49.00 V Main Output voltage (includes diode drop) for calculating Max equired towns and ton sub-secon integrated low-secon more integrated low-seas former) Parallel inductance. (Lpar = Lopen - Lres for integrated low-leakage transformer) Theta HS					-	
LCS Device LCS708 Warning LCS708 !!! Warning. Device may be too large. Select smaller device RDS-ON (MAX) 0.46 ohms RDS-ON (max) of selected device C Coss 749 pF Equivalent Coss of selected device C Cpri 40 pF Stray Capacitance at transformer primary Pcond_loss 2.9 W Conduction loss at nominal line and full load Tmax-hs 90 deg C Maximum heatsink temperature Theta J-HS 8.0 deg C/W Thermal resistance junction to heatsink (with grease and no insulator) Expected Junction temperature 113 deg C Expected Junction temperature Ta max 50 deg C/W Required thermal resistance heatsink to amber temperature Vres_target 320.00 320 V Desired Input voltage at which power train operates at resonance. If greater than Volulk LC operates below resonance at VBULK. Po 245 W LLC output power including diode loss Vo 49.00 V Main Output voltage (includes diode drop) for calculating Nsec and turns ratio f_target 120.00 120 kHz Parallel inductance. (Lpar = Lopen	-					
Device LCS708 Warning LCS708 !!! Warning. Device may be too large. Select smaller device RDS-ON (MAX) 0.46 ohms RDS-ON (max) of selected device Coss 749 pF Equivalent Coss of selected device Coss 2.9 W Conduction loss at nominal line and full load Tmax-hs 90 deg C Maximum heatsink temperature Theta J-HS 8.0 deg C/W Thermal resistance junction to heatsink (with grease and no insulator) Expected Junction temperature 113 deg C Expected max ambient temperature Theta HS-A 14 deg C/W Required thermal resistance heatsink to ant temperature Vres_target 320.00 320 V Desired Input voltage at which power train operates below resonance. If greater than Vbulk LLC operates below resonance at VBULK. Po 245 W LLC output power including diode loss Vo 49.00 V Main Output voltage (includes diode drop) for calculating Nsec and turns ratio f_target 120.00 120 kHz Parallel inductance. (Lpar = Lopen - Lres for integrated transformer). Lp	=			240	W	Specified LLC output power
DeviceLCS708WarningLCS708smaller deviceRDS-ON (MAX)0.46ohmsRDS-ON (max) of selected deviceCoss749pFEquivalent Coss of selected deviceCpri40pFStray Capacitance at transformer primaryPcond_loss2.9WConduction loss at nominal line and full loadTmax-hs90deg CMaximum heatsink temperatureTheta J-HS8.0deg C/WThermal resistance junction to heatsink (with grease and no insulator)Expected Junction temperature1113deg CExpected Junction temperatureTa max50deg C/WRequired thermal resistance heatsink to ant 14LLC Resonant Parameter and Transformer Calculations (generates red curve)Desired Input voltage at which power train operates at resonance. If greater than Vbulk, LLC output power including diode lossVo49.00VMain Output voltage cand turns ratiof_target120.00120kHzParallel inductance, (Lpar = Lopen - Lres for integrated low-leakage transformer)Lpar119119WHParallel inductance, (Lpar = Lopen - Lres for integrated low-leakage transformer)	LCS Device Selection					III Warning Davies may be too large Celest
Coss749pFEquivalent Coss of selected deviceCpri40pFStray Capacitance at transformer primaryPcond_loss2.9WConduction loss at nominal line and full loadTmax-hs90deg CMaximum heatsink temperatureTheta J-HS8.0 $deg C/W$ Thermal resistance junction to heatsink (with grease and no insulator)Expected Junction temperature1113deg CExpected Junction temperatureTa max50deg C/WRequired thermal resistance heatsink to ambTheta HS-A14deg C/WRequired thermal resistance heatsink to ambLLC Resonant Parameter and Transformer Calculations (generates red curve)VDesired Input voltage at which power train operates at resonance. If greater than Vbulk 		LCS708	Warning			smaller device
Cpri40pFStray Capacitance at transformer primary Pcond_lossPcond_loss2.9WConduction loss at nominal line and full load Tmax-hsTmax-hs90deg CMaximum heatsink temperatureTheta J-HS8.0deg C/WThermal resistance junction to heatsink (with grease and no insulator)Expected Junction temperature1113deg CExpectd Junction temperatureTa max50deg C/WExpected Junction temperatureTa max50deg C/WRequired thermal resistance heatsink to anth tuck equired thermal resistance heatsink to anthLLC Resonant Parameter and Transformer Calculations (generates red curve)Desired Input voltage at which power train operates at resonance. If greater than Vbulk LLC operates below resonance at VBULK.Po245WLLC output power including diode lossVo49.00VMain Output voltage (includes diode drop) fo calculating Nsec and turns ratiof_target120.00120kHzDesired switching frequency at Vbulk_nom. to 300 kHz, recommended 180-250 kHzLpar119uHParallel inductance. (Lpar = Lopen - Lres for integrated transformer; Lpar = Lmag for nor integrated transformer)						
Pcond_loss2.9WConduction loss at nominal line and full load Tmax-hsTmax-hs90deg CMaximum heatsink temperatureTheta J-HS8.0deg C/WThermal resistance junction to heatsink (with grease and no insulator)Expected Junction temperature113deg CExpected Junction temperatureTa max050deg C/WExpected max ambient temperatureTheta HS-A14deg C/WRequired thermal resistance heatsink to ambi deg C/WLLC Resonant Parameter and Transformer Calculations (generates red curve)Desired Input voltage at which power train operates at resonance. If greater than Vbulk LLC operates below resonance at VBULK.Po245WLLC output power including diode lossVo120.00120kHzDesired switching frequency at Vbulk_nom. to 300 kHz, recommended 180-250 kHzLpar119uHintegrated low-leakage transformer)Primary open circuit inductance for integratedPrimary open circuit inductance for integrate						
Tmax-hs90deg CMaximum heatsink temperatureTheta J-HS8.0deg C/WThermal resistance junction to heatsink (with grease and no insulator)Expected Junction temperature113deg CExpectd Junction temperatureTa max50deg CExpected max ambient temperatureTheta HS-A14deg C/WRequired thermal resistance heatsink to ambLLC Resonant Parameterand Transformer Calculations (generates red curve)Desired Input voltage at which power train operates at resonance. If greater than Vbulk LLC output power including diode lossVres_target320.00320VMain Output voltage (includes diode drop) for calculating Nee and turns ratiof_target120.00120kHzDesired switching frequency at Vbulk_nom. to 300 kHz, recommended 180-250 kHzLpar119uHParallel inductance. (Lpar = Lopen - Lres for integrated transformer)Primary open circuit inductance for integrated				-	-	
Theta J-HSImage: Second se						
Intera J-HSImage: Store of the second se	TITIdX-TIS			90	ueg C	
temperatureImage: Constraint of the const				8.0	deg C/W	
Theta HS-A 14 deg C/W Required thermal resistance heatsink to amb LLC Resonant Parameter and Transformer Calculations (generates red curve) Desired Input voltage at which power train operates at resonance. If greater than Vbulk LLC operates below resonance at VBULK. Vres_target 320.00 320 V Desired Input voltage at which power train operates at resonance. If greater than Vbulk LLC operates below resonance at VBULK. Po 245 W LLC output power including diode loss Vo 49.00 V Main Output voltage (includes diode drop) for calculating Nsec and turns ratio f_target 120.00 120 kHz Desired switching frequency at Vbulk_nom. to 300 kHz, recommended 180-250 kHz Lpar 119 uH Parallel inductance. (Lpar = Lopen - Lres for integrated low-leakage transformer) Parallel inductance for integrated	temperature			-	-	
LLC Resonant Parameter and Transformer Calculations (generates red curve) Vres_target 320.00 320 V Desired Input voltage at which power train operates at resonance. If greater than Vbulk LLC operates below resonance at VBULK. Po 245 W LLC output power including diode loss Vo 49.00 V Main Output voltage (includes diode drop) for calculating Nsec and turns ratio f_target 120.00 120 kHz Desired switching frequency at Vbulk_nom. to 300 kHz, recommended 180-250 kHz Lpar 119 uH Parallel inductance. (Lpar = Lopen - Lres for integrated transformer) Parallel inductance for integrated						
Vres_target320.00320VDesired Input voltage at which power train operates at resonance. If greater than Vbulk LLC operates below resonance at VBULK.Po245WLLC output power including diode lossVo49.00VMain Output voltage (includes diode drop) for calculating Nsec and turns ratiof_target120.00120kHzDesired switching frequency at Vbulk_nom. to 300 kHz, recommended 180-250 kHzLpar119uHParallel inductance. (Lpar = Lopen - Lres for integrated transformer)Primary open circuit inductance for integrated		and Transfe	Lunnan Cala			
Vres_target 320.00 320 V operates at resonance. If greater than Vbulk LLC operates below resonance at VBULK. Po 245 W LLC output power including diode loss Vo 49.00 V Main Output voltage (includes diode drop) for calculating Nsec and turns ratio f_target 120.00 120 kHz Desired switching frequency at Vbulk_nom. to 300 kHz, recommended 180-250 kHz Lpar 119 uH Parallel inductance. (Lpar = Lopen - Lres for integrated transformer; Lpar = Lmag for nor integrated low-leakage transformer)	LLC Resonant Parameter		ormer Calc	ulations (gel	ierales reu	
Vo 49.00 V Main Output voltage (includes diode drop) for calculating Nsec and turns ratio f_target 120.00 120 kHz Desired switching frequency at Vbulk_nom. to 300 kHz, recommended 180-250 kHz Lpar 119 uH Parallel inductance. (Lpar = Lopen - Lres for integrated transformer; Lpar = Lmag for nor integrated low-leakage transformer)	Vres_target	320.00		320	V	operates at resonance. If greater than Vbulk_nom,
VO 49.00 V calculating Nsec and turns ratio f_target 120.00 120 kHz Desired switching frequency at Vbulk_nom. to 300 kHz, recommended 180-250 kHz Lpar 119 119 uH Parallel inductance. (Lpar = Lopen - Lres for integrated transformer; Lpar = Lmag for nor integrated low-leakage transformer) VO 0 0 Primary open circuit inductance for integrated	Ро			245	W	LLC output power including diode loss
Interfer Izonomic Izonomic Izonomic Izonomic Lpar Izonomic Izonomic Izonomic Izonomic Lpar Izonomic Izonomic Izonomic Izonomic Lpar Izonomic Izonomic Izonomic Izonomic Izonomic Izonomic <	Vo			49.00	V	Main Output voltage (includes diode drop) for calculating Nsec and turns ratio
Lpar 119 uH integrated transformer; Lpar = Lmag for nor integrated low-leakage transformer) Image: transformer integrated low-leakage transfor	f_target	120.00		120	kHz	
	Lpar			119	uH	integrated transformer; Lpar = Lmag for non-
Lpri 160.00 160 uH of primary inductance and series inductor. I blank, auto-calculation shows value necessar slight loss of ZVS at ~80% of Vnom						Primary open circuit inductance for integrated transformer; for low-leakage transformer it is sum of primary inductance and series inductor. If left blank, auto-calculation shows value necessary for

				integrated transformer; if left blank auto-calculation
				is for K=4
Kratio		2.9		Ratio of Lpar to Lres. Maintain value of K such that $2.1 < K < 11$. Preferred Lres is such that K<7.
Cres	39.00	39.0	nF	Series resonant capacitor. Red background cells produce red graph. If Lpar, Lres, Cres, and n_RATIO_red_graph are left blank, they will be auto-calculated
Lsec		11.598	3 uH	Secondary side inductance of one phase of main output; measure and enter value, or adjust value until f_predicted matches what is measured ;
m		50	%	Leakage distribution factor (primary to secondary). >50% signifies most of the leakage is in primary side. Gap physically under secondary yields >50%, requiring fewer primary turns.
n_eq		3.20		Turns ratio of LLC equivalent circuit ideal transformer
Npri	26.0	26.0		Primary number of turns; if input is blank, default value is auto-calculation so that f_predicted = f_target and m=50%
Nsec	7.0	7.0		Secondary number of turns (each phase of Main output). Default value is estimate to maintain BAC<=200 mT, using selected core (below)
f_predicted		127	kHz	Expected frequency at nominal input voltage and full load; Heavily influenced by n_eq and primary turns
f_res		126	kHz	Series resonant frequency (defined by series inductance Lres and C)
f_brownout		97	kHz	Expected switching frequency at Vbrownout, full load. Set HiperLCS minimum frequency to this value.
f_par		64	kHz	Parallel resonant frequency (defined by Lpar + Lres and C)
f_inversion		79	kHz	LLC full load gain inversion frequency. Operation below this frequency results in operation in gain inversion region.
Vinversion		155	V	LLC full load gain inversion point input voltage
Vres_expected		314	V	Expected value of input voltage at which LLC operates at resonance.
RMS Currents and Voltag	es			
IRMS_LLC_Primary		2.50	A	Primary winding RMS current at full load, Vbulk_nom and f_predicted
Winding 1 (Lower secondary Voltage) RMS current		4.0	А	Winding 1 (Lower secondary Voltage) RMS current
Lower Secondary Voltage Capacitor RMS current		2.6	Α	Lower Secondary Voltage Capacitor RMS current
Winding 2 (Higher secondary Voltage) RMS current		0.0	A	Winding 2 (Higher secondary Voltage) RMS current
Higher Secondary Voltage Capacitor RMS current		0.0	А	Higher Secondary Voltage Capacitor RMS current
Cres_Vrms		81	V	Resonant capacitor AC RMS Voltage at full load and nominal input voltage
Virtual Transformer Trial	- (generate	s blue curve)		
New primary turns		26.0		Trial transformer primary turns; default value is from resonant section
New secondary turns		7.0		Trial transformer secondary turns; default value is from resonant section
New Lpri		160	uH	Trial transformer open circuit inductance; default value is from resonant section
New Cres		39.0	nF	Trial value of series capacitor (if left blank calculated value chosen so f_res same as in main

1					resonant section above
New estimated Lres			41.0	uH	Trial transformer estimated Lres
New estimated Lpar			119	uH	Estimated value of Lpar for trial transformer
New estimated Lsec			11.598	uH	Estimated value of secondary leakage inductance
New Kratio			2.9	<u> </u>	Ratio of Lpar to Lres for trial transformer
New equivalent circuit					
transformer turns ratio			3.20		Estimated effective transformer turns ratio
V powertrain inversion new			155	V	Input voltage at LLC full load gain inversion point
f_res_trial			126	kHz	New Series resonant frequency
f predicted trial			127	kHz	New nominal operating frequency
IRMS_LLC_Primary			2.50	А	Primary winding RMS current at full load and nominal input voltage (Vbulk) and f_predicted_trial
Winding 1 (Lower secondary Voltage) RMS current			4.1	А	RMS current through Output 1 winding, assuming half sinusoidal waveshape
Lower Secondary Voltage Capacitor RMS current			2.8	А	Lower Secondary Voltage Capacitor RMS current
Winding 2 (Higher secondary Voltage) RMS current			4.1	A	RMS current through Output 2 winding; Output 1 winding is AC stacked on top of Output 2 winding
Higher Secondary Voltage Capacitor RMS current			0.0	А	Higher Secondary Voltage Capacitor RMS current
Vres_expected_trial			314	V	Expected value of input voltage at which LLC operates at resonance.
Transformer Core Calcula		lates From		Parameter S	
Transformer Core	PQ20/20		PQ20/20		Transformer Core
Ae	0.97		0.97	cm^2	Enter transformer core cross-sectional area
Ve	7.63		7.63	cm^3	Enter the volume of core
Aw	122.00		122.0	mm^2	Area of window
Bw	20.90		20.9	mm	Total Width of Bobbin
Loss density			200.0	mW/cm^3	Enter the loss per unit volume at the switching frequency and BAC (Units same as kW/m^3)
MLT			4.4	cm	Mean length per turn
Nchambers			2		Number of Bobbin chambers
Wsep			3.0	mm	Winding separator distance (will result in loss of winding area)
Ploss			1.5	W	Estimated core loss
Bpkfmin			186	mT	First Quadrant peak flux density at minimum frequency.
BAC			285	mT	AC peak to peak flux density (calculated at f_predicted, Vbulk at full load)
Primary Winding					
Npri			26.0		Number of primary turns; determined in LLC resonant section
Primary gauge	40		10		Individual wire strand gauge used for primary
Equivalent Primary Metric			40	AWG	winding
Wire gauge			40 0.080	mm	
	125				winding Equivalent diameter of wire in metric units Number of strands in Litz wire; for non-litz primary winding, set to 1
Wire gauge	125		0.080		winding Equivalent diameter of wire in metric units Number of strands in Litz wire; for non-litz primary
Wire gauge Primary litz strands Primary Winding Allocation	125		0.080 125	mm	winding Equivalent diameter of wire in metric units Number of strands in Litz wire; for non-litz primary winding, set to 1 Primary window allocation factor - percentage of
Wire gauge Primary litz strands Primary Winding Allocation Factor	125		0.080 125 50	mm %	 winding Equivalent diameter of wire in metric units Number of strands in Litz wire; for non-litz primary winding, set to 1 Primary window allocation factor - percentage of winding space allocated to primary Winding window area for primary % Fill factor for primary winding (typical max fill is
Wire gauge Primary litz strands Primary Winding Allocation Factor AW_P Fill Factor	125		0.080 125 50 52 52%	mm % mm^2	 winding Equivalent diameter of wire in metric units Number of strands in Litz wire; for non-litz primary winding, set to 1 Primary window allocation factor - percentage of winding space allocated to primary Winding window area for primary % Fill factor for primary winding (typical max fill is 60%)
Wire gauge Primary litz strands Primary Winding Allocation Factor AW_P Fill Factor Resistivity_25 C_Primary	125		0.080 125 50 52 52% 29.83	mm % mm^2 % m-ohm/m	 winding Equivalent diameter of wire in metric units Number of strands in Litz wire; for non-litz primary winding, set to 1 Primary window allocation factor - percentage of winding space allocated to primary Winding window area for primary % Fill factor for primary winding (typical max fill is 60%) Resistivity in milli-ohms per meter
Wire gauge Primary litz strands Primary Winding Allocation Factor AW_P Fill Factor	125		0.080 125 50 52 52%	mm % mm^2 %	 winding Equivalent diameter of wire in metric units Number of strands in Litz wire; for non-litz primary winding, set to 1 Primary window allocation factor - percentage of winding space allocated to primary Winding window area for primary % Fill factor for primary winding (typical max fill is 60%) Resistivity in milli-ohms per meter Estimated resistance at 25 C Estimated resistance at 100 C (approximately 33%)
Wire gauge Primary litz strands Primary Winding Allocation Factor AW_P Fill Factor Resistivity_25 C_Primary Primary DCR 25 C	125		0.080 125 50 52 52% 29.83 34.13	mm % mm^2 % m-ohm/m m-ohm/m	 winding Equivalent diameter of wire in metric units Number of strands in Litz wire; for non-litz primary winding, set to 1 Primary window allocation factor - percentage of winding space allocated to primary Winding window area for primary % Fill factor for primary winding (typical max fill is 60%) Resistivity in milli-ohms per meter Estimated resistance at 25 C

				temperature), multiply by 1.33 to approximate 100
				C winding temperature
Primary copper loss		0.80	W	Total primary winding copper loss at 85 C
Primary Layers		3.37		Number of layers in primary Winding
Secondary Winding 1 (Lo secondary voltage OR Sin output)				Note - Power loss calculations are for each winding half of secondary
Output Voltage		48.00	V	Output Voltage (assumes AC stacked windings)
Sec 1 Turns		7.00		Secondary winding turns (each phase)
Sec 1 RMS current (total, AC+DC)		4.0	А	RMS current through Output 1 winding, assuming half sinusoidal waveshape
Winding current (DC component)		2.50	Α	DC component of winding current
Winding current (AC RMS component)		3.11	А	AC component of winding current
Sec 1 Wire gauge		38	AWG	Individual wire strand gauge used for secondary winding
Equivalent secondary 1 Metric Wire gauge		0.100	mm	Equivalent diameter of wire in metric units
Sec 1 litz strands	125	125		Number of strands used in Litz wire; for non-litz non-integrated transformer set to 1
Resistivity_25 C_sec1		18.76	m-ohm/m	Resistivity in milli-ohms per meter
DCR_25C_Sec1		5.78	m-ohm	Estimated resistance per phase at 25 C (for reference)
DCR_100C_Sec1		7.74	m-ohm	Estimated resistance per phase at 100 C (approximately 33% higher than at 25 C)
DCR_Ploss_Sec1		0.39	W	Estimated Power loss due to DC resistance (both secondary phases) Measured AC resistance per phase (at 100 kHz,
ACR_Sec1		8.17	m-ohm	room temperature), multiply by 1.33 to approximate 100 C winding temperature. Default value of ACR is twice the DCR value at 100 C
ACR_Ploss_Sec1		0.16	W	Estimated AC copper loss (both secondary phases)
Total winding 1 Copper Losses		0.55	W	Total (AC + DC) winding copper loss for both secondary phases
Capacitor RMS current		2.6	A	Output capacitor RMS current
Co1		4.2	uF	Secondary 1 output capacitor
Capacitor ripple voltage		3.0	%	Peak to Peak ripple voltage on secondary 1 output capacitor
Output rectifier RMS Current		4.0	А	Schottky losses are a stronger function of load DC current. Sync Rectifier losses are a function of RMS current
Secondary 1 Layers		1.13		Number of layers in secondary 1 Winding
Secondary Winding 2 (Hi secondary voltage)	igher			Note - Power loss calculations are for each winding half of secondary
Output Voltage		0.00	V	Output Voltage (assumes AC stacked windings)
Sec 2 Turns		0.00		Secondary winding turns (each phase) AC stacked on top of secondary winding 1
Sec 2 RMS current (total, AC+DC)		4.0	Α	RMS current through Output 2 winding; Output 1 winding is AC stacked on top of Output 2 winding
Winding current (DC component)		0.0	A	DC component of winding current
Winding current (AC RMS component)		0.0	Α	AC component of winding current
Sec 2 Wire gauge		38	AWG	Individual wire strand gauge used for secondary winding
Equivalent secondary 2 Metric Wire gauge		0.100	mm	Equivalent diameter of wire in metric units
Sec 2 litz strands		0		Number of strands used in Litz wire; for non-litz non-integrated transformer set to 1
Resistivity_25 C_sec2		23453.09	m-ohm/m	Resistivity in milli-ohms per meter
Transformer Secondary MLT		4.40	cm	Mean length per turn

www.power.com

DCR_25C_Sec2	0.00	m-ohm	Estimated resistance per phase at 25 C (for reference)
DCR_100C_Sec2	0.00	m-ohm	Estimated resistance per phase at 100 C (approximately 33% higher than at 25 C)
DCR_Ploss_Sec1	0.00	W	Estimated Power loss due to DC resistance (both secondary halves)
ACR_Sec2	0.00	m-ohm	Measured AC resistance per phase (at 100 kHz, room temperature), multiply by 1.33 to approximate 100 C winding temperature. Default value of ACR is twice the DCR value at 100 C
ACR_Ploss_Sec2	0.00	W	Estimated AC copper loss (both secondary halves)
Total winding 2 Copper Losses	0.00	w	Total (AC + DC) winding copper loss for both secondary halves
Capacitor RMS current	0.0	А	Output capacitor RMS current
Co2	N/A	uF	Secondary 2 output capacitor
Capacitor ripple voltage	N/A	%	Peak to Peak ripple voltage on secondary 1 output capacitor
Output rectifier RMS Current	0.0	А	Schottky losses are a stronger function of load DC current. Sync Rectifier losses are a function of RMS current
Secondary 2 Layers	1.00		Number of layers in secondary 2 Winding
Transformer Loss Calculations			Does not include fringing flux loss from gap
Primary copper loss (from Primary section)	0.80	W	Total primary winding copper loss at 85 C
Secondary copper Loss	0.55	W	Total copper loss in secondary winding
Transformer total copper loss	1.34	w	Total copper loss in transformer (primary + secondary)
AW_S	52.24	mm^2	Area of window for secondary winding
Secondary Fill Factor	44%	%	% Fill factor for secondary windings; typical max fill is 60% for served and 75% for unserved Litz
Signal Pins Resistor Values		•	
f_min	97	kHz	Minimum frequency when optocoupler is cut-off. Only change this variable based on actual bench measurements
Dead Time	320	ns	Dead time
Burst Mode 1	1		Select Burst Mode: 1, 2, and 3 have hysteresis and have different frequency thresholds
f_max	847	kHz	Max internal clock frequency, dependent on dead- time setting. Is also start-up frequency
f_burst_start	382	kHz	Lower threshold frequency of burst mode, provides hysteresis. This is switching frequency at restart after a bursting off-period
f_burst_stop	437	kHz	Upper threshold frequency of burst mode; This is switching frequency at which a bursting off-period stops
DT/BF pin upper divider resistor	6.79	k-ohms	Resistor from DT/BF pin to VREF pin
DT/BF pin lower divider resistor	129	k-ohms	Resistor from DT/BF pin to G pin
Rstart	5.79	k-ohms	Start-up resistor - resistor in series with soft-start capacitor; equivalent resistance from FB to VREF pins at startup. Use default value unless additional start-up delay is desired.
Start up delay	0.0	ms	Start-up delay; delay before switching begins. Reduce R_START to increase delay
Rfmin	80.8	k-ohms	Resistor from VREF pin to FB pin, to set min operating frequency; This resistor plus Rstart determine f_MIN. Includes 7% HiperLCS frequency tolerance to ensure f_min is below f_brownout
C_softstart	0.33	uF	Softstart capacitor. Recommended values are between 0.1 uF and 0.47 uF
Ropto	1.2	k-ohms	Resistor in series with opto emitter
OV/UV pin lower resistor	22.0	k-ohm	Lower resistor in OV/UV pin divider

OV/UV pin upper resistor		2.72	M-ohm	Total upper resistance in OV/UV pin divider
LLC Capacitive Divider Currer	t Sense Circuit		T	
Slow current limit	10.50	10.50	А	8-cycle current limit - check positive half-cycles during brownout and startup
Fast current limit		18.90	А	1-cycle current limit - check positive half-cycles during startup
LLC sense capacitor		47	pF	HV sense capacitor, forms current divider with mair resonant capacitor
RLLC sense resistor		39.6	ohms	LLC current sense resistor, senses current in sense capacitor
IS pin current limit resistor		220	ohms	Limits current from sense resistor into IS pin when voltage on sense R is $<$ -0.5V
IS pin noise filter capacitor		1.0	nF	IS pin bypass capacitor; forms a pole with IS pin current limit capacitor
IS pin noise filter pole frequency		724	kHz	This pole attenuates IS pin signal
Loss Budget				
LCS device Conduction loss		2.9	W	Conduction loss at nominal line and full load
Output diode Loss		5.0	W	Estimated diode losses
Transformer estimated total copper loss		1.34	W	Total copper loss in transformer (primary + secondary)
Transformer estimated total core loss		1.5	W	Estimated core loss
Total transformer losses		2.9	W	Total transformer losses
Total estimated losses		10.8	W	Total losses in LLC stage
Estimated Efficiency		96%	%	Estimated efficiency
PIN		251	W	LLC input power
Secondary Turns and Voltage Centering Calculator				This is to help you choose the secondary turns - Outputs not connected to any other part of spreadsheet
V1		48.00	V	Target regulated output voltage Vo1. Change to see effect on slave output
V1d1		1.00	V	Diode drop voltage for Vo1
N1		8.00		Total number of turns for Vo1
V1_Actaul		48.00	V	Expected output
V2		0.00	V	Target output voltage Vo2
V2d2		0.70	V	Diode drop voltage for Vo2
N2		1.00		Total number of turns for Vo2
V2_Actual		5.43	V	Expected output voltage
Separate Series Inductor (Fo Integrated Transformer Only				Not applicable if using integrated magnetics not connected to any other part of spreadsheet
Lsep		41.00	uH	Desired inductance of separate inductor
Ae_Ind		0.53	cm^2	Inductor core cross-sectional area
Inductor turns		28		Number of primary turns
BP_fnom		105	mT	AC flux for core loss calculations (at f_predicted and full load)
Expected peak primary current		10.5	А	Expected peak primary current
BP_fmin		293	mT	Peak flux density, calculated at minimum frequency fmin
Inductor Litz gauge		41	AWG	Individual wire strand gauge used for primary winding
Equivalent Inductor Metric Wire gauge		0.070	mm	Equivalent diameter of wire in metric units
Inductor litz strands		125.00		Number of strands used in Litz wire
Inductor parallel wires		1		Number of parallel individual wires to make up Litz wire
Resistivity_25 C_Sep_Ind		37.6	m-ohm/m	Resistivity in milli-ohms per meter
Inductor MLT		7.00	cm	Mean length per turn
Inductor DCR 25 C		73.7	m-ohm	Estimated resistance at 25 C (for reference)
Inductor DCR 100 C		98.8	m-ohm	Estimated resistance at 100 C (approximately 33%

	- T	r	r		
				higher than at 25 C)	
ACR_Sep_Inductor		158.1	m-ohm	Measured AC resistance (at 100 kHz, room temperature), multiply by 1.33 to approximate 100	
Inductor copper loss		0.99	W	emperature), multiply by 1.33 to approximate 100 C winding temperature Total primary winding copper loss at 85 C Dutput voltage rail that optocoupler LED is connected to Minimum operating current in TL431 cathode Typical Optocoupler LED forward voltage at OPTO_BJTMAX (max current) Optocoupler transistor saturation voltage Optocoupler minimum CTR at VCE_SAT and at OPTO_BJT_MAX TL431 minimum cathode voltage when saturated Resistor across optocoupler LED to ensure ninimum TL431 bias current is met Resistor from optocoupler emitter to ground, sets obad current B pin current when switching at FMAX (e.g.	
Feedback section			-		
VMAIN	Auto	48.0		Output voltage rail that optocoupler LED is connected to	
ITL431_BIAS		1.0	mA	Minimum operating current in TL431 cathode	
VF		1.0	v	Typical Optocoupler LED forward voltage at IOPTO_BJTMAX (max current)	
VCE_SAT		0.3	V	Optocoupler transistor saturation voltage	
CTR_MIN		0.8		Optocoupler minimum CTR at VCE_SAT and at IOPTO_BJT_MAX	
VTL431_SAT		2.5	V	TL431 minimum cathode voltage when saturated	
RLED_SHUNT		1.0	k-ohms	Resistor across optocoupler LED to ensure minimum TL431 bias current is met	
ROPTO_LOAD		4.70	k-ohms	Resistor from optocoupler emitter to ground, sets load current	
IFMAX		347.08	uA	FB pin current when switching at FMAX (e.g. startup)	
IOPTO_BJT_MAX		0.97	mA	Optocoupler transistor maximum current - when bursting at FMAX (e.g. startup)	
RLED_SERIES_MAX		18.10	k-ohms	Maximum value of gain setting resistor, in series with optocoupler LED, to ensure optocoupler can deliver IOPTO_BJT_MAX. Includes -10% tolerance factor.	

Note: Device Warning: LCS708 selected for improved thermal performance at low line.

9 Standby Transformer Design Spreadsheet

ACDC_LinkSwitch- TN_Flyback_042413; Rev.1.10; Copyright Power Integrations 2007	INPUT	INFO	OUTPUT	UNIT	ACDC_LinkSwitch-TN Flyback_042413; Copyright Power Integrations 2007
ENTER APPLICATION VARIA	BLES	•		•	
VACMIN	180			Volts	Minimum AC Input Voltage
VACMAX	264			Volts	Maximum AC Input Voltage
fL	50			Hertz	AC Mains Frequency
VO	12.00			Volts	Output Voltage (main) (For CC designs enter upper CV tolerance limit)
IO	0.05			Amps	Power Supply Output Current (For CC designs enter upper CC tolerance limit)
CC Threshold Voltage	0.00			Volts	Voltage drop across sense resistor.
Output Cable Resistance	0.00		0.00	Ohms	Enter the resistance of the output cable (if used)
PO			0.60	Watts	Output Power (VO x IO + CC dissipation)
Feedback Type	ΟΡΤΟ		Opto		Choose 'BIAS' for Bias winding feedback and 'OPTO' for Optocoupler feedback from the 'Feedback Type' drop down box at the top of this spreadsheet
Add Bias Winding	YES		Yes		Choose 'YES' in the 'Bias Winding' drop down box at the top of this spreadsheet to add a Bias winding. Choose 'NO' to continue design without a Bias winding. Addition of Bias winding can lower no load consumption
n	0.80		0.8		Efficiency Estimate at output terminals.
Z			0.5		Loss Allocation Factor (suggest 0.5 for CC=0 V, 0.75 for CC=1 V)
tC	2.90			mSeconds	Bridge Rectifier Conduction Time Estimate
CIN	120.00			uFarads	Input Capacitance
Input Rectification Type	F		F		Choose H for Half Wave Rectifier and F for Full Wave Rectification from the 'Rectification' drop down box at the top of this spreadsheet
ENTER LinkSwitch-TN VARIA	BLES				
LinkSwitch-TN	LNK302		LNK302		User selection for LinkSwitch-TN. Ordering info - Suffix P/G indicates DIP 8 package; suffix D indicates SO8 package; second suffix N indicates lead free RoHS compliance
Chosen Device		LNK302			
ILIMITMIN			0.126	Amps	Minimum Current Limit
ILIMITMAX			0.146	Amps	Maximum Current Limit
fSmin I^2fmin			62000 984.312	Hertz A^2Hz	Minimum Device Switching Frequency I^2f (product of current limit squared and frequency is trimmed for tighter tolerance)
VOR	90.00		90	Volts	Reflected Output Voltage
VDS	90.00		10	Volts	LinkSwitch-TN on-state Drain to Source
VD			0.7	Volts	Output Winding Diode Forward Voltage Drop
КР			7.19		Ripple to Peak Current Ratio (0.6 < KP < 6.0).
ENTER TRANSFORMER CORE	/CONSTRU	CTION VARIABI	ES		
Core Type	EE10		EE10		User-Selected transformer core
Core		EE10		P/N:	PC40EE10-Z
Bobbin		EE10_BOBBIN		P/N:	EE10_BOBBIN
AE			0.121	cm^2	Core Effective Cross Sectional Area
LE			2.61	cm	Core Effective Path Length
AL			850	nH/T^2	Ungapped Core Effective Inductance

BW		6.6	mm	Bobbin Physical Winding Width
М		0	mm	Safety Margin Width (Half the Primary to
N.		0	mm	Secondary Creepage Distance)
L	4.00	4		Number of Primary Layers
NS		18		Number of Secondary Turns
NB	18	18		Number of Bias winding turns
VB		12.70	Volts	Bias Winding voltage
PIVB		58	Volts	Bias Diode Maximum Peak Inverse Voltage
DC INPUT VOLTAGE PARAMET	ERS	254	N/ II	Million DOL HAUB
VMIN		254	Volts	Minimum DC Input Voltage
	DADAMETERC	375	Volts	Maximum DC Input Voltage
CURRENT WAVEFORM SHAPE	PARAMETERS	0.05		Maximum Duty Cyclo
IAVG		0.00	Ampo	Maximum Duty Cycle
IP		0.00	Amps Amps	Average Primary Current Minimum Peak Primary Current
IR IR		0.13	Amps	Primary Ripple Current
IRMS		0.13	Amps	Primary RMS Current
TRANSFORMER PRIMARY DES		0.02	Amps	
LP		1524	uHenries	Typical Primary Inductance. +/- 10%
LP_TOLERANCE		1324	%	Primary inductance tolerance
NP		10	70	Primary Winding Number of Turns
ALG		94	nH/T^2	Gapped Core Effective Inductance
ALG		-	1111/1 2	Maximum Operating Flux Density,
BM		1442	Gauss	BM<1500 is recommended AC Flux Density for Core Loss Curves (0.5
BAC		721	Gauss	X Peak to Peak)
ur		1459		Relative Permeability of Ungapped Core
LG		0.14	mm	Gap Length (Lg > 0.1 mm)
BWE		26.4	mm	Effective Bobbin Width
OD		0.21	mm	Maximum Primary Wire Diameter including insulation
INS		0.04	mm	Estimated Total Insulation Thickness (= 2 * film thickness)
DIA		0.16	mm	Bare conductor diameter
AWG		34	AWG	Primary Wire Gauge (Rounded to next smaller standard AWG value)
СМ		40	Cmils	Bare conductor effective area in circular mils
СМА	Info	2562	Cmils/Amp	<pre>!!! Info. Can decrease CMA < 500 (decrease L(primary layers),increase NS,use smaller Core)</pre>
TRANSFORMER SECONDARY	DESIGN PARAMETERS			
Lumped parameters				
ISP		0.89	Amps	Peak Secondary Current
ISRMS		0.18	Amps	Secondary RMS Current
IRIPPLE		0.18	Amps	Output Capacitor RMS Ripple Current
CMS		37	Cmils	Secondary Bare Conductor minimum circular mils
AWGS		34	AWG	Secondary Wire Gauge (Rounded up to next larger standard AWG value)
DIAS		0.16	mm	Secondary Minimum Bare Conductor Diameter
ODS		0.37	mm	Secondary Maximum Outside Diameter for Triple Insulated Wire
INSS		0.10	mm	Maximum Secondary Insulation Wall Thickness
VOLTAGE STRESS PARAMETEI	RS			· · · · ·
VDRAIN		584	Volts	Maximum Drain Voltage Estimate (Includes Effect of Leakage Inductance)
PIVS		65	Volts	Output Rectifier Maximum Peak Inverse Voltage
FEEDBACK COMPONENTS	LI	1	1	

Recommended Bias Diode	1N4003 - 1N4007		Recommended diode is 1N4003. Place diode on return leg of bias winding for optimal EMI. See LinkSwitch-TN Design Guide
R1	500 - 1000	ohms	CV bias resistor for CV/CC circuit. See LinkSwitch-TN Design Guide
R2	200 - 820	ohms	Resistor to set CC linearity for CV/CC circuit. See LinkSwitch-TN Design Guide
TRANSFORMER SECONDARY DESI	N PARAMETERS (MULTIPLE OU	rputs)	
1st output			
V01	12.00	Volts	Main Output Voltage (if unused, defaults to single output design)
IO1	0.05	Amps	Output DC Current
PO1	0.60	Watts	Output Power
VD1	0.70	Volts	Output Diode Forward Voltage Drop
NS1	18.00		Output Winding Number of Turns
ISRMS1	0.18	Amps	Output Winding RMS Current
IRIPPLE1	0.18	Amps	Output Capacitor RMS Ripple Current
PIVS1	64.88	Volts	Output Rectifier Maximum Peak Inverse Voltage
Recommended Diodes	SB180		Recommended Diodes for this output
Pre-Load Resistor	4	k-Ohms	Recommended value of pre-load resistor
CMS1	36.75	Cmils	Output Winding Bare Conductor minimum circular mils
AWGS1	34.00	AWG	Wire Gauge (Rounded up to next larger standard AWG value)
DIAS1	0.16	mm	Minimum Bare Conductor Diameter
ODS1	0.37	mm	Maximum Outside Diameter for Triple Insulated Wire
2nd output			
VO2		Volts	Output Voltage
IO2		Amps	Output DC Current
PO2	0.00	Watts	Output Power
VD2	0.70	Volts	Output Diode Forward Voltage Drop
NS2	0.99		Output Winding Number of Turns
ISRMS2	0.00	Amps	Output Winding RMS Current
IRIPPLE2	0.00	Amps	Output Capacitor RMS Ripple Current
PIVS2	2.91	Volts	Output Rectifier Maximum Peak Inverse Voltage
Recommended Diode			Recommended Diodes for this output
CMS2	0.00	Cmils	Output Winding Bare Conductor minimum circular mils
AWGS2	N/A	AWG	Wire Gauge (Rounded up to next larger standard AWG value)
DIAS2	N/A	mm	Minimum Bare Conductor Diameter
ODS2	N/A	mm	Maximum Outside Diameter for Triple Insulated Wire
3rd output			•
VO3		Volts	Output Voltage
I03		Amps	Output DC Current
PO3	0.00	Watts	Output Power
VD3	0.70	Volts	Output Diode Forward Voltage Drop
NS3	0.99		Output Winding Number of Turns
ISRMS3	0.00	Amps	Output Winding RMS Current
IRIPPLE3	0.00	Amps	Output Capacitor RMS Ripple Current
PIVS3	2.91	Volts	Output Rectifier Maximum Peak Inverse Voltage
Recommended Diode	<u> </u>		Recommended Diodes for this output
CMS3	0.00	Cmils	Output Winding Bare Conductor minimum circular mils
AWGS3	N/A	AWG	Wire Gauge (Rounded up to next larger standard AWG value)

DER-850, 240 W Battery Charger Power Supply

DIAS3	N/A	mm	Minimum Bare Conductor Diameter
ODS3	N/A	mm	Maximum Outside Diameter for Triple Insulated Wire
Total power	0.60	Watts	Total Output Power

10 Heat Sinks

10.1 *Primary Heat Sink*

10.1.1 Primary Heat Sink Sheet Metal

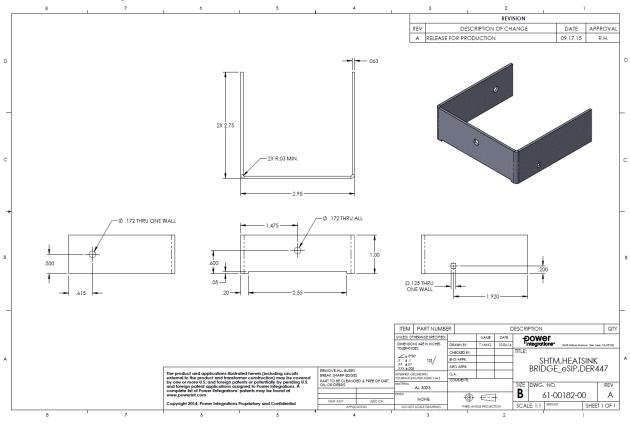


Figure 14 – Primary Heat Sink Sheet Metal Drawing.

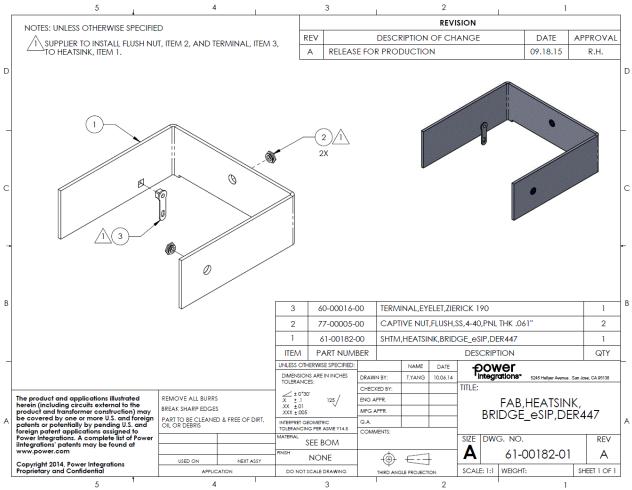
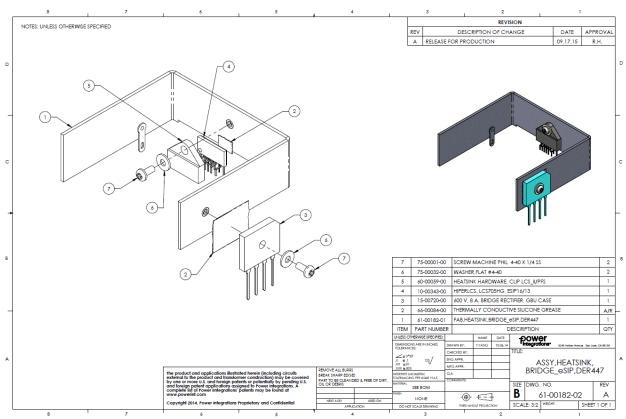
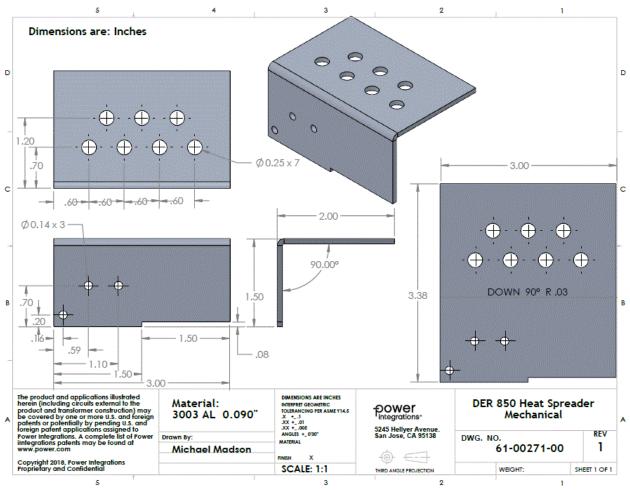
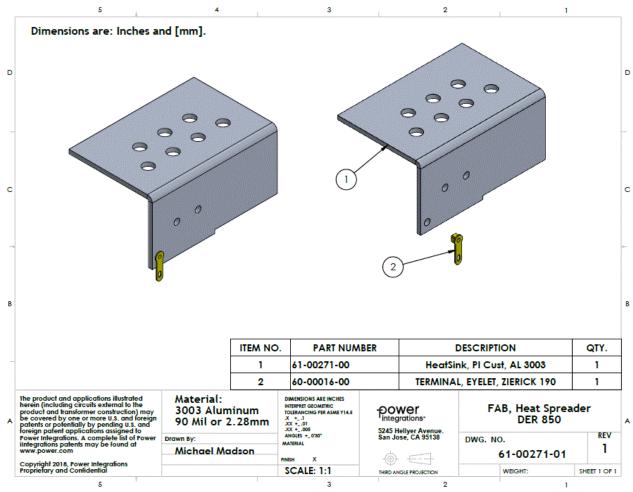



Figure 15 – Finished Primary Heat Sink Drawing with Installed Fasteners.



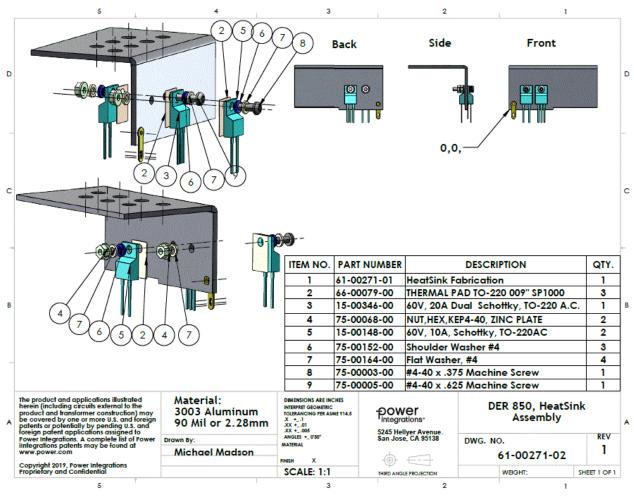
10.1.3 Primary Heat Sink Assembly

Figure 16 – Primary Heat Sink Assembly.


10.2 Secondary Heat Sink

10.2.1 Secondary Heat Sink Sheet Metal

Figure 17 – Secondary Heat Sink Sheet Metal Drawing.



10.2.2 Secondary Heat Sink with Fasteners

Figure 18 – Finished Secondary Heat Sink with Installed Fasteners.

10.2.3 Secondary Heat Sink Assembly

Figure 19 – Secondary Heat Sink Assembly.

11 Performance Data

All measurements were taken at room temperature and 50 Hz (input frequency) unless otherwise specified. Output voltage measurements were taken at the output connectors.

11.1 *Output Load Considerations for Testing a CV/CC Supply in Battery Charger Applications*

Since this power supply has a constant voltage/constant current output and normally operates in CC mode in its intended application (battery charging), some care must be taken in selecting the type/s of output load for testing.

The default setting for most electronic loads is constant current. This setting can be used in testing a CV/CC supply in the CV portion of its load range below the power supply current limit set point. Once the current limit of the DUT is reached, a constant current load will cause the output voltage of the DUT to immediately collapse to the minimum voltage capability of the electronic load.

To test a CV/CC supply in both its CV and CC regions (an example - obtaining a V-I characteristic curve that spans both the CV and CC regions of operation), an electronic load set for constant resistance (CR) can be used. However, in an application such as an LLC converter where the control loop is strongly affected by the output impedance, use of a CR load will give results for loop compensation that are overly optimistic and will likely oscillate when tested with an actual low impedance battery load, especially at low input voltage/high battery voltage where the LLC converter is operating closest to resonance.

For final characterization and tuning the output control loops, a constant voltage load should be used.

Having said this, many electronic loads incorporate a constant voltage setting, but the output impedance of the load in this setting may not be sufficiently low (or too low) to successfully emulate a real-world battery impedance on. Simulating this impedance can be crucial in properly setting the compensation of the current control loop in order to prevent oscillation at low AC input voltage in a real-life application.

11.2 Simulating Battery Characteristics with Electronic Load in CV Mode

A Chroma 6314 mainframe with a 63106 load module was used to load the supply characterized in this report. The load impedance of the 63106 module in CV mode was measured using a bench supply and an HP3478A multimeter. The load module was configured in CV mode for 48 V, and the load voltage at the module input terminals was measured at currents of 1 A, 2 A, and 3 A. A Δ V of 1 mV was measured for a Δ I of 1 A into the load, indicating that the load module in CV mode has an impedance on the order of 1 m Ω . In reality, the load impedance may be lower, as the 1 m Ω measured may represent the resistance at the input terminals of the load module. This extremely low

impedance greatly exacerbates the tendency of the power supply output current to overshoot when started up into this load. Adding series resistance to approximate the actual battery characteristics helps control the overshoot and makes the testing conditions far more realistic.

The circuit described in this report is intended for charging a 42 V battery array consisting of 30 Sanyo/Panasonic UR16850RX Lithium ion cells (or equivalent), arranged as three parallel strings of 10 cells in series. The battery specification lists a cell impedance of 25 m Ω . Thus the impedance of the battery array is (25 X 10)/3, or 83.3 m Ω . This impedance was approximated by using three paralleled 0.24 ohm, 2 W resistors in series with the electronic load used to test the supply. Below is a link to the battery data sheet:

https://www.akkuparts24.de/mediafiles//Datenblaetter/Panasonic/Panasonic%20UR1865 ORX.pdf

11.3 *Efficiency*

To make this measurement, the supply was powered with an AC source and loaded with an electronic load in CR mode. The maximum load was adjusted to be just short of the current limit of the UUT. The figure shown includes the efficiency of the LLC stage combined with that of the standby/bias flyback supply.

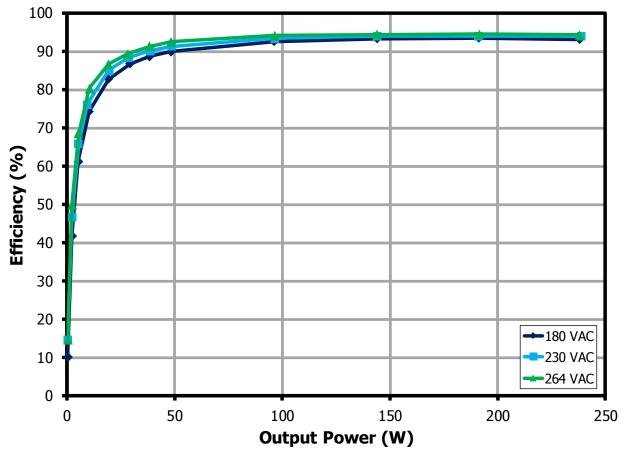


Figure 20 – Efficiency vs. Load, AC Input.

11.4 V-I Characteristic, Constant Resistance Load

The V-I characteristic showing the transition from constant voltage mode to constant current mode was measured using an electronic load set for constant resistance to allow proper operation of the DUT in both CV and CC mode. The measurements cut off at 20 V, which is lower than the recommended discharge voltage of the intended battery array (24 V).

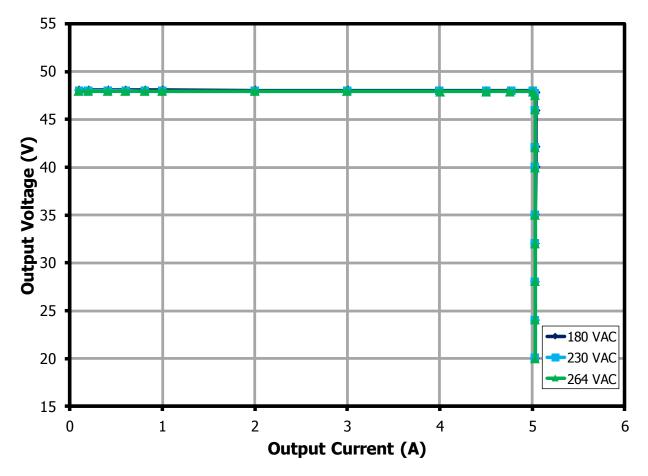


Figure 21 – V-I Characteristic with CR Load.

11.5 Output V-I Characteristic, Constant Voltage Load

The V-I characteristic in constant current mode was measured using a Chroma 63106 electronic load module set for constant voltage, with 80 m Ω in series to simulate battery impedance. The output current was measured using a Fluke 87 DVM, as the current readings were not steady on the electronic load. Voltage was measured using a Fluke 77 IV DVM connected directly at the supply output. The slight kink in output current shown in Figure 22 is due to a small drift in output current limit during extended testing.

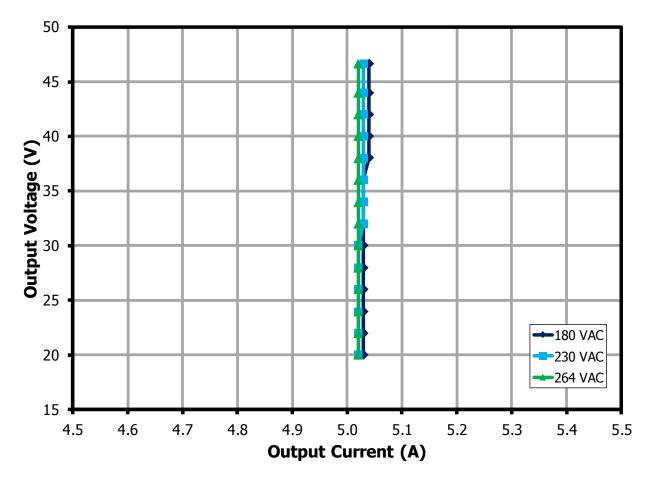
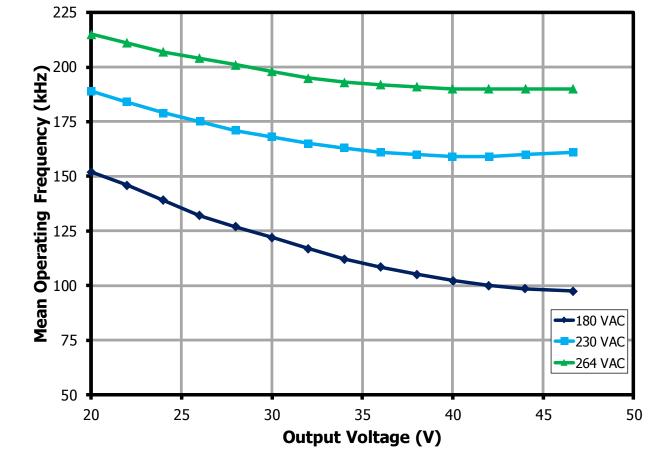
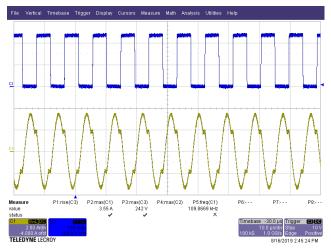



Figure 22 – V-I Characteristic with CV Load.

11.6 *Operating Frequency vs. Output Voltage Characteristic*

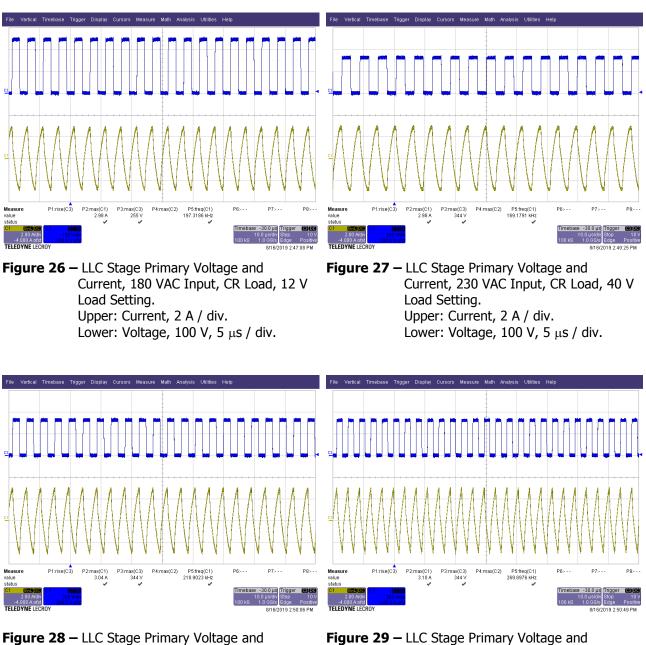
To obtain the data for Figure 23, the supply was loaded with a Chroma 63106 load module operating in CV mode, with an 80 m Ω resistor inserted in series to simulate battery impedance. Operating frequency was measured using a LeCroy 64Xi oscilloscope. Since the operating frequency is modulated by the supply B+ ripple voltage, the statistics function of the oscilloscope was used to obtain the mean operating frequency, shown in the figure below. Output voltage was measured using a Fluke 77 IV DVM connected directly at the supply output. There is considerable fluctuation of the operating frequency around the mean value due to B+ ripple, especially at low line.


Figure 23 – f_{MEAN} -V_{OUT} Characteristic with CV load.

12 Waveforms

12.1 LLC Primary Voltage and Current

The LLC stage primary current was measured by inserting a current sensing loop in series with the ground side of resonating capacitor C14. The power supply output was loaded with an electronic load set for a constant voltage characteristic, with an 80 m Ω resistor in series to simulate battery impedance. Waveforms were gathered for load settings yielding output voltages of 40 V (just after current limit), 32 V, and 24 V (the lower operating limit of the battery array).


Figure 24 – LLC Stage Primary Voltage and Current, 180 VAC Input, CR Load, 40 V Load Setting. Upper: Current, 2 A / div. Lower: Voltage, 100 V, 5 μs / div.

 File
 Vertical
 Timebase
 Tigger
 Display
 Cursors
 Measure
 Mah
 Analysis
 Utilities
 Help

 Image: Comparison of the state of

Figure 25 – LLC Stage Primary Voltage and Current, 180 VAC Input, CR Load, 24 V Load Setting. Upper: Current, 2 A / div. Lower: Voltage, 100 V, 5 μs / div.

- Figure 28 LLC Stage Primary Voltage and Current, 230 VAC Input, CR Load, 32 V Load Setting. Upper: Current, 2 A / div. Lower: Voltage, 100 V, 5 μs / div.
- i**gure 29** LLC Stage Primary Voltage and Current, 230 VAC Input, CR Load, 24 V Load Setting. Upper: Current, 2 A / div. Lower: Voltage, 100 V, 5 μs / div

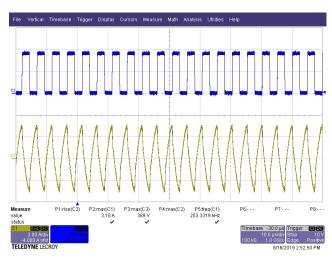


Figure 30 – LLC Stage Primary Voltage and Current, 264 VAC Input, CR Load, 48 V Load Setting. Upper: Current, 2 A / div.

Lower: Voltage, 100 V, 5 μ s / div.

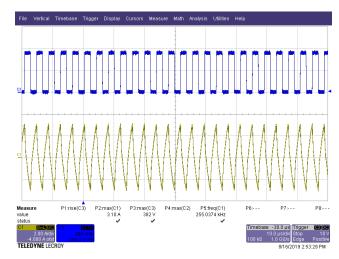
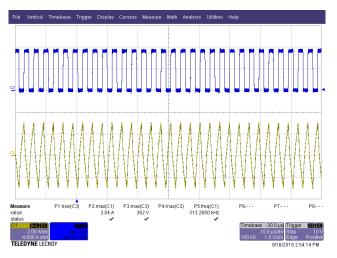
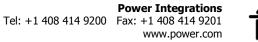




Figure 31 – LLC Stage Primary Voltage and Current, 264 VAC Input, CR Load, 24 V Load Setting. Upper: Current, 2 A / div. Lower: Voltage, 100 V, 5 μs / div.

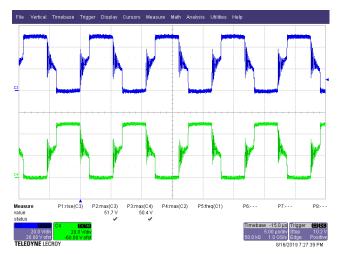
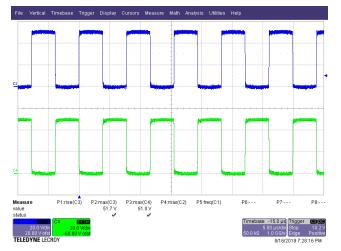


Figure 32 – LLC Stage Primary Voltage and Current, 264 VAC Input, CR Load, 12 V Load Setting. Upper: Current, 2 A / div. Lower: Voltage, 100 V, 5 μs / div.



12.2 Output Rectifier Peak Reverse Voltage

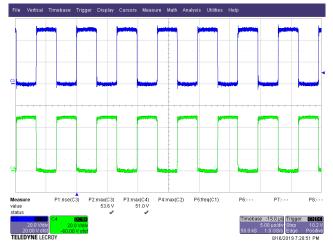

Since a full-wave bridge is used at the output of this supply, output diode PIV requirements are relaxed, and 60 V Schottky diodes can be used.

Figure 33 – Output Rectifier (D4 & D5) Reverse Voltage, 180 VAC, 47 V, 5 A Load. Blue: Input 1 PIV, 20 V / div. Green: Input 2 PIV, 20 V, 2 μs / div. Rectifier PIV at 230 VAC is 83% of Maximum Rating for 60 V Schottky Diode.

Figure 34 – Output Rectifier (D4 & D5) Reverse Voltage, 230 VAC, 47 V, 5 A Load. Blue: D4 PIV, 20 V / div. Green: D5 PIV, 20 V, 2 μs / div. Rectifier PIV at 230 VAC is 83% of Maximum Rating for 60 V Schottky Diode.

Figure 35 – Output Rectifier (D4 & D5) Reverse Voltage, 264 VAC, 47 V, 5 A Load. Upper: D4 PIV, 20 V / div. Lower: D5 PIV, 20 V, 2 μs / div. Rectifier PIV at 264 VAC is 83% of Maximum Rating for 60 V Schottky Diode.

12.3 *LLC Start-up Output Voltage and Current, Transformer Primary Current Using Constant Voltage Output Load*

This series of figures shows the peak output and transformer T1 primary current during startup into a CV load. An 80 m Ω resistor is placed in series with the CV load to simulate the impedance of a 10 deep by 3 wide array of Lithium ion cells similar to the Sanyo/PanasonicUR18650RX. Adding the additional impedance reduces the overshoot current at startup. Due to the wide range of input and output voltages for an LLC supply operating as a battery charger with rectified mains input, it is not possible to adjust the current sense amplifier compensation for maximum bandwidth to substantially suppress output current overshoot when starting into a CV load and simultaneously ensure stability under all operating conditions. The primary overcurrent limit should be adjusted with sufficient operating margin to allow startup without triggering overcurrent protection.

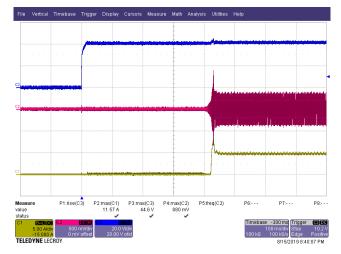


Figure 36 – 180 VAC Start-up, 40 V CV Load with 80 $m\Omega$ Series Resistor. Blue – V_{OUT}, 20 V / div. Red – Primary Current, 500 mV / 5 A / div. Yellow – I_{OUT}, 5 A, 100 ms / div.

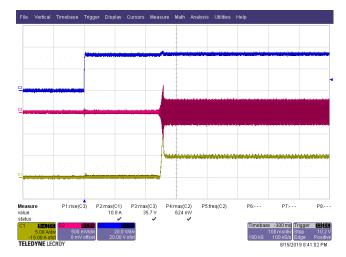


Figure 37 – 180 VAC Start-up, 32 V CV Load with 80 $m\Omega$ Series Resistor. Blue – V_{OUT}, 20 V / div. Red – Primary Current, 500 mV / 5 A / div. Yellow – I_{OUT}, 5 A, 100 ms / div.

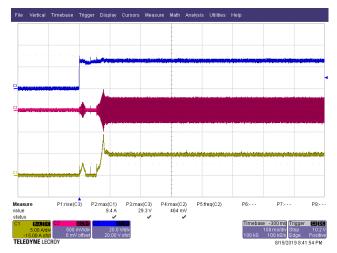
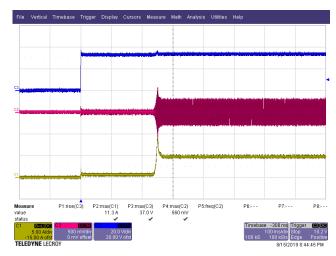



Figure 38 – 180 VAC Start-up, 24 V CV Load with 80 $m\Omega$ Series Resistor. Blue – V_{OUT}, 20 V / div. Red – Primary Current, 500 mV / 5 A / div. Yellow – I_{OUT}, 5 A, 100 ms / div.

 $\begin{array}{l} \mbox{Figure 40}-230 \mbox{ VAC Start-up, 32 V CV Load with 80} \\ m\Omega \mbox{ Series Resistor.} \\ \mbox{ Blue}-V_{OUT}, \mbox{ 20 V / div.} \\ \mbox{ Red}-\mbox{ Primary Current, 500 mV / 5 A / div.} \\ \mbox{ Yellow}-\mbox{ I}_{OUT}, \mbox{ 5 A, 100 ms / div.} \end{array}$

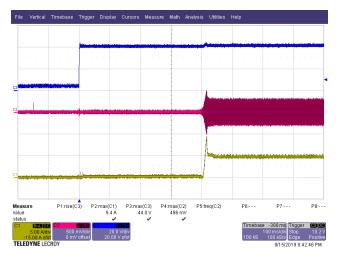
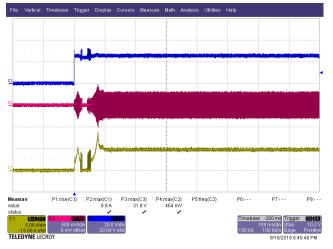



Figure 39 – 230 VAC Start-up, 40 V CV Load with 80 m Ω Series Resistor. Blue – V_{OUT}, 20 V / div. Red – Primary Current, 500 mV /5 A / div. Yellow – I_{OUT}, 5 A, 100 ms / div.

Figure 41 – 230 VAC Start-up, 24 V CV Load with 80 mΩ Series Resistor.

 $\begin{array}{l} Blue - V_{OUT}, \ 20 \ V \ / \ div. \\ Red - Primary \ Current, \ 500 \ mV \ / \ 5 \ A \ / \ div. \\ Yellow - I_{OUT}, \ 5 \ A, \ 100 \ ms \ / \ div. \end{array}$

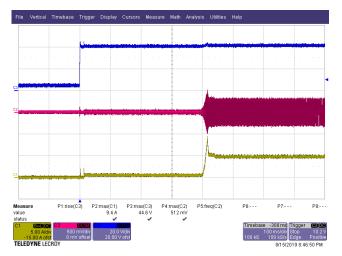
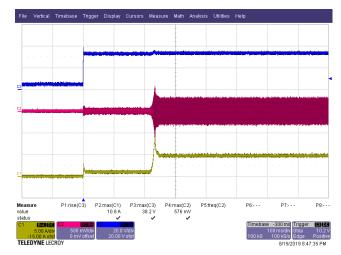



Figure 42 – 264 VAC Start-up, 40 V CV Load with 80 $m\Omega$ Series Resistor. Blue – V_{OUT}, 20 V / div. Red – Primary Current, 500 mV / 5 A / div. Yellow – I_{OUT}, 5 A, 100 ms / div.

 $\begin{array}{l} \mbox{Figure 43} - 264 \mbox{ VAC Start-up, 32 V CV Load with 80} \\ m\Omega \mbox{ Series Resistor.} \\ Blue - V_{OUT}, \mbox{ 20 V / div.} \\ Red - Primary \mbox{ Current, 500 mV / 5 A / div.} \\ Yellow - I_{OUT}, \mbox{ 5 A, 100 ms / div.} \end{array}$

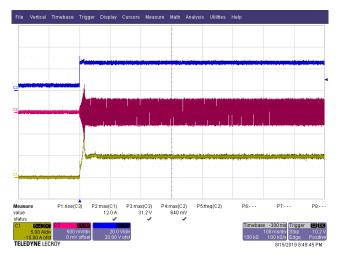


Figure 44 – 264 VAC Start-up, 24 V CV Load with 80 $m\Omega$ Series Resistor. Blue – V_{OUT}, 20 V / div. Red – Primary Current, 500 mV / 5 A / div. Yellow – I_{OUT}, 5 A, 100 ms / div.

12.4 *Output Ripple Measurements*

12.4.1 *Ripple Measurement Technique*

For DC output ripple measurements a modified oscilloscope test probe is used to reduce spurious signals. Details of the probe modification are provided in the figures below.

Tie two capacitors in parallel across the probe tip of the 4987BA probe adapter. Use a 0.1 μF / 50 V ceramic capacitor and 1.0 μF / 100 V aluminum electrolytic capacitor. The aluminum-electrolytic capacitor is polarized, so always maintain proper polarity across DC outputs.

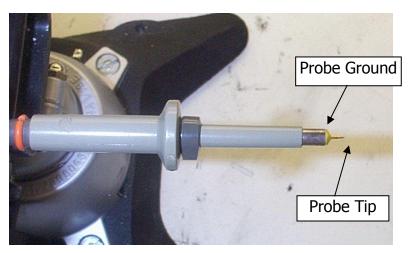


Figure 45 – Oscilloscope Probe Prepared for Ripple Measurement (End Cap and Ground Lead Removed).

Figure 46 – Oscilloscope Probe with Probe Master 4987BA BNC Adapter (Modified with Wires for Probe Ground for Ripple measurement and Two Parallel Decoupling Capacitors Added).

12.4.2 *Ripple Measurements*

These measurements were taken using a Chroma 63106 electronic load module set in CV mode, with 80 m Ω inserted in series to simulate the battery impedance. Output ripple voltage and current ripple measurements were made using AC coupled probes.

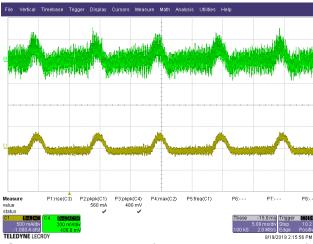
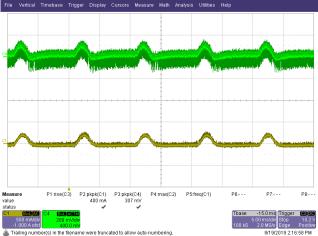



Figure 47 – Output Ripple, 180 VAC, 40 V CV Load. Green: V_{OUT} Ripple, 200 mV / div. Yellow: I_{OUT} Ripple, 500 mA, 5 ms / div.

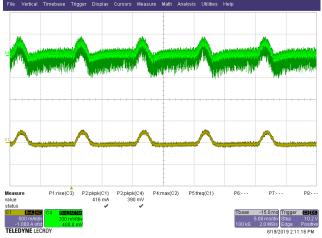


Figure 49 – Output Ripple, 180 VAC, 24 V CV Load. Green: V_{OUT} Ripple, 200 mV / div. Yellow: I_{OUT} Ripple, 500 mA, 5 ms / div.

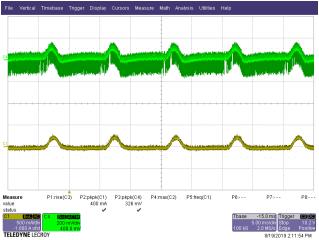
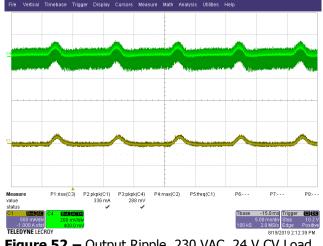
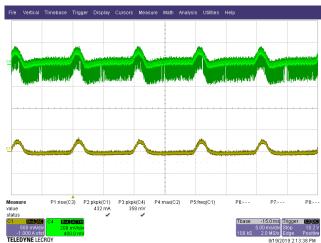
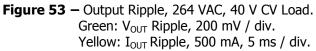


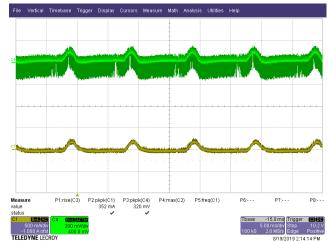
Figure 48 – Output Ripple, 180 VAC, 40 V CV Load. Green: V_{OUT} Ripple, 200 mV / div. Yellow: I_{OUT} Ripple, 500 mA, 5 ms / div.



 $\begin{array}{l} \textbf{Figure 50} - \textit{Output Ripple, 230 VAC, 40 V CV Load.} \\ \textit{Green: } \textit{V}_{\textit{OUT}} \textit{Ripple, 200 mV / div.} \\ \textit{Yellow: I}_{\textit{OUT}} \textit{Ripple, 500 mA, 5 ms / div.} \end{array}$




 $\begin{array}{l} \textbf{Figure 51} - \textit{Output Ripple, 230 VAC, 32 V CV Load.} \\ \textit{Green: } \textit{V}_{\textit{OUT}} \textit{Ripple, 200 mV / div.} \\ \textit{Yellow: } \textit{I}_{\textit{OUT}} \textit{Ripple, 500 mA, 5 ms / div.} \end{array}$



 $\label{eq:Figure 52} \begin{array}{c} \textbf{Figure 52} & - \mbox{ Output Ripple, 230 VAC, 24 V CV Load.} \\ & \mbox{ Green: } V_{\text{OUT}} \mbox{ Ripple, 200 mV / div.} \\ & \mbox{ Yellow: } I_{\text{OUT}} \mbox{ Ripple, 500 mA, 5 ms / div.} \end{array}$

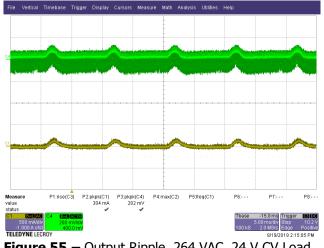


Figure 54 – Output Ripple, 264 VAC, 32 V CV Load. Green: V_{OUT} Ripple, 200 mV / div. Yellow: I_{OUT} Ripple, 500 mA, 5 ms / div.

 $\label{eq:Figure 55-Output Ripple, 264 VAC, 24 V CV Load.} \\ Green: V_{OUT} Ripple, 200 mV / div. \\ Yellow: I_{OUT} Ripple, 500 mA, 5 ms / div. \\ \end{aligned}$

13 Temperature Profiles

The board was operated at room temperature, with output set at maximum using a constant voltage load. For each test condition the unit was allowed to thermally stabilize $(\sim 1 \text{ hr})$ before measurements were made.

13.1 Spot Temperature Measurements

Position	Temperature (°C)					
	180 VAC	230 VAC	264 VAC			
T1	82.3 (wdg) / 70 (core)	83.3 (wdg) / 70.8 (core)	82.8 (wdg) / 68.7 (core)			
BR1	66.9	58.6	54.1			
U1	79.4	68.7	62.3			
D12	81.6	81	79.5			
D14	75.4	72.8	71.8			
D13	79.5	76.4	75.4			
AMB	24	24	24			

13.2 180 VAC, 60 Hz, 100% Load Temperature Profile

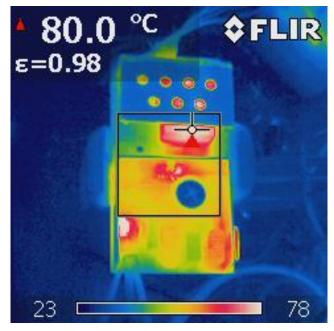
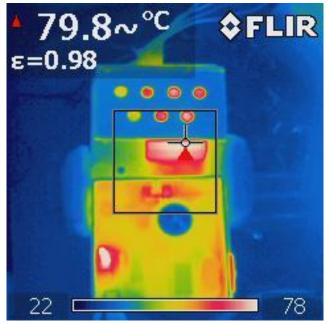



Figure 56 – Top View Thermal Picture, 180 VAC.

13.3 230 VAC, 60 Hz, 100% Load Temperature Profile

Figure 57 – Top View Thermal Picture, 100% Load, 230 VAC.

13.4 264 VAC, 60 Hz, 100% Load Temperature Profile

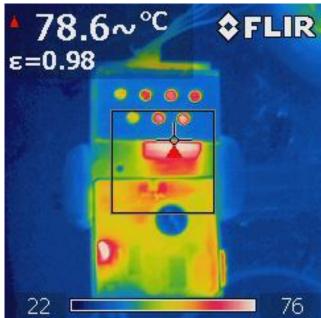
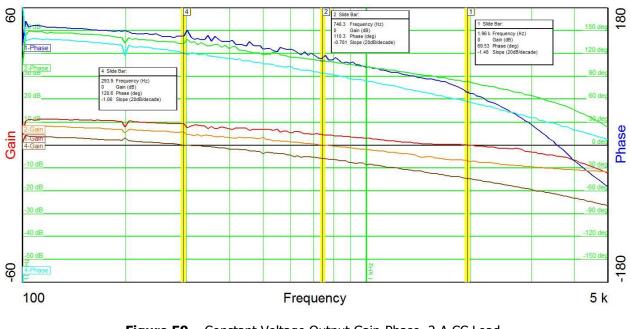



Figure 58 – Top View Thermal Picture, 100% Load, 264 VAC.

14 Constant Voltage Output Gain-Phase

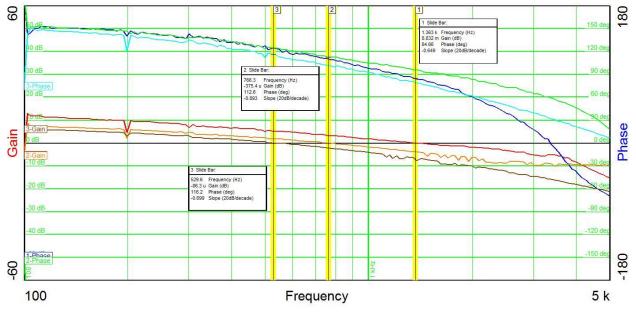
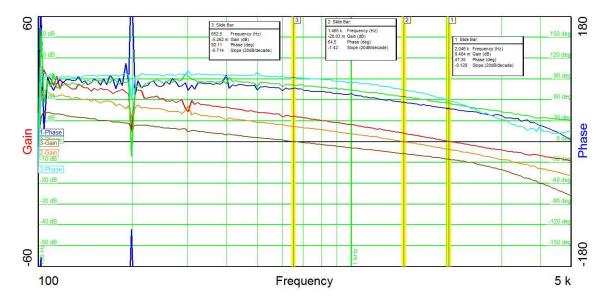
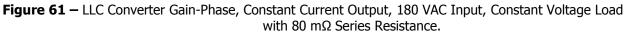

Constant voltage output gain-phase was tested using a Chroma 63106 electronic load module in constant current mode, at output loads of 2 A and 4 A.

Figure 59 – Constant Voltage Output Gain-Phase, 2 A CC Load. Red/Blue – 180 VAC Gain-Phase, Crossover Frequency 1.96 kHz, Phase Margin 69.5°. Orn/Grn – 230 VAC Gain-Phase, Crossover Frequency 746 Hz, Phase Margin 110°. Brn/Aqua – 264 VAC Gain-Phase, Crossover Frequency 294 Hz, Phase Margin 121°.

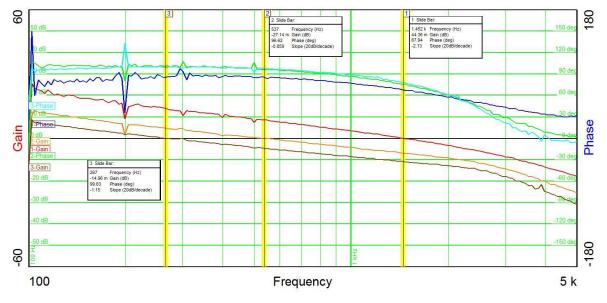

Figure 60 – Constant Voltage Output Gain-Phase, 4 A CC Load. Red/Blue – 180 VAC Gain-Phase, Crossover Frequency 1.36 kHz, Phase Margin 65°. Orn/Grn – 230 VAC Gain-Phase, Crossover Frequency 766 Hz, Phase Margin 113°. Brn/Aqua – 264 VAC Gain-Phase, Crossover Frequency 530 Hz, Phase Margin 116°.



15 Constant Current Output Gain-Phase

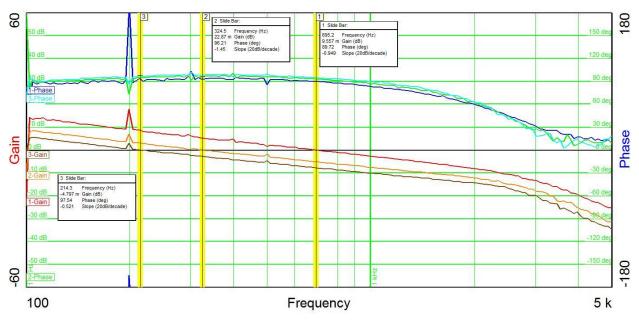
Current mode gain-phase was tested using a Chroma 63106 electronic load module set to constant voltage mode, with an 80 m Ω series resistance inserted in series with the output cable to better approximate the impedance of a 10 deep X 3 wide array (42 V nominal) of Sanyo UR18650RX (or equivalent) Lithium cells. Load settings were 40V, 32V, and 24V to examine the gain and phase at different points of the battery charge curve. Testing was also done at input voltages of 180 VAC, 230 VAC, and 264 VAC, as the input voltage also affects the supply characteristics when a PFC is not used at the input to provide a regulated B+ for the LLC DC-DC converter stage.

Using a CV load maximizes the CC loop gain (worst case for control loop) and simulates operating while charging a battery. Using the constant resistance setting for the electronic load will yield overly optimistic results for gain-phase measurements and for determining component values for frequency compensation.



Red/Blue – 40 Vo Gain and Phase - Crossover Frequency – 2 kHz, Phase Margin – 47°. Orange/Green – 32 Vo Gain and Phase - Crossover Frequency – 1.46 kHz, Phase Margin – 64°. Brown/Agua – 24 Vo Gain and Phase - Crossover Frequency – 652 Hz, Phase Margin – 92°

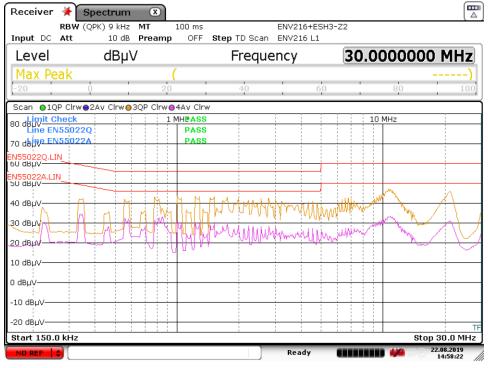
Brown/Aqua – 24 Vo Gain and Phase - Crossover Frequency – 652 Hz, Phase Margin – 92°.



Red/Blue – 40Vo Gain and Phase, Crossover Frequency – 1.45 kHz, Phase Margin – 68°. Orange/Green – 32 Vo VAC Gain and Phase Crossover Frequency – 537 Hz, Phase Margin – 97°. Brown/Aqua – 24 Vo VAC Gain and Phase Crossover Frequency – 267 Hz, Phase Margin – 100°.

Figure 63 – LLC Converter Gain-Phase, Constant Current Output, 264 VAC Input, Constant Voltage Load with 80 mΩ Series Resistance.

Red/Blue – 40 Vo Gain and Phase, Crossover Frequency – 695 kHz, Phase Margin – 90°. Orange/Green – 32 Vo VAC Gain and Phase Crossover Frequency – 324 Hz, Phase Margin – 96°. Brown/Aqua – 24 Vo VAC Gain and Phase Crossover Frequency – 214 Hz, Phase Margin – 97°.



16 Conducted EMI

Conducted EMI tests were performed using a floating resistive load (9 Ω).

Figure 64 – EMI Set-up with Floating Resistive Load.

Date: 22.AUG.2019 14:58:22

Figure 65 – Conducted EMI, 230 VAC, 9 Ω Floating Load.

17 Revision History

Date	Author	Revision	Description and Changes	Reviewed
06/21/19	RH	1	First Draft	
11/14/19	RH	2	2 nd Draft with added figures	
01/23/20	RH	3	Test mods, added pictures	

For the latest updates, visit our website: www.power.com

Reference Designs are technical proposals concerning how to use Power Integrations' gate drivers in particular applications and/or with certain power modules. These proposals are "as is" and are not subject to any qualification process. The suitability, implementation and qualification are the sole responsibility of the end user. The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may base on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information and recommendations contained herein. No responsibility is accepted for the accuracy or sufficiency of any of the statements, technical information, recommendations or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

Patent Information

The products and applications illustrated herein (including transformer construction and circuits' external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at <u>www.power.com</u>. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.power.com/ip.htm.

Power Integrations, the Power Integrations logo, CAPZero, ChiPhy, CHY, DPA-Switch, EcoSmart, E-Shield, eSIP, eSOP, HiperPLC, HiperPFS, HiperTFS, InnoSwitch, Innovation in Power Conversion, InSOP, LinkSwitch, LinkZero, LYTSwitch, SENZero, TinySwitch, TOPSwitch, PI, PI Expert, PowiGaN, SCALE, SCALE-1, SCALE-2, SCALE-3 and SCALE-iDriver, are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©2019, Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Worldwide: +1-65-635-64480 Americas: +1-408-414-9621 e-mail: usasales@power.com

CHINA (SHANGHAI)

Rm 2410, Charity Plaza, No. 88, North Caoxi Road, Shanghai, PRC 200030 Phone: +86-21-6354-6323 e-mail:_chinasales@power.com

CHINA (SHENZHEN)

17/F, Hivac Building, No. 2, Keji Nan 8th Road, Nanshan District, Shenzhen, China, 518057 Phone: +86-755-8672-8689 e-mail: chinasales@power.com **GERMANY** (AC-DC/LED Sales) Einsteinring 24 85609 Dornach/Aschheim Germany Tel: +49-89-5527-39100 e-mail: eurosales@power.com

GERMANY (Gate Driver Sales)

HellwegForum 1 59469 Ense Germany Tel: +49-2938-64-39990 e-mail: igbt-driver.sales@ power.com

INDIA

#1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 e-mail: indiasales@power.com

ITALY

Via Milanese 20, 3rd. Fl. 20099 Sesto San Giovanni (MI) Italy Phone: +39-024-550-8701 e-mail: eurosales@power.com

JAPAN

Yusen Shin-Yokohama 1-chome Bldg. 1-7-9, Shin-Yokohama, Kohoku-ku Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 e-mail: japansales@power.com

KOREA

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea Phone: +82-2-2016-6610 e-mail: koreasales@power.com

SINGAPORE

51 Newton Road, #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 e-mail: singaporesales@power.com

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 11493, Taiwan R.O.C. Phone: +886-2-2659-4570 e-mail: taiwansales@power.com

UK

Building 5, Suite 21 The Westbrook Centre Milton Road Cambridge CB4 1YG Phone: +44 (0) 7823-557484 e-mail: eurosales@power.com

