

Design Example Report

Title	42 W 2-Stage Boost and Isolated Flyback Dimmable LED Ballast Using HiperPFS [™] -4 PFS7623C and LYTSwitch [™] -6 LYT6067C
Specification	90 VAC – 277 VAC Input; 42 V, 1000 mA Output
Application	3-Way + DALI Dimming LED Ballast
Author	Applications Engineering Department
Document Number	DER-750
Date	September 17, 2019
Revision	1.3

Summary and Features

- With integrated PFC function, PF >0.9
- Accurate output voltage and current regulation, ±5%
- Very low ripple current, <10% of I_{OUT}
- Highly energy efficient, >89 % at 230 V
- Low cost and low component count for compact PCB solution
- Dimming functions
 - 0 VDC 10 VDC analog dimming
 - 10 V PWM signal (frequency range: 300 Hz to 3 kHz)
 - Variable resistance (0 to 100 k Ω)
 - DALI 2.0 enabled
- Integrated protection and reliability features
 - Output short-circuit
 - Line and output OVP
 - Line surge or line overvoltage
 - Thermal foldback and over temperature shutdown with hysteretic automatic power recovery
- No damage during line brown-out or brown-in conditions
- Meets IEC 2.5 kV ring wave, 1 kV differential surge
- Meets EN55015 conducted EMI

Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.power.com

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at https://www.power.com/company/intellectual-property-licensing/.

Table of Contents

1 Int	roduction	6
2 Pov	ver Supply Specification	9
	ematic	
4 Circ	cuit Description	.14
4.1	Input EMI Filter and Rectifier	.14
4.2	First Stage: Boost PFC Using HiperPFS-4	
4.3	Second Stage: Isolated Flyback DC-DC Using LYTSwitch-6	.17
4.4	3-Way Dimming Control Circuit	.19
	3 Layout	
6 Bill	of Materials	-
6.1	Main BOM	
6.2	Miscellaneous Parts	
	C Inductor (L1) Specifications	.27
7.1	Electrical Diagram	
7.1	Electrical Specifications	.27
7.2	Material List	
8 PFC	C Inductor (T1) Specifications	.28
8.1	Electrical Diagram	.28
8.2	Electrical Specifications	.28
8.3	Material List	
8.4	Inductor Build Diagram	.29
8.5	Inductor Construction	.29
8.6	Winding Illustrations	.30
9 Fly	pack Transformer (T2) Specifications	.32
9.1	Electrical Diagram	.32
9.2	Electrical Specifications	.32
9.3	Material List	.32
9.4	Transformer Build Diagram	.33
9.5	Transformer Construction	
9.6	Winding Illustrations	.34
10 F	FC Boost Transformer Spreadsheet	.38
	DC-DC Transformer Spreadsheet	
12 F	Performance Data	
12.1	CV/CC Output Characteristic Curve	
12.2	System Efficiency	
12.3	Output Current Regulation	
12.4	Power Factor	
12.5	%ATHD	
12.6	Individual Harmonic Content at 42 V LED Load	.50
12.7	No-Load Input Power	.51
13 T	est Data	.52
13.1	42 V LED Load	.52
13.2	39 V LED Load	.52

13.3	36 V LED Load	52
13.4	33 V LED Load	
13.5	No-Load	
13.5	Individual Harmonic Content at 230 VAC and 42 V LED Load	
	imming Performance	
	Dimming Curve	
	1.1 0 V - 10 V Dimming Curve	
	1.2 10 V 1 kHz PWM Dimming Curve	
	1.3 Variable Resistor Dimming Curve6	
	hermal Performance6	
	Thermal Scan at 25 °C Ambient	
	1.1 Thermal Scan at 90 VAC Full Load	
15.1	1.2 Thermal Scan at 277 VAC Full Load	54
15.2	Thermal Performance at 60 °C Ambient	55
16 W	/aveforms6	
16.1	Input Voltage and Input Current at 42 V LED Load	56
16.2	Start-up Profile at 42 V LED Load	57
16.3	Start-up Profile at 30 V LED Load	
16.4	Output Current Fall at 42 V LED Load	
16.5	Output Current Fall at 30 V LED Load	
16.6	Power Cycling	
16.7	PFS7623C (U2) Drain Voltage and Current at Normal Operation	
16.8	PFS7623C (U2) Drain Voltage and Current at Start-up	
16.9	LYTSwitch-6 (U4) Drain Voltage and Current at Normal Operation	
	9.1 42 V LED Load	
	9.2 33 V LED Load	
16.10		
16.10	LYTSwitch-6 (U4) Drain Voltage and Current during Output Short-Circuit7	
16.11		
16.12		
16.14	Output Ripple Current at 30 V LED Load	
	onducted EMI	
17.1		
17.2		
	2.1 EMI Test Results: Set-up 1	
	ine Surge	
18.1	Differential Surge Test Results	
18.2	5 5	
19 Bi	rown-in/Brown-out Test	36
20 A	ppendix	
20.1	DALI and CCT Interface Circuit	37
20.2	Circuit Description	38
20.2		
20.2	2.2 DALI Dimming Circuit	38

20.2.3 CCT Circuit	88
20.2.4 Connector Pinouts	
20.2.5 J5 Pinout	
20.2.6 J6 Pinout	
20.3 Schematic	
20.4 PCB Layout	
20.5 Board Level Test for DALI	
20.5.1 Lab Equipment to be Used	
20.5.2 Wiring Diagram for the Test Set-up	
20.5.3 Procedures	
20.6 Board Level Test for CCT	
20.6.1 Lab Equipment to be Used	
20.6.2 Wiring Diagram for the Test Set-up	
20.6.3 Procedures	
20.7 DALI Dimming and CCT Set-up	
20.8 Bill of Materials	
20.8.1 Electricals	
20.8.2 Mechanicals	
20.9 CCT Toggle Performance	
21 Revision History	101

Important Note: Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

1 Introduction

This engineering report describes a constant voltage (CV) and constant current (CC) output 42 W LED ballast with 3-way + DALI dimming functions. At constant voltage application, the LED ballast is designed to provide a 42 V output voltage across 0 mA to 1000 mA output current load while at constant current mode operation, it can provide 1000 mA (3-way dimmable) constant current at 42 V – 33 V LED voltage string. The design is optimized to operate from an input voltage range of 90 VAC to 277 VAC.

The LED ballast employs a two-stage design with a boost PFC at first stage and an isolated flyback DC-DC for the secondary stage. The boost PFC utilizes HiperPFS-4 device while the second stage flyback uses LYTSwitch-6 controller.

The HiperPFS-4 devices incorporate a continuous conduction mode (CCM) boost PFC controller, gate driver and 600 V power MOSFET in a single power package. This device eliminates the need for external current sense resistors and their associated power loss, and uses an innovative control technique that adjusts the switching frequency over output load, input line voltage, and input line cycle.

LYTSwitch-6 ICs simplifies the flyback stage by combining primary, secondary and feedback circuits in a single surface IC. This IC includes an innovative new technology, FluxLink[™], which safely bridges the isolation barrier and eliminates the need for an optocoupler. Through this, the architecture of LYTSwitch-6 allows the IC to have primary and secondary controllers, with sense elements and a safety-rated mechanism into a single IC.

DER-750 offers high power factor, wide input and output voltage ranges, 3-way and DALI 42 W LED ballast. The key design goals were low component count, high power factor, high efficiency and low ATHD.

The document contains the power supply specification, schematic, bill of materials, transformer documentation, printed circuit layout, and performance data.

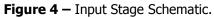
Figure 1 – Populated Circuit Board.

Figure 2 – Populated Circuit Board, Top View.

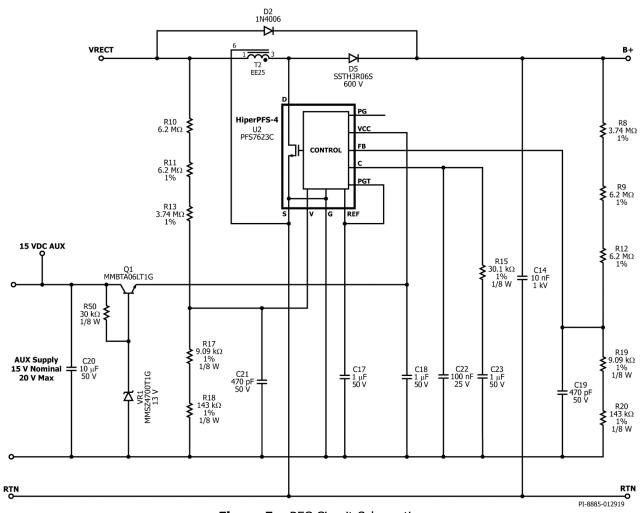


Figure 3 – Populated Circuit Board, Bottom View.

2 **Power Supply Specification**


The table below represents the minimum acceptable performance of the design. Actual performance is listed in the results section.

Description	Symbol	Min	Тур	Max	Units	Comment
Input						
Voltage	V _{IN}	90	115 / 60	277	VAC / Hz	2-Wire Floating Output or 3-Wire with P.E.
Frequency	f _{line}		230 / 50 277 / 60			
Output						
Output Voltage	V _{OUT}		42		V	
Output Current	I OUT	950	960	1050	mA	±5%
Total Output Power						
Continuous Output Power	POUT		42		W	
Efficiency						
Full Load	η		89		%	230 V / 50 Hz at 25 °C.
Environmental						
Conducted EMI		C	ISPR 15B	/ EN550	15B	
Safety			Isola	ated		
Ring Wave (100 kHz)			2.5		kV	
Differential Mode (L1-L2)			1.0		kV	
Power Factor			0.9			Measured at 115 V / 60 Hz, 230 VAC / 50 Hz and 277 V / 50 Hz.
Ambient Temperature	T _{AMB}			60	٥C	Free Air Convection, Sea Level.



3 Schematic

Figure 5 – PFC Circuit Schematic.

DER-750 42 W LED Ballast Driver Using PFS7623C & LYT6067C

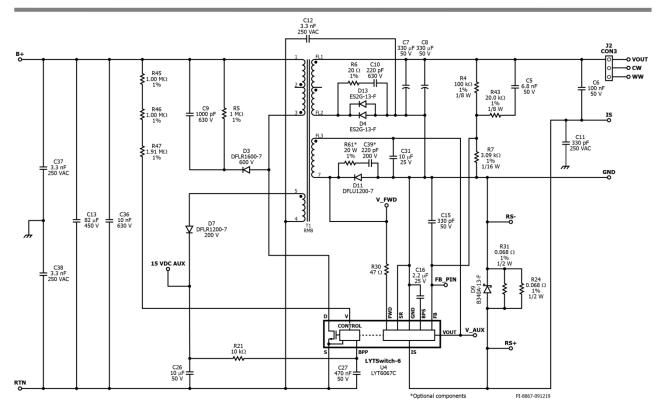
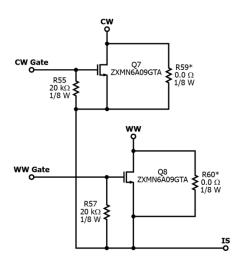
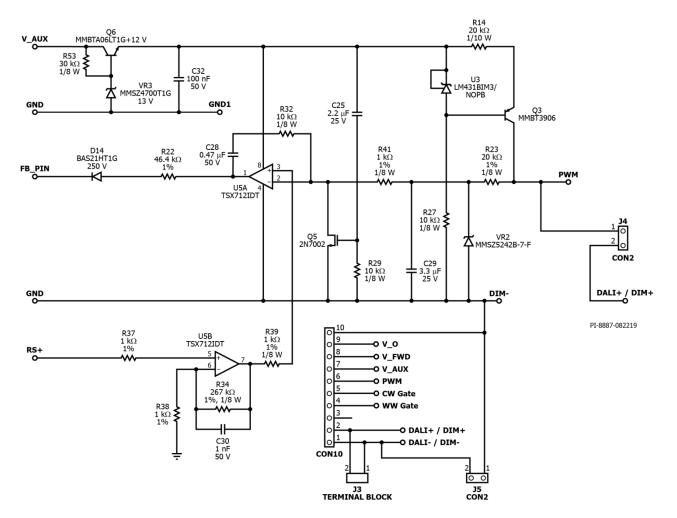




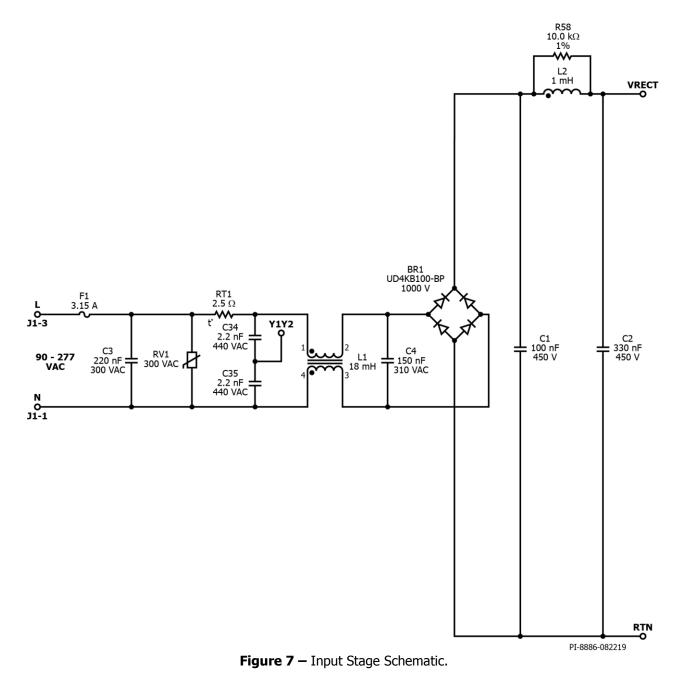
Figure 6 – Isolated Flyback DC-DC Circuit Schematic.

Figure 6 – 3-Way Dimming Circuit Schematic.

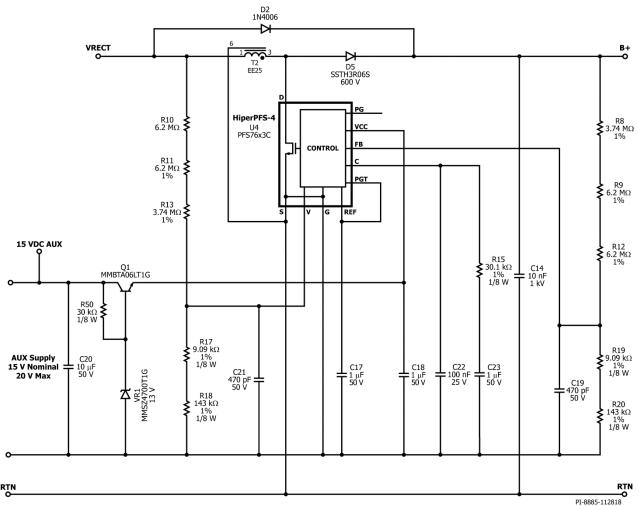
4 **Circuit Description**

The LED ballast circuit employs two-stage PFC with 3-way dimming circuit functions. The first stage is a boost PFC using PFS7623C from the HiperPFS-4 family of devices. The second stage is an isolated flyback DC-DC power supply using a LYTSwitch-6 IC.

HiperPFS-4 PFS7623C is a PFC controller with integrated power MOSFET and external boost diode. This stage is intended as a general purpose platform that operates from 90 VAC to 277 VAC input voltage that provides a highly efficient single-stage power factor corrector regulated at 410 V DC output voltage and continuous output power of 46 W.


LYTSwitch-6 incorporates the primary FET, the primary-side controller and a secondaryside synchronous rectification controller. This IC also includes an innovative new technology, FluxLink[™], which safely bridges the isolation barrier and eliminates the need for an optocoupler.

4.1 *Input EMI Filter and Rectifier*

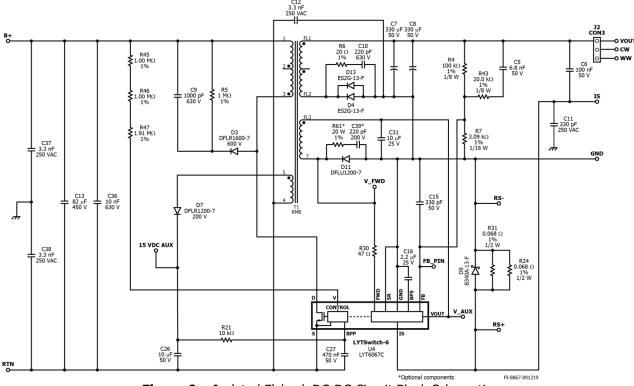

The input fuse F1 provides safety protection. Varistor RV1 acts as a voltage clamp that limits the voltage spike on the primary during line transient voltage surge events. A 300 V rated part was selected, being slightly above the maximum specified operating input voltage (277 V). The AC input voltage is full wave rectified by BR1 to achieve good power factor and low THD. Capacitors C1, C2 and L2 form a pi filter which together with C3 suppresses differential mode noise. Common mode noise is suppressed by common mode choke L1 together with Y capacitor C11 and C12. Additional Y capacitors C34, C35, C37 and C38 were added for earth wire connection to suppress common mode noise.

4.2 First Stage: Boost PFC Using HiperPFS-4

Figure 8 – PFC Circuit Schematic.

The boost converter stage consists of the boost inductor T2 and the HiperPFS-4 PFS623C IC U2. This converter stage operates as a PFC boost converter, thereby maintaining a sinusoidal input current to the power supply while regulating the output DC voltage. On the other hand, boost diode D4 is an STTH3R06S for cost effective solution with balanced EMI and switching speed performance.

Diode D2 provides an initial path for the inrush current at start up. This is important as a way to bypass the switching inductor T2 and switch U2 in order to prevent a resonant interaction between the boost inductor and output bulk capacitor C13. The IC is then powered on the VCC pin by an external bias from the T1. This external bias provides a 20 V DC, which is then regulated by Q1, R50 and VR1 to around 12 V DC.


Capacitor C14 provides a short, high-frequency return path to RTN. This effectively improves EMI results and reduces U2 MOSFET Drain voltage overshoot during turn off. Capacitor C17 is used to select the power mode of the IC. 1 μ F was used for full power

mode. Capacitor C22, C23 and R15 for the loop compensation network required to tailor the loop response to ensure low cross-over frequency and sufficient phase margin. Its recommended values are 100 nF, 1 μ F and 30.1 k Ω respectively.

Resistor R8, R9, R12, R19 and R20 form the resistor network for the feedback. Voltage at feedback must be typically at 3.85 V with 3.82 V at its minimum. Resistor R10, R11, R13, R17 and R18 comprise the functionality for the VOLTAGE MONITOR (V) pin. This minimizes power dissipation and standby power consumption. This also features brown-in/out detection thresholds and incorporates a weak current source that acts as a pull-down in the event of an open circuit condition.

DER-750 provides a place holder for an option to use PQ26/20 or PQ26/25 for the boost transformer

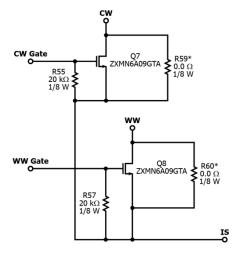
4.3 Second Stage: Isolated Flyback DC-DC Using LYTSwitch-6

Figure 9 – Isolated Flyback DC-DC Circuit Block Schematic.

The second stage circuit topology is a flyback DC-DC power supply controlled by the LYTSwitch-6 IC. One side of the transformer (T1) primary is connected to the positive output terminal of the PFC while the other side is connected to the integrated 650 V power MOSFET inside the LYTSwitch-6 IC (U4). A low cost RCD clamp formed by D3, R5 and C9 limits the peak Drain voltage spike across U4 at the instant turn-off of the MOSFET. The clamp helps dissipate the energy stored in the leakage reactance of transformer T1.

The VOLTAGE MONITOR (V) pin of the LYTSwitch-6 IC is connected to the positive of the bulk capacitor (C13) to provide input voltage information. The voltage across the bulk capacitor (C13) is sensed and converted into current through V pin resistors R45, R46 and R47 to provide detection of overvoltage. These resistors detect an overvoltage of 441 V which is between the DC output of the 1st stage (410 V) and the bulk capacitor rating (450 V). The I_{OV-} determines the input overvoltage threshold.

The IC is kick-started by an internal high-voltage current source that charges the BPP pin capacitor C27 when AC is first applied. Primary-side will listen for secondary request signals for around 82 ms. After initial power up, primary-side assumes control first and requires a handshake to pass the control to the secondary-side. During normal operation the primary-side block is powered from an auxiliary winding on the transformer. The output of this winding is rectified and filtered using diode D7 and capacitor C26. Resistor R21 limits the current being supplied to the BPP pin of the LYTSwitch-6 (U4). This auxiliary winding also powers the IC in the first stage.


The secondary side control of the LYTSwitch-6 IC provides output voltage, output current sensing. The secondary winding of the transformer is rectified by D4, D13 and filtered by the output capacitors C7 and C8. Adding an RC snubber (R6 and C10) across the output diode reduces voltage stress across it.

The secondary-side of the IC is powered from an auxiliary winding FL3 and FL4. During constant voltage mode operation, output voltage regulation is achieved by sensing the output voltage via divider resistors R4 and R7. The voltage across R7 is fed into the FB pin with an internal reference voltage threshold of 1.265 V. Filter capacitor C15 is added across R7 to eliminate unwanted noise that might trigger the OVP function or increase the output ripple voltage.

During constant current operation, the output current is set by the sense resistors R31 and R24 across the IS pin and the GND pin. The internal reference threshold for the IS pin is 35.9 mV. Diode D9 in parallel with the current sense resistor serves as protection during output short-circuit conditions.

3-Way Dimming Control Circuit 4.4

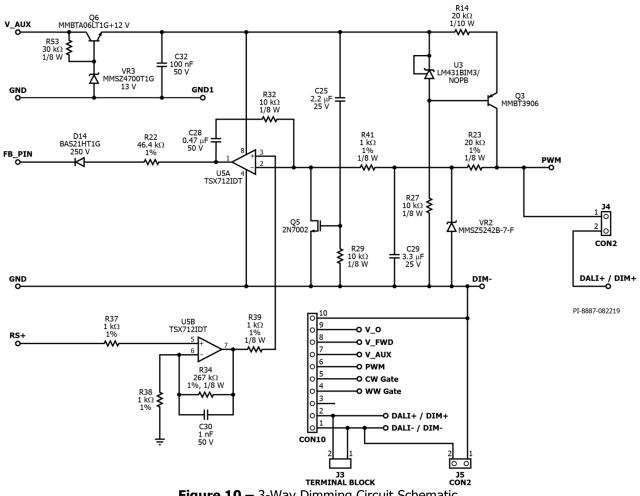


Figure 10 – 3-Way Dimming Circuit Schematic.

The 3-in-1 + DALI Dimming circuit is done by using only two input terminals for four possible types of dimming input signals. Dimming is done by sensing the output current, amplifying the signal and then comparing it with a variable reference and injecting current into the FB pin.

Output current is sensed through IS pin resistors R31 and R24. The output current passes through these resistors and the resulting voltage signal is then passed through the non-inverting amplifier circuit R37, R38, R33, U5B, and C30. The gain is set by R34 and R38 to 268 or about 9.5 V maximum. The output of the op-amp (pin 7) connects to the positive input (pin 3) through R39. The signal going to the negative input (pin 2) comes from either of three possible inputs: variable DC supply (0 V - 10 V), variable resistance (0 Ω – 100 k Ω), or variable duty PWM signal (0-100%, 300-3kHz).

The basic principle of the circuitry is that the output at pin 7 of U5B will always try to match the voltage at pin 2 of U5A which is set by the dimming input. Since U5B is configured as a non-inverting Op-Amp and its input voltage signal is directly proportional to the output current, an increase in the voltage at pin 2 of U5A will result to an increase in the output current. When the dimming input is a variable DC supply, the voltage at pin 2 of U5A will just be the set voltage of the DC supply.

When the dimming input is a variable duty PWM signal, the averaging circuit composed of R23 and C29 converts the signal into DC before feeding to the op-amp input. A constant current source composed of R27, R14, U3, and Q3 is used to convert the variable resistance input into the desired variable DC signal. Zener diode U3 clamps the voltage at R14, therefore setting the emitter current constant. The emitter current of Q3 is roughly equal to its collector current (around 100 μ A) which is connected to the variable resistance input which in turn produces the 0 V – 10 V needed at pin 2 of U5A. VR2 is placed for protection in case the user has interchanged the dimming input causing inverted polarity or in case the user forgot to remove the jumpers of connectors J4 and J5 and engaged the DALI dimming. The dimming circuit can also be controlled via DALI dimming instead of 3-in-1 dimming by disconnecting the jumpers of J4 and J5.

At start-up, the op-amp output is initially low which causes an unwanted spike in output current. To counter this effect, a blanking circuit Q5, R29, and C25 is added which initially pulls the inverting input (pin 2) down and in turn results to op-amp output high. The op-amp output (pin 1) is connected to the FB pin through D14 and R22. Depending on the op-amp output, current is injected into the FB pin. The feedback voltage will go up as current is injected. This will normally bring the output voltage down in CV mode. However, since the LED load is a constant voltage, it can't bring the voltage down. Instead, the output current goes down as a consequence. The current injection loop has to be slow enough in order not to trigger feedback overvoltage protection when doing a step load from 100% to 0%. This is done by increasing the value of R22.

A low-input offset operational amplifier is also recommended to reduce unit-to-unit variability. It is also important to place the dimming circuit close to the IS pin and FB pin to prevent noise from disturbing the loop.

5 PCB Layout

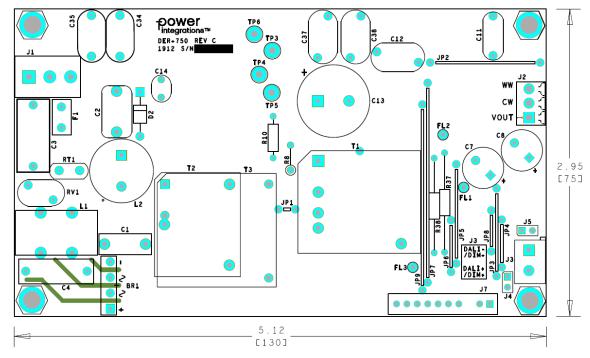


Figure 11 – PCB Top Side.

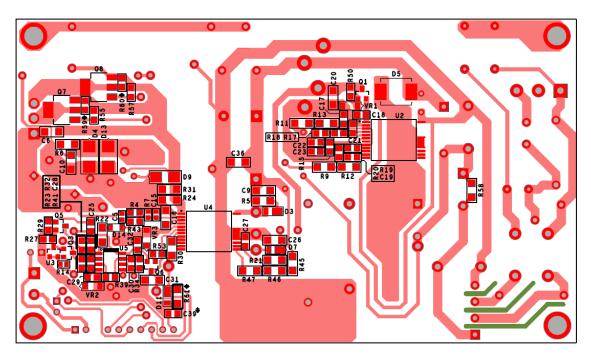


Figure 12 – Bottom Side.

6 Bill of Materials

6.1 *Main BOM*

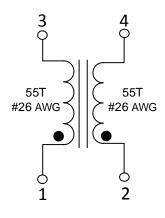
Item	Qty	Ref Des	Description	Mfg	Mfg Part Number
1	1	BR1	Bridge Rectifier, 1000 V, 4 A, 4-ESIP, D3K, -55°C ~ 150°C (TJ), Vf=1V @ 7.5A	UD4KB100-BP	Micro Commercial
2	1	C1	100 nF, 450 V, Polypropylene Film	ECW-F2W104JAQ	Panasonic
3	1	C2	330 nF, 450 V, METALPOLYPRO	ECW-F2W334JAQ	Panasonic
4	1	C3	220 nF, 300 VAC, Film, X2	R463I322000M2M	Kemet
5	1	C4	150 nF, 310 VAC, X2	BFC233820154	Vishay
6	1	C5	6.8 nF 50 V, Ceramic, X7R, 0603	CC0603KRX7R9BB682	Yageo
7	1	C6	100 nF, 50 V, Ceramic, X7R, 1206	CC1206KRX7R9BB104	Yageo
8	1	C7	ALUM, 330 • F, 20%, 50 V, RADIAL, 10000 Hrs @ 105°C,0.394" Dia (10.00mm), 0.866" Height (22.00mm), 0.197" LS (5.00mm)	UHW1H331MPD493-6975-ND	Nichicon
9	1	C8	ALUM, 330 •F, 20%, 50 V, RADIAL, 10000 Hrs @ 105°C,0.394" Dia (10.00mm), 0.866" Height (22.00mm), 0.197" LS (5.00mm)	UHW1H331MPD493-6975-ND	Nichicon
10	1	C9	1000 pF, 630 V, Ceramic, X7R, 1206	C1206C102KBRACTU	Kemet
11	1	C10	220 pF, 630 V, Ceramic, NP0, 1206	C3216C0G2J221J	TDK
12	1	C11	330 pF, Ceramic Y1	440LT33-R	Vishay
13	1	C12	3.3 nF, Ceramic, Y1	440LD33-R	Vishay
14	1	C13	82 • F, 450 V, Electrolytic, Low ESR, (18 x 30)	EPAG451ELL820MM30S	Nippon Chemi-Con
15	1	C14	10 nF, 1 kV, Disc Ceramic, X7R	SV01AC103KAR	AVX Corp
16	1	C15	330 pF 50 V, Ceramic, X7R, 0603	CC0603KRX7R9BB331	Yageo
17	1	C16	2.2 μF, 25 V, Ceramic, X7R, 1206	TMK316B7225KL-T	Taiyo Yuden
18	1	C17	1 $\mu F,\pm 10\%$,50 V, Ceramic, X7R, AEC-Q200, Automotive, Boardflex Sensitive, 0805, -55°C \sim 125°C	CGA4J3X7R1H105K125AE	TDK
19	1	C18	1 $\mu\text{F},\pm10\%$,50 V, Ceramic, X7R, AEC-Q200, Automotive, Boardflex Sensitive, 0805, -55°C \sim 125°C	CGA4J3X7R1H105K125AE	ТДК
20	1	C19	470 pF, 50 V, Ceramic, X7R, 0805	CC0805KRX7R9BB471	Yageo
21	1	C20	10μF, 10%, 50V, Ceramic, X7R, -55°C ~ 125°C, 1206, 0.126" L x 0.063" W (3.20mm x 1.60mm)	CL31B106KBHNNNE	Samsung
22	1	C21	470 pF, 50 V, Ceramic, X7R, 0805	CC0805KRX7R9BB471	Yageo
23	1	C22	100 nF, 25 V, Ceramic, X7R, 0805	08053C104KAT2A	AVX
24	1	C23	$1~\mu\text{F},\pm10\%$,50 V, Ceramic, X7R, AEC-Q200, Automotive, Boardflex Sensitive, 0805, -55°C $\sim125^\circ\text{C}$	CGA4J3X7R1H105K125AE	TDK
25	1	C25	2.2 uF, 25 V, Ceramic, X7R, 0805	C2012X7R1E225M	TDK
26	1	C26	10μF, 10%, 50V, Ceramic, X7R, -55°C ~ 125°C, 1206 (3216 Metric), 0.126" L x 0.063" W (3.20mm x 1.60mm)	CL31B106KBHNNNE	Samsung
27	1	C27	0.47 $\mu\text{F,}\pm10\%$,50 V, Ceramic, X7R, AEC-Q200, Automotive, 0805, -55°C \sim 125°C	CGA4J3X7R1H474K125AB	TDK
28	1	C28	0.47 μ F,±10% ,50 V, Ceramic, X7R, AEC-Q200, Automotive, 0805, -55°C \sim 125°C	CGA4J3X7R1H474K125AB	TDK
29	1	C29	3.3 µF, 25 V, Ceramic, X7R, 0805	C2012X7R1E335K	TDK
30	1	C30	1 nF, 50 V, Ceramic, X7R, 0805	08055C102KAT2A	AVX
31	1	C31	10 μF, 25 V, Ceramic, X7R, 1206	C3216X7R1E106M	TDK
32	1	C32	100 nF, 50 V, Ceramic, X7R, 0805	CC0805KRX7R9BB104	Yageo
33	1	C34	CAP, CER, 2200pF, ±20% , 440 VAC, X1, Y1, Radial, Disc,0.472" Dia (12.00mm), 0.433" 0.630" (16.00mm), LS 0.394" (10.00mm)	KJN222MQ47FAFZA	KEMET
34	1	C35	CAP, CER, 2200pF, ±20% , 440 VAC, X1, Y1, Radial, Disc,0.472" Dia (12.00mm), 0.433" 0.630" (16.00mm), LS 0.394" (10.00mm)	KJN222MQ47FAFZA	KEMET

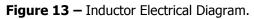
DER-750 42 W LED Ballast Driver Using PFS7623C & LYT6067C

35	1	C36	10 nF, 630 V, Ceramic, X7R, 1206	C1206C103KBRACTU	Kemet
36	1	C37	3.3 nF, Ceramic, Y1	440LD33-R	Vishay
37	1	C38	3.3 nF, Ceramic, Y1	440LD33-R	Vishay
38	1	C39	220 pF, ±10%, 200V, X7R, Ceramic Capacitor, - 55°C ~ 125°C, SMT, MLCC 0805	CL21B221KDCNFNC	Samsung
39	1	D2	800 V, 1 A, GP, Rectifier, DO-41	1N4006-E3/54	Vishay
40	1	D3	600 V, 1 A, Rectifier, Glass Passivated, POWERDI123	DFLR1600-7	Diodes, Inc.
41	1	D4	400 V, 2 A, Super Fast, 35 ns, DO-214A, SMB	ES2G-13-F	Diodes, Inc.
42	1	D5	600 V, 3 A, SMC, DO-214AB	STTH3R06S	ST Micro
43	1	D7	200 V, 1 A, Rectifier, Glass Passivated, POWERDI123	DFLR1200-7	Diodes, Inc.
44	1	D9	DIODE, SCHOTTKY, 40 V, 3 A, SMA, DO-214AA	B340A-13-F	Diodes, Inc.
45	1	D11	DIODE, UFAST, 200 V, 1 A, POWERDI123	DFLU1200-7	Diodes, Inc.
46	1	D13	400 V, 2 A, Super Fast, 35 ns, DO-214A, SMB	ES2G-13-F	Diodes, Inc.
47	1	D14	Diode, General Purpose, Power, Switching, SS SWCH DIO, 250V,SC-76, SOD-323	BAS21HT1G	ON Semi
48	1	F1	3.15 A, 250V, Slow, RST	507-1181	Belfuse
48	1	F1	18 mH, Input Common Mode Choke, custom DER	507-1181	Belluse
67	1	L1	750. Built with Toroid Core: 30-00398-00 and Magnet Wire: #26 AWG.	30-04100-00	Power Integrations
68	1	L2	1 mH, 1.30 A, 20%	RL-5480-5-1000	Renco
69	1	Q1	NPN, Small Signal BJT, 80 V, 0.5 A, SOT-23	MMBTA06LT1G	ON Semi
70	1	Q3	PNP, Small Signal BJT, 40 V, 0.2 A, SOT-23	MMBT3906LT1G	ON Semi
71	1	Q5	60 V, 115 mA, SOT23-3	2N7002-7-F	Diodes, Inc.
72	1	Q6	NPN, Small Signal BJT, 80 V, 0.5 A, SOT-23	MMBTA06LT1G	ON Semi
73	1	Q7	MOSFET, N-CH, 60 V, 5.4A (Ta), TO-261-4, TO- 261AA, SOT223	ZXMN6A09GTA	Diodes, Inc.
74	1	Q8	MOSFET, N-CH, 60 V, 5.4A (Ta), TO-261-4, TO- 261AA, SOT223	ZXMN6A09GTA	Diodes, Inc.
75	1	R4	RES, 100 kΩ, 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF1003V	Panasonic
76	1	R5	RES, 1.00 MΩ, 1%, 1/4 W, Thick Film, 1206	ERJ-8ENF1004V	Panasonic
77	1	R6	RES, 20 Ω, 1%, 1/4 W, Thick Film, 1206	ERJ-8ENF20R0V	Panasonic
78	1	R7	RES, 3.09 kΩ, 1%, 1/16 W, Thick Film, 0603	ERJ-3EKF3091V	Panasonic
79	1	R8	RES, 3.74 MΩ, 1%, 1/4 W, Metal Film	MFR-25FBF52-3M74	Yageo
80	1	R9	RES, 6.2 MΩ, 1%, 1/4 W, Thick Film, 1206	KTR18EZPF6204	Rohm
81	1	R10	RES, 6.2 MΩ, 5%, 1/4 W, Carbon Film	CFR-25JB-6M2	Yageo
82	1	R11	RES, 6.2 MΩ, 1%, 1/4 W, Thick Film, 1206	KTR18EZPF6204	Rohm
83	1	R12	RES, 6.2 MΩ, 1%, 1/4 W, Thick Film, 1206	KTR18EZPF6204	Rohm
84	1	R13	RES, 3.74 MΩ, 1%, 1/4 W, Thick Film, 1206	CRCW12063M74FKEA	Vishay Dale
85	1	R14	RES, 20 kΩ, 5%, 1/10 W, Thick Film, 0603	ERJ-3GEYJ203V	Panasonic
86	1	R15	RES, 30.1 k Ω , 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF3012V	Panasonic
87	1	R17	RES, 9.09 kΩ, 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF9091V	Panasonic
88	1	R18	RES, 143 k Ω , 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF1433V	Panasonic
89	1	R19	RES, 9.09 kΩ, 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF9091V	Panasonic
90	1	R20	RES, 143 k Ω , 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF1433V	Panasonic
91	1	R21	RES, 10 k Ω , 5%, 1/4 W, Thick Film, 1206	ERJ-8GEYJ103V	Panasonic
92	1	R22	RES, 46.4 k Ω , 1%, 1/4 W, Thick Film, 1206	ERJ-8ENF4642V	Panasonic
93	1	R23	RES, 20 k Ω , 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF2002V	Panasonic
94	1	R24	RES, SMD, 0.068, 68 m Ω , ±1%, 0.5 W, ½ W, 1206, Automotive AEC-Q200, Current Sense, Moisture Resistant Thick Film	RL1206FR-7W0R068L	Yageo
95	1	R27	RES, 10 k Ω , 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ103V	Panasonic
95	1	R27 R29	RES, 10 kΩ, 5%, 1/8 W, Thick Film, 0805 RES, 10 kΩ, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ103V ERJ-6GEYJ103V	Panasonic
96 97	1	R29 R30	RES, 10 K2, 5%, 1/8 W, Thick Film, 0805 RES, 47 Ω , 5%, 1/4 W, Thick Film, 1206	ERJ-8GEYJ470V	
97	1	R31	RES, 47 Ω, 5%, 1/4 W, THICK FIITH, 1206 RES, SMD, 0.068, 68 mΩ, \pm 1%, 0.5W, 1/2W, 1206, Automotive AEC-Q200, Current Sense,	RL1206FR-7W0R068L	Panasonic Yageo
			Moisture Resistant Thick Film		
99	1	R32	RES, 20 kΩ, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ203V	Panasonic

DER-750 42 W LED Ballast Driver Using PFS7623C & LYT6067C

100		D 24	DEC 267 to 10/ 1/0 W/ Thist Film 0005		D
100	1	R34	RES, 267 kΩ, 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF2673V	Panasonic
101	1	R37	RES, 1 kΩ, 1%, 1/4 W, Metal Film	MFR-25FBF-1K00	Yageo
102	1	R38	RES, 1 kΩ, 1%, 1/4 W, Metal Film	MFR-25FBF-1K00	Yageo
103	1	R39	RES, 1.00 kΩ, 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF1001V	Panasonic
104	1	R41	RES, 1.00 kΩ, 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF1001V	Panasonic
105	1	R43	RES, 20 kΩ, 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF2002V	Panasonic
106	1	R45	RES, 1.00 MΩ, 1%, 1/4 W, Thick Film, 1206	ERJ-8ENF1004V	Panasonic
107	1	R46	RES, 1.00 MΩ, 1%, 1/4 W, Thick Film, 1206	ERJ-8ENF1004V	Panasonic
108	1	R47	RES, 1.91 MΩ, 1%, 1/4 W, Thick Film, 1206	RMCF1206FT1M91	Stackpole
109	1	R50	RES, 30 kΩ, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ303V	Panasonic
110	1	R53	RES, 30 kΩ, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ303V	Panasonic
111	1	R55	RES, 20 kΩ, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ203V	Panasonic
112	1	R57	RES, 20 kΩ, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ203V	Panasonic
113	1	R58	RES, 10.0 kΩ, 1%, 1/4 W, Thick Film, 1206	ERJ-8ENF1002V	Panasonic
114	1	R59	RES, 0 Ω, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEY0R00V	Panasonic
115	1	R60	RES, 0 Ω, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEY0R00V	Panasonic
116	1	RT1	NTC Thermistor, 2.5 Ω, 3 A	SL08 2R503	Ametherm
117	1	RV1	300 VAC, 25 J, 7 mm, RADIAL	V300LA4P	Littlefuse
122	1	T1	Bobbin, RM8, Vertical, 12 pins	P-803	Pin Shine
123	1	T2	Bobbin, EE25, Vertical, 10 pins	YW-360-02B	Yih-Hwa
124	1	T3	Bobbin, PQ26/20, Vertical, 12 pins	BPQ26/20-1112CPFR	TDK
125	1	TP3	Test Point, BLK, THRU-HOLE MOUNT	5011	Keystone
126	1	TP4	Test Point, BLK, THRU-HOLE MOUNT	5011	Keystone
127	1	TP5	Test Point, WHT, THRU-HOLE MOUNT	5012	Keystone
128	1	TP6	Test Point, WHT, THRU-HOLE MOUNT	5012	Keystone
129	1	U2	HiperPFS-4 Family, InSOP24B	PFS7623C	Power Integrations
130	1	U3	IC, REG ZENER SHUNT ADJ SOT-23	LM431BIM3/NOPB	National Semi
131	1	U4	LYTSwitch-6 Integrated Circuit, InSOP24D	LYT6067C	Power Integrations
132	1	U5	IC, DUAL Op Amp, General Purpose, 2.7MHz, Rail to Rail, 8-SOIC (0.154", 3.90mm Width),8-SO	TSX712IDT	STMicroelectronics
133	1	VR1	13 V, 5%, 500 mW, SOD-123	MMSZ4700T1G	ON Semi
134	1	VR2	DIODE ZENER 12 V 500 mW SOD123	MMSZ5242B-7-F	Diodes, Inc.
135	1	VR3	13 V, 5%, 500 Mw, SOD-123	MMSZ4700T1G	ON Semi


0.2								
Item	Qty	Ref	Description	Mfg Part Number	Mfg			
1	1	FL1. FL2, FL3	Flying Lead, Hole size 50mils	N/A	N/A			
2	1	J1	CONN TERM BLOCK 5.08 MM 3POS, Screw - Leaf Spring, Wire Guard	ED120/3DS	On Shore Tech			
3	1	J2	Conn, 3 Position (1 x 3) header, 3.5 mm (0.138) pitch, Horizontal, Screw - Rising Cage Clamp	1984620	Phoenix Contact			
4	1	J3	CONN TERM BLOCK, 2 POS, 5 mm, PCB	ED500/2DS	On Shore Tech			
5	1	J4	2 Position (1 x 2) header, 0.1 pitch, Vertical	22-03-2021	Molex			
6	1	35	2 Position (1 x 2) header, 0.1 pitch, Vertical	22-03-2021	Molex			
7	1	J7	10 Position (1 x 10) header, 0.1 pitch, Vertical	22-28-4100	Molex			


6.2 *Miscellaneous Parts*

7 CMC Inductor (L1) Specifications

7.1 *Electrical Diagram*

7.1 *Electrical Specifications*

Parameter	Condition	Spec.
Nominal Primary Inductance	Measured at 1 V_{PK-PK} , 100 kHz switching frequency, between pin 1 and pin 3 or pin 2 and pin 4 with all other windings open.	18 mH
Leakage Inductance	Measured at 1 V_{PK-PK} , 100 kHz switching frequency, between pin 1 and pin 3 with pin 2 and pin 4 shorted; and between pin 2 and pin 4 with pin 1 and pin 3 shorted.	>100 µH
Tolerance	Tolerance of Primary Inductance.	±10%

7.2 *Material List*

Item	Description
[1]	Toroid Core: 30-00398-00.
[2]	Magnet Wire: #26 AWG.

8 **PFC Inductor (T1) Specifications**

8.1 *Electrical Diagram*

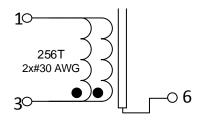


Figure 14 – Inductor Electrical Diagram.

8.2 *Electrical Specifications*

Parameter	Condition	Spec.
Nominal Primary Inductance	Measured at 1 V_{PK-PK} , 100 kHz switching frequency, between pin 1 and pin 3, with all other windings open.	1822 μH
Tolerance	Tolerance of Primary Inductance.	±5%

8.3 *Material List*

Item	Description	
[1]	Core: EE25.	
[2]	Bobbin, EE25, Vertical, 10 Pin.	
[3]	Magnet Wire: #30 AWG.	
[4]	Polyester Tape: 8.7 mm.	
[5]	Polyester Tape: 11 mm.	
[6]	Copper Wire.	

8.4 Inductor Build Diagram

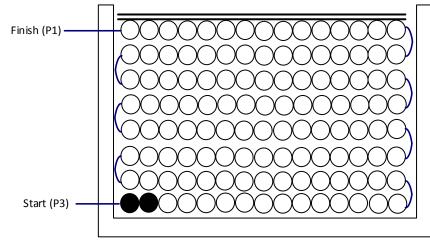


Figure 15 – Transformer Build Diagram.

8.5 *Inductor Construction*

Winding Directions	Bobbin is oriented on winder jig such that terminal pin 1-5 is on the left side. The winding direction is clockwise.	
Winding 1 Use magnetic wire Item [3]. Prepare magnetic wire for bifilar wound pin 3 and wind 256 turns in bifilar wound then finish the winding or		
Insulation	Apply 1 layer of polyester tape, Item [5] for insulation.	
Core Grinding	Grind the center leg of 1 core to meet the nominal inductance specification 1822 $\mu\text{H}.$	
Assemble Core	Assemble Core Assemble the 2 cores into the bobbin.	
Core Termination	Prepare a copper strip with a soldered magnetic wire, item [6], at the middle as shown in the picture. Apply copper strip at the bottom part of the core and terminate the magnetic wire on Pin 6.	
Bobbin TapeAdd 2 layers of polyester tape Item [5] around the bobbin togethe core to fix the 2 cores.		
Pins	Cut terminal pins 2, 4, 5, 7, 9, 10.	
FinishApply 2:1 varnish and thinner solution.		

8.6 *Winding Illustrations*

Winding Directions Bobbin is oriented on winder jig such that terminal pin 1-5 is on the left side. The winding direction is clockwise.	
Winding 1 Use magnetic wire Item [3]. Prepare magnetic wire for bifilar wound. Start at pin 3 and wind 256 turns in bifilar wound then finish the winding on pin 1.	
Insulation Apply 1 layer of polyester tape, Item [5] for insulation.	
Core Grinding Grind the center leg of 1 core to meet the nominal inductance specification 1822 μ H.	

Assemble Core Assemble the 2 cores into the bobbin	A CONTRACTOR
Core Termination Prepare a copper strip with a soldered magnetic wire, item [6], at the middle as shown in the picture. Apply copper strip at the bottom part of the core and terminate the magnetic wire on Pin 6.	
Bobbin Tape Add 2 layers of polyester tape Item [5] around the bobbin together with the core to fix the 2 cores.	
 Pins Cut terminal pins 2, 4, 5, 7, 8, 9, 10 Finish Apply 2:1 varnish and thinner solution. 	

9 Flyback Transformer (T2) Specifications

9.1 *Electrical Diagram*

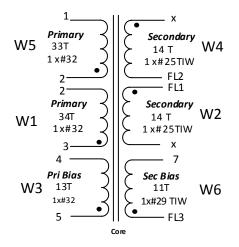
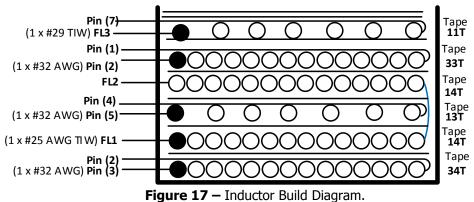


Figure 16 – Transformer Electrical Diagram.

9.2 *Electrical Specifications*


Parameter	Condition	Spec.
Nominal Primary	5 1 // 1	
Inductance	3, with all other windings open.	954 μH
Tolerance	Tolerance of Primary Inductance.	
Leakage Inductance	Short all bias windings and secondary windings. Measured at 1 V_{PK-PK} ,	<5 μH
Leakage Inductance	100 kHz switching frequency, across pin 1 and pin 3.	<5 μΠ

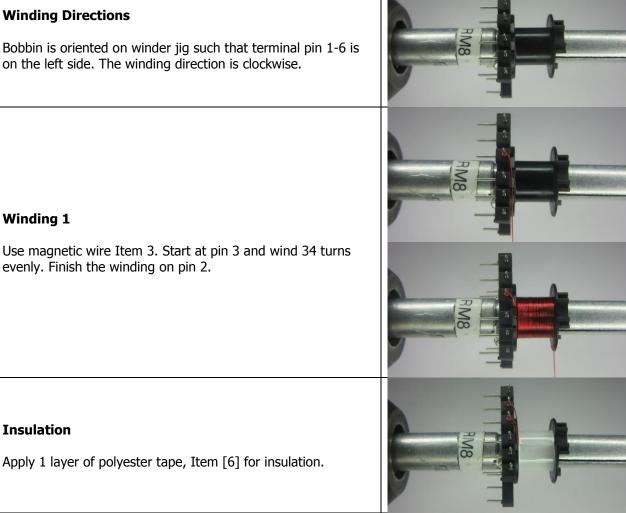
9.3 *Material List*

Item	Description	
[1]	Core: RM8 Equivalent.	
[2]	Bobbin: RM8, Vertical, 12 Pins.	
[3]	Magnet Wire: #32 AWG.	
[4]	TIW: # 25 AWG.	
[5]	TIW: # 29 AWG.	
[6]	Polyester Tape: 9 mm.	

9.4 Transformer Build Diagram

9.5 *Transformer Construction*

Winding Directions	Bobbin is oriented on winder jig such that terminal pin 1-6 is on the left side. The winding direction is clockwise.		
Winding 1	Use magnetic wire Item 3. Start at pin 3 and wind 34 turns evenly. Finish the winding on pin 2.		
Insulation	Apply 1 layer of polyester tape, Item [6] for insulation.		
Winding 2	Use triple insulated wire Item [4] with enough length for W2 (28T) and W4 (28T). Mark the Start terminal as (FL1). Start at FL1 and wind 14 turns in 1 layer as shown in the figure. Do not cut the excess wire and reserve it for W 4.		
Insulation	Apply 1 layer of polyester tape, Item [6] for insulation.		
Winding 3	Use magnetic wire Item 3. Start at pin 5 and wind 13 turns evenly. Finish winding on pin 4.		
Insulation	Apply 1 layer of polyester tape, Item [6] for insulation.		
Winding 4	Use excess wire from Winding 2. Wind 14 turns evenly. The finished terminal will be a fly wire mark as FL2.		
Insulation	Apply 1 layer of polyester tape, Item [6] for insulation.		
Winding 5	Use magnetic wire Item 3. Start at pin 2 and wind 33 turns evenly. Finish the winding on pin 1.		
Insulation			
Winding 6	Use triple insulated wire Item [5] Mark the start terminal as (EL3). Start at EL3 as		
Insulation	Apply 1 layer of polyester tape, Item [6] for insulation.		
Core Grinding	Grind the center leg of 1 core to meet the nominal inductance specification of 954 μ H.		
Assemble Core	Assemble the 2 cores into the bobbin and secure with clip		
Pins	Cut terminal pins 6, 8, 9, 10, 11 and half of pin 2.		
Apply Varnish	Apply 2:1 varnish and thinner solution.		


9.6 Winding Illustrations

Winding Directions

Winding 1

Insulation

Bobbin is oriented on winder jig such that terminal pin 1-6 is on the left side. The winding direction is clockwise.

Winding 2 Use triple insulated wire Item [4] with enough length for W2 (28T) and W4 (28T). Mark the Start terminal as (FL1). Start at FL1 and wind 14 turns in 1 layer as shown in the figure. Do not cut the excess wire and reserve it for W4.	
Insulation Apply 1 layer of polyester tape, Item [6] for insulation.	
Winding 3 Use magnetic wire Item 3. Start at pin 5 and wind 13 turns evenly. Finish winding on pin 4.	RM8
Insulation Apply 1 layer of polyester tape, Item [6] for insulation.	RMB

Winding 4 Use excess wire from Winding 2. Wind 14 turns evenly. The finished terminal will be a fly wire mark as FL2.	
Insulation Apply 1 layer of polyester tape, Item [6] for insulation.	RM8
Winding 5 Use magnetic wire Item 3. Start at pin 2 and wind 33 turns evenly. Finish the winding on pin 1.	RING PARTY
Insulation Apply 1 layer of polyester tape, Item [6] for insulation.	MB PART
Winding 6 Use triple insulated wire Item [5]. Mark the start terminal as (FL3). Start at FL3 and wind 10 turns evenly distributed in one layer as shown in the figure. Finish at pin 7.	
Insulation Apply 1 layer of polyester tape, Item [6] for insulation.	

Core Grinding Grind the center leg of 1 core to meet the nominal inductance specification of 954 μ H.	
Assemble Core Assemble the 2 cores into the bobbin and secure with clip	
Pins	
Cut terminal pins 6, 8, 9, 10, 11 and half of pin 2.	
Apply Varnish	KEN
Apply 2:1 varnish and thinner solution.	

10 **PFC Boost Transformer Spreadsheet**

1	Hiper_PFS- 4_Boost_062918; Rev.1.1; Copyright Power Integrations 2018	INPUT	INFO	Ουτρυτ	UNITS	Continuous Mode Boost Converter Design Spreadsheet
2	Enter Application Variable		1		1	
3 4	Input Voltage Range VACMIN	Universal		Universal 90	VAC	Input voltage range Minimum AC input voltage. Spreadsheet simulation is performed at this voltage. To examine operation at other votlages, enter here, but enter fixed value for LPFC_ACTUAL.
5	VACMAX	277		277	VAC	Maximum AC input voltage
6	VBROWNIN	277	Info	84	VAC	Brown-IN voltage has been modified since the V-pin ratio is no longer 100:1
7	VBROWNOUT		Info	73	VAC	Brown-OUT voltage has been modified since the V-pin ratio is no longer 100:1
8	VO	410	Info	410	VDC	Brown IN/OUT voltage has changed due to modifications in the V-pin ratio from 100:1. Recommend Vpin ratio= FB pin ratio for optimized operation. Check the PF, input current distortion, brown in/out and power delivery
9	PO	46		46	W	Nominal Output power
10	fL			50	Hz	Line frequency
11 12	TA Max n			40 0.93	°C	Maximum ambient temperature Efficiency should be between 0.85 and 0.99. Also, refer to the Loss Budget section and ensure that the estimated efficiency is close to the simulated efficiency
13	VO MIN			390	VDC	Minimum Output voltage
14	VO_RIPPLE_MAX	15		15	VDC	Maximum Output voltage ripple
15	tHOLDUP	-		20	ms	Holdup time
16	VHOLDUP_MIN			310	VDC	Minimum Voltage Output can drop to during holdup
17	I_INRUSH			40	А	Maximum allowable inrush current
18	Forced Air Cooling	No		No		Enter "Yes" for Forced air cooling. Otherwise enter "No". Forced air reduces acceptable choke current density and core autopick core size
20	KP and INDUCTANCE		1	1	1	
21	KP_TARGET	0.73		0.73		Target ripple to peak inductor current ratio at the peak of VACMIN. Affects inductance value
22	LPFC_TARGET (0 bias)		Trafa	1823	uH	PFC inductance required to hit KP_TARGET at peak of VACMIN and full load
23 24	LPFC_DESIRED (0 bias) KP ACTUAL		Info	1823 0.685	uH	Inductance too high: Core size will be too big Actual KP calculated from LPFC_ACTUAL
24	LPFC_PEAK			1823	uH	Inductance at VACMIN, 90°. For Ferrite, same as LPFC_DESIRED (0 bias)
27	Basic current parameters					
28	IAC RMS			0.55	A	AC input RMS current at VACMIN and Full Power load
29	IO_DC			0.11	A	Output average current/Average diode current
32	PFS Parameters					
33	PFS Package	С		C		HiperPFS package selection
34	PFS Part Number	Auto		PFS7623C		If examining brownout operation, over-ride autopick
						with desired device size
35	Operating Mode	Efficiency		Efficiency		with desired device size Mode of operation of PFS. For Full Power mode enter "Full Power" otherwise enter "EFFICIENCY" to indicate efficiency mode
35 36	IOCP min				A	Mode of operation of PFS. For Full Power mode enter "Full Power" otherwise enter "EFFICIENCY" to indicate efficiency mode Minimum Current limit
36 37	IOCP min IOCP typ			Efficiency 3.8 4.1	A	Mode of operation of PFS. For Full Power mode enter "Full Power" otherwise enter "EFFICIENCY" to indicate efficiency mode Minimum Current limit Typical current limit
36 37 38	IOCP min IOCP typ IOCP max			Efficiency 3.8 4.1 4.3	A A	Mode of operation of PFS. For Full Power mode enter "Full Power" otherwise enter "EFFICIENCY" to indicate efficiency mode Minimum Current limit Typical current limit Maximum current limit
36 37 38 39	IOCP min IOCP typ IOCP max IP			Efficiency 3.8 4.1 4.3 1.14	A A A	Mode of operation of PFS. For Full Power mode enter "Full Power" otherwise enter "EFFICIENCY" to indicate efficiency mode Minimum Current limit Typical current limit Maximum current limit MOSFET peak current
36 37 38 39 40	IOCP min IOCP typ IOCP max IP IRMS			Efficiency 3.8 4.1 4.3 1.14 0.48	A A A A	Mode of operation of PFS. For Full Power mode enter "Full Power" otherwise enter "EFFICIENCY" to indicate efficiency mode Minimum Current limit Typical current limit Maximum current limit MOSFET peak current PFS MOSFET RMS current
36 37 38 39	IOCP min IOCP typ IOCP max IP			Efficiency 3.8 4.1 4.3 1.14	A A A	Mode of operation of PFS. For Full Power mode enter "Full Power" otherwise enter "EFFICIENCY" to indicate efficiency mode Minimum Current limit Typical current limit MOSFET peak current PFS MOSFET RMS current Typical RDSon at 100 'C Estimated frequency of operation at crest of input
36 37 38 39 40 41	IOCP min IOCP typ IOCP max IP IRMS RDSON			Efficiency 3.8 4.1 4.3 1.14 0.48 0.87	A A A A Ohms	Mode of operation of PFS. For Full Power mode enter "Full Power" otherwise enter "EFFICIENCY" to indicate efficiency mode Minimum Current limit Typical current limit Maximum current limit MOSFET peak current PFS MOSFET RMS current Typical RDSon at 100 'C Estimated frequency of operation at crest of input voltage (at VACMIN) Estimated average frequency of operation over line
36 37 38 39 40 41 42 43	IOCP min IOCP typ IOCP max IP IRMS RDSON FS_PK FS_AVG			Efficiency 3.8 4.1 4.3 1.14 0.48 0.87 54 41	A A A Ohms kHz kHz	Mode of operation of PFS. For Full Power mode enter "Full Power" otherwise enter "EFFICIENCY" to indicate efficiency mode Minimum Current limit Typical current limit Maximum current limit MOSFET peak current PFS MOSFET RMS current Typical RDSon at 100 'C Estimated frequency of operation at crest of input voltage (at VACMIN) Estimated average frequency of operation over line cycle (at VACMIN)
36 37 38 39 40 41 41 42 43 44	IOCP min IOCP typ IOCP max IP IRMS RDSON FS_PK FS_AVG PCOND_LOSS_PFS			Efficiency 3.8 4.1 4.3 1.14 0.48 0.87 54 41 0.2	A A A Ohms kHz kHz W	Mode of operation of PFS. For Full Power mode enter "Full Power" otherwise enter "EFFICIENCY" to indicate efficiency mode Minimum Current limit Typical current limit Maximum current limit MOSFET peak current PFS MOSFET RMS current Typical RDSon at 100 'C Estimated frequency of operation at crest of input voltage (at VACMIN) Estimated average frequency of operation over line cycle (at VACMIN) Estimated PFS conduction losses
36 37 38 39 40 41 42 43 44 45	IOCP min IOCP typ IOCP max IP IRMS RDSON FS_PK FS_AVG PCOND_LOSS_PFS PSW_LOSS_PFS			Efficiency 3.8 4.1 4.3 1.14 0.48 0.87 54 41 0.2 0.6	A A A Ohms kHz kHz W W	Mode of operation of PFS. For Full Power mode enter "Full Power" otherwise enter "EFFICIENCY" to indicate efficiency mode Minimum Current limit Typical current limit Maximum current limit MOSFET peak current PFS MOSFET RMS current Typical RDSon at 100 'C Estimated frequency of operation at crest of input voltage (at VACMIN) Estimated average frequency of operation over line cycle (at VACMIN) Estimated PFS conduction losses Estimated PFS switching losses
36 37 38 39 40 41 41 42 43 44	IOCP min IOCP typ IOCP max IP IRMS RDSON FS_PK FS_AVG PCOND_LOSS_PFS			Efficiency 3.8 4.1 4.3 1.14 0.48 0.87 54 41 0.2	A A A Ohms kHz kHz W	Mode of operation of PFS. For Full Power mode enter "Full Power" otherwise enter "EFFICIENCY" to indicate efficiency mode Minimum Current limit Typical current limit Maximum current limit MOSFET peak current PFS MOSFET RMS current Typical RDSon at 100 'C Estimated frequency of operation at crest of input voltage (at VACMIN) Estimated average frequency of operation over line cycle (at VACMIN) Estimated PFS conduction losses

49 HEATSINK Theta-CA 75.91 °C/W Maximum thermal resistance of 51 DIVECTOR DESIGN 75.91 °C/W Maximum thermal resistance of 53 Basic Inductor Parameters Value of PFC inductor at zero cn measured with LCR meter. For 54 LPF.OL 10.0 % Tolerance of PFC inductor Value 56 I.L.,RMS 0.56 A Power Load) 57 Material and Dimensions Ferrite Ferrite Enter "Sendust", "Iron Powder" 58 Core Type Ferrite Ferrite Select from 60u, 75u, 90u or 12 59 Core Material PC44/PC95 PC44/PC95 First at a PC44/PC95 First at a PC44/PC95 60 Core Geometry EE EE EE Toroid only for Sendust and Pow from cores. 61 Core EE25.4 EE25.4 Core are ross sectional area 62 Ae 51.40 51.40 mm^^2 Core row path length 64 Al. 1250.00 1250.00 mH/t^2 Core volume 64	
53 Basic Inductor Parameters 54 LPFC (0 Bias) 1823 uH Value of PFC inductor at zero c. measured with LCR meter. For different than LPFC. 55 LP_TOL 10.0 % Tolerance of PFC Inductor Value 56 IL_RMS 0.56 A Inductor RMS current (calculate Power Load) 57 Material and Dimensions - - - 58 Core Type Ferrite Ferrite - Enter "Sendust", "Iron Powder" 59 Core Material PC44/PC95 PC44/PC95 Select from 60u, 75u, 90u or 12 rixed at PC44/PC95 or Ferrite cores. - 60 Core Geometry EE EE Toroid only for Sendust and Pow for Ferrite cores. - 61 Core EE25.4 EE25.4 Core part number - 62 Ae 51.40 51.40 mm^22 Core cores sectional area 63 Le 57.80 mm Core and number - 64 AL 1250.00 mt/t^22 Core core laught - 67	
54LPFC (0 Bias)Image: Constraint of the constrain	
56 L.RMS 0.56 A Inductor RMS current (calculate Power Load) 57 Material and Dimensions	
50IL_KMS0.350APower Load)57Material and Dimensions58Core TypeFerriteFerriteEnter "Sendust", "Iron Powder"59Core MaterialPC44/PC95PC44/PC95Select from 60u, 75u, 99u or 12 Fixed at PC44/PC95 for Ferrite or material for Pow Iron cores.60Core GeometryEEEEToroid only for Sendust and Pow for Ferrite cores.61CoreEE25.4EE25.4Core part number63Le57.8057.80mm^22Core cores sectional area64AL1250.001250.00nH/t^2Core at value65Ve2.972.97cor^33Core volume66HT (EE/PQ/EQ/RM/POT) / ID (toroid)16.10mmCore healpht/Height of window;67MLT36.836.8mMMean length per turn68BW4.014.01mmGap length (Ferrite cores only)70Flux and MMF calculations11676GaussInfo: Peak flux density is to his saturation during line transient.71BP_TARGET (powder only)6500Info6500GaussVarining: Peak flux density is to phi saturation during load density is to phi saturation during load density is to phi saturation during load, nominal inductance73B_MAX1676GaussInfo: Peak flux density at AC peak, V Load, nominal inductance74µ_QCP (powder only)N/A%µ at DCPC powder only75µ_TARGET (powder only) <td><u>, </u></td>	<u>, </u>
58Core TypeFerriteFerriteEnter "Sendust", "Iron Powder"59Core MaterialPC44/PC95PC44/PC95Select from 60u, 75u, 90u or 1260Core GeometryEEEEToroid only for Sendust and Pov for Ferrite cores.61CoreEE25.4EE25.4Core part number62Ae51.4051.40mm^22Core cross sectional area63Le57.80mmCore cross sectional area64AL1250.001250.00nH/t^2Core AL value65Ve2.972.97Core on^3Core volume66HT (EE/PQ/EQ/RM/POT) / ID (toroid)16.10mmCore height/Height of window;67MLT36.836.8mmMean length per turn68BW4.014.01mmBobbin width69LGInfo6500GaussInfo: Peak flux density is too his saturation during line transient.71BP_TARGET (ferrite only)6500Info6500GaussVarent during line transient.72B_OCP (or BP)Warning6477GaussPeak flux density at AC peak, V Load, nominal inductance73B_MAX1676Gausstarget μ at peak current divided76 μMAX (powder only)N/A%Peak flux density at AC peak, V Load, nominal inductance77 μOCP (powder only)N/A%Further target μ at peak current divided76 \muTARGET (powder only)N/A%	d at VACMIN and Full
59 Core Material PC44/PC95 PC44/PC95 Select from 60u, 75u, 90u or 12 Fixed at PC44/PC95 for Ferrite cores. 60 Core Geometry EE EE Toroid only for Sendust and Pow for Ferrite cores. 61 Core EE25.4 EE25.4 Core part number 62 Ae 51.40 51.40 mm^22 Core cross sectional area 63 Le 57.80 57.80 mm^22 Core mean path length 64 AL 1250.00 1250.00 nH/t/×2 Core mean path length 65 Ve 2.97 2.97 Core volume Core volume 66 ID (toroid) 16.10 16.10 mm Core height/Height of window; 67 MLT 36.8 36.8 mm Mean length per turn 68 BW 4.01 4.01 mm Bobbin width 69 LG 1.95 mm Gauss Info: Peak flux density is too hit saturation during lead 71 BP_TARGET (ferrite only) 6500 Info 6500	
59Core MaterialPC44/PC95PC44/PC95Fixed at PC44/PC95 for Ferrite or material for Pow Iron cores.60Core GeometryEEEEToroid only for Sendust and Pow for Ferrite cores.61CoreEE25.4EE25.4Core cross sectional area63Le57.8057.80mm^22Core mean path length64AL1250.001250.00nH/t/*2Core Material for Pow Iron cores.65Ve2.972.97Core MaterialCore mean path length66HT (EE/PQ/EQ/RM/POT) / ID (toroid)16.10mmCore height/Height of window;67MLT36.836.8mmMean length per turn68BW4.014.01mmBobin width69LG1.95mmGap length (Ferrite cores only)70Flux and MMF calculationsTorio6500GaussInfo: Peak flux density is to hig saturation during line transient71BP_TARGET (ferrite only)6500InfoGsousWarning: Peak flux density is to hig saturation during line transient72B_OCP (or BP)Warning6477GaussInductor saturation during load peak flux density at AC peak, V Load, nominal inductance75 μ_TARGET (powder only)N/A%Yeak flux density at Careking flux at a current of blank IOCP_typ is used.76 μ_LMAX (powder only)N/A% μ at IOCP tip divided by μ at zero current of blank IOCP_typ is used.79B_TEST2.02.0 <t< td=""><td></td></t<>	
b0Core GeometryEEEEfor Ferrite cores.61CoreEE25.4EE25.4Core part number62Ae51.4051.40mm^2Core cross sectional area63Le57.80mmCore ross sectional area64AL1250.001250.00nH/t^2Core AL value65Ve2.972.97cm^3Core volume66HT (EE/PQ/RM/POT) / ID (toroid)16.10mmCore height/Height of window;67MLT36.836.8mmMean length per turn68BW4.014.01mmGa length (Ferrite cores only)70Flux and MMF calculations1.95mmGauss71BP_TARGET (ferrite only)6500Info6500Gauss73B_OCP (or BP)Warning6477Gausspeak flux density is to hig saturation during line transient73B_MAX1676Gausstrarget μ at peak current divided74 μ_TARGET (powder only)N/A% μ at IOCP by divided by μ at zero divided by μ at ze	ores. Fixed at -52
62Ae51.4051.40mm^2Core cross sectional area63Le57.80mmCore mean path length64AL1250.001250.00nH/t^2Core AL value65Ve2.972.97cm^3Core volume66HT (EE/PQ/EQ/RM/POT) / ID (toroid)16.1016.10mmCore height/Height of window;67MLT36.836.8mmMean length per turn68BW4.014.01mmBobbin width69LG1.95mmGales plength (Ferrite cores only)70Flux and MMF calculations1.95mmGaless71BP_TARGET (ferrite only)6500Info6500GaussInfo: Peak flux density is to his saturation during line transient.72B_OCP (or BP)Warning6477GaussLead, nominal inductance73B_MAX1676GaussLade, nominal inductance74 \muTARGET (powder only)N/A%yate peak current divided VACMIN, full load (powder only) selection76 μMAX (powder only)2.0N/A%yate accurrent of blank IOCP_typ divided by μ at zero77 μOCP (powder only)2.02.0AFlux density at LTEST and max inductance78I_TEST2.02.0AFlux density at I_TEST and max inductance79B_TEST3013GaussFlux density at I_TEST and max inductance79B_TEST (powder only)<	vdered Iron; EE or PQ
63Le57.8057.80mmCore mean path length64AL1250.001250.00 nH/t^2 Core AL value65Ve2.972.97cm^3Core volume66HT (EE/PQ/EQ/RM/POT) / ID (toroid)16.1016.10mmCore height/Height of window;67MLT36.836.8mmMean length per turn68BW4.014.01mmGap length (Ferrite cores only)70Flux and MMF calculations7Flux and MMF calculationsInfo6500GaussInfo: Peak flux density is to his saturation during line transient.71BP_TARGET (ferrite only)6500Info6500GaussWarning: Peak flux density is to his saturation during line transient.72B_OCP (or BP)Warning6477GaussWarning: Peak flux density at AC peak, VL Load, nominal inductance75 $\mu_{\perp}TARGET$ (powder only)N/AN/A%target μ at peak current divided VACMIN, full load (powder only) selection76 $\mu_{\perp}OCP$ (powder only)2.0N/A%Current at which B_TEST and Max78I_TEST2.02.0AFlux density at L_TEST and max inductance79B_TEST0N/A% μ at IOCP divided by μ at zero of balance.80 $\mu_{\perp}TEST$ (powder only)0N/A% μ at IOCP divided by μ at zero of balance.	
64AL1250.001250.00nH/t^2Core AL value65Ve2.972.97cm^3Core volume66HT (EE/PQ/EQ/RM/POT) / ID (toroid)16.1016.10mmCore height/Height of window; in the integration of the integratio	
65Ve2.972.97cm^3Core volume66HT (EE/PQ/EQ/RM/POT) / ID (toroid)16.1016.10mmCore height/Height of window;67MLT36.836.8mmMean length per turn68BW4.014.01mmBobbin width69LG1.95mmGap length (Ferrite cores only)70Flux and MMF calculations1.95mmGap length (Ferrite cores only)71BP_TARGET (ferrite only)6500Info6500GaussInfo: Peak flux density is to hig saturation during line transient72B_OCP (or BP)Warning6477GaussWarning: Peak flux density at AC peak, VL Load, nominal inductance73B_MAX1676Gausspeak flux density at AC peak, VL Load, nominal inductance75 μ_TARGET (powder only)N/A%mu_max greater than 75% indiv Please verify76 μ_MAX (powder only)N/A% μ at IOCPtyp divided by μ at zero78I_TEST2.02.0AFlux density at L_TEST and max inductance79B_TEST3013GaussFlux density at I_TEST and max inductance80 μ_TEST (powder only)N/A% μ at IOCP divided by μ at zero	
66HT (EE/PQ/EQ/RM/POT) / ID (toroid)16.1016.10mmCore height/Height of window; Core height/Height of window	
60ID (toroid)16.1018.10110.10InimCore height, height of window, Core height, height of window, A.0167MLT36.836.8mmMean length per turn68BW4.014.01mmBobbin width69LG1.95mmGap length (Ferrite cores only)70Flux and MMF calculations1.95mmGap length (Ferrite cores only)71BP_TARGET (ferrite only)6500Info6500GaussInfo: Peak flux density is too hig saturation during line transient of Inductor saturation during load peak flux density at AC peak, VA Load, nominal inductance72B_OCP (or BP)Warning6477GaussWarning: Peak flux density is to Inductor saturation during load peak flux density at AC peak, VA Load, nominal inductance73B_MAX1676GaussLarget μ at peak current divided VACMIN, full load (powder only)76 μ_MAX (powder only)N/A%mu_max greater than 75% indi Please verify77 μ_OCP (powder only)N/A% μ at IOCPtyp divided by μ at zero blank IOCP-typ is used.78I_TEST2.02.0AFlux density at I_TEST and max inductance80 μ_TEST (powder only)N/A% μ at IOCP divided by μ at zero of	
68BW4.014.01mmBobbin width69LG1.95mmGap length (Ferrite cores only)70Flux and MMF calculations71BP_TARGET (ferrite only)6500Info6500GaussInfo: Peak flux density is too hig saturation during line transient72B_OCP (or BP)Warning6477GaussInfo: Peak flux density is too Inductor saturation during load73B_MAX1676Gausspeak flux density at AC peak, V Load, nominal inductance75μ_TARGET (powder only)N/A%target µ at peak current divided VACMIN, full load (powder only) selection76μ_MAX (powder only)N/A%mu_max greater than 75% indi Please verify77µ_OCP (powder only)N/A%µ at IOCPtyp divided by µ at zer blank IOCP_typ is used.78I_TEST2.02.0AFlux density at I_TEST and max inductance79B_TEST3013GaussFlux density at I_TEST and max inductance80µ_TEST (powder only)N/A%µ at IOCP divided by µ at zer or	D if toroid
69LG1.95mmGap length (Ferrite cores only)70Flux and MMF calculations71BP_TARGET (ferrite only)6500Info6500GaussInfo: Peak flux density is to hig saturation during line transient.72B_OCP (or BP)Warning6477GaussWarning: Peak flux density is to Inductor saturation during load73B_MAX1676GaussWarning: Peak flux density at AC peak, V Load, nominal inductance75μ_TARGET (powder only)N/A%target μ at peak current divided VACMIN, full load (powder only)76μ_MAX (powder only)N/A%μ at IOCPtyp divided by μ at zero for checking flux at a current of blank IOCP_typ is used.78I_TEST2.02.0ACurrent at which B_TEST and max inductance79B_TEST3013GaussFlux density at I_TEST and max inductance80μ_TEST (powder only)N/A%μ at IOCP divided by μ at zero complexity	
70 Flux and MMF calculations 71 BP_TARGET (ferrite only) 6500 Info 6500 Gauss Info: Peak flux density is to hig saturation during line transient of saturation during line transient of saturation during line transient of maximum line transient line transis line transient line transie	
71 BP_TARGET (ferrite only) 6500 Info 6500 Gauss Info: Peak flux density is to hig saturation during line transient of saturation during line transient of saturation during line transient of maximum during line transient during linead during line transis during line transis during line transient	
71BP_TARGET (territe only)6500Into6500Gausssaturation during line transient of saturation during line transient of Inductor saturation during load72B_OCP (or BP)Warning6477GaussWarning: Peak flux density is to Inductor saturation during load73B_MAX1676Gausspeak flux density at AC peak, VL Load, nominal inductance75µ_TARGET (powder only)N/A%target µ at peak current divided VACMIN, full load (powder only)76µ_MAX (powder only)N/A%µ at IOCPtyp divided by µ at zer for checking flux at a current of blank IOCP_typ is used.78I_TEST2.02.0ACurrent at which B_TEST and max inductance79B_TEST3013GaussFlux density at I_TEST and max inductance80µ_TEST (powder only)N/A%µ at IOCP divided by µ at zer of blank IOCP_typ	h Charle for Inductor
72 B_OCP (or BP) Warning 6477 Gauss Inductor saturation during load 73 B_MAX 1676 Gauss peak flux density at AC peak, V/Load, nominal inductance 75 µ_TARGET (powder only) N/A % target µ at peak current divided 76 µ_MAX (powder only) N/A % mu_max greater than 75% indir 77 µ_OCP (powder only) N/A % µ at IOCPtyp divided by µ at zer 78 I_TEST 2.0 2.0 A Current at which B_TEST and H 79 B_TEST 3013 Gauss Flux density at I_TEST and max inductance 80 µ_TEST (powder only) N/A % µ at IOCP divided by µ at zer of	operation
73 B_MAX 1676 Gauss Load, nominal inductance 75 µ_TARGET (powder only) N/A % target µ at peak current divided VACMIN, full load (powder only) selection 76 µ_MAX (powder only) N/A % mu_max greater than 75% indiv Please verify 77 µ_OCP (powder only) N/A % µ at IOCPtyp divided by µ at zero to thick B_TEST and H for checking flux at a current ot blank IOCP_typ is used. 79 B_TEST 3013 Gauss Flux density at I_TEST and max inductance 80 µ_TEST (powder only) N/A % µ at IOCP divided by µ at zero	steps
75 μ_TARGET (powder only) N/A % VACMIN, full load (powder only) selection 76 μ_MAX (powder only) N/A % mu_max greater than 75% india Please verify 77 μ_OCP (powder only) N/A % μ at IOCPtyp divided by μ at zero on the please verify 78 I_TEST 2.0 2.0 A Current at which B_TEST and H for checking flux at a current ot blank IOCP_typ is used. 79 B_TEST 3013 Gauss Flux density at I_TEST and max inductance 80 μ_TEST (powder only) N/A % μ at IOCP divided by μ at zero on the plane to th	
76 µ_MAX (powder only) N/A % Please verify 77 µ_OCP (powder only) N/A % µ at IOCPtyp divided by µ at zer 78 I_TEST 2.0 2.0 A Current at which B_TEST and H 79 B_TEST 2.0 3013 Gauss Flux density at I_TEST and max inductance 80 µ_TEST (powder only) N/A % µ at IOCP divided by µ at zero of the constraint of the constrain	
78 I_TEST 2.0 2.0 A Current at which B_TEST and H for checking flux at a current ot blank IOCP_typ is used. 79 B_TEST 3013 Gauss Flux density at I_TEST and max inductance 80 µ_TEST (powder only) N/A % µ at IOCP divided by µ at zero of the comparison of the c	cates a very large core.
78 I_TEST 2.0 2.0 A for checking flux at a current of blank IOCP_typ is used. 79 B_TEST 3013 Gauss Flux density at I_TEST and max inductance 80 µ_TEST (powder only) N/A % µ at IOCP divided by µ at zero of the complexity of	
79 B_1EST 3013 Gauss inductance 80 μ_TEST (powder only) N/A % μ at IOCP divided by μ at zero of	her than IOCP or IP; if
81 Wire	urrent, at IOCPtyp
82 TURNS 259 Inductor turns. To adjust turns (ferrite) or µ_TARGET (powder)	change BP_TARGET
83 ILRMS 0.56 A Inductor RMS current	
84 Wire type Magnet Magnet Select between "Litz" or "Magnet magnet wire	
85 AWG 30 Info 30 AWG !!! Info. Selected wire gauge is caused increased losses due to using multiple strands of thinne	skin effect. Consider wires or Litz wire
86 Filar 2 2 Inductor wire number of paralle to auto-calc for Litz	
87 OD (per strand) 0.254 mm Outer diameter of single strand	of wire
88 OD bundle (Litz only) N/A mm Will be different than OD if Litz	
89 DCR 2.16 ohm Choke DC Resistance	
90 P AC Resistance Ratio Into 14.39 thinner wire and fewer layers, o	
91 J 5.50 A/mm^2 Estimated current density of win that 4 < J < 6	
92 FIT 52% % Percentage fill of winding window approx. 90%	r reduce Kp es. It is recommended
93 Layers 36.2 Estimated layers in winding	r reduce Kp es. It is recommended
94 Loss calculations	r reduce Kp es. It is recommended
95 BAC-p-p 1224 Gauss Core AC peak-peak flux excursion sine wave	r reduce Kp es. It is recommended w for EE/PQ core. Full
96 LPFC_CORE_LOSS 0.05 W Estimated Inductor core Loss	r reduce Kp es. It is recommended w for EE/PQ core. Full
97 LPFC_COPPER_LOSS Info 9.66 W Info: Copper loss too high. Adju	r reduce Kp es. It is recommended w for EE/PQ core. Full on at VACMIN, peak of

DER-750 42 W LED Ballast Driver Using PFS7623C & LYT6067C

						filar, being mindful of AC Resistance ratio
98	LPFC_TOTAL_LOSS		Info	9.71	W	Total losses too high
101	External PFC Diode					
102	PFC Diode Part Number	STTH3R06		STTH3R06		PFC Diode Part Number
103	Type / Part Number			ULTRAFAST		PFC Diode Type / Part Number
104	Manufacturer			ST		Diode Manufacturer
105	VRRM			600.0	V	Diode rated reverse voltage
106	IF			3.00	А	Diode rated forward current
107	Qrr		Info	190.0	nC	Qrr too high: Will result in high diode loss
108	VF			1.25	V	Diode rated forward voltage drop
109	PCOND DIODE			0.150	W	Estimated Diode conduction losses
110	PSW DIODE			0.305	W	Estimated Diode switching losses
111	P DIODE			0.455	W	Total estimated Diode losses
112	TJ Max			100.0	deg C	Maximum steady-state operating temperature
113	Rth-JS		Info	20.00	degC/W	Rth too high. Will result in high diode loss
114	HEATSINK Theta-CA			111.23	degC/W	Maximum thermal resistance of heatsink
						Non-repetitive peak surge current rating. Consider
115	IFSM			55.0	А	larger size diode if inrush or thermal limited.
118	Output Capacitor					
119	COUT	82		82	uF	Minimum value of Output capacitance
120			1			Expected ripple voltage on Output with selected Output
120	VO_RIPPLE_EXPECTED			4.7	V	capacitor
121	T_HOLDUP_EXPECTED			53.9	ms	Expected holdup time with selected Output capacitor
122	ESR_LF		Warning	6.03	ohms	Low frequency ESR must be between 0.01 and 3 ohms
123	ESR_HF		Warning	2.41	ohms	High frequency ESR must be between 0.01 and 1 ohms
124	IC_RMS_LF			0.08	A	Low Frequency Capacitor RMS current
125	IC RMS HF			0.26	А	High Frequency Capacitor RMS current
126	CO_LF_LOSS			0.043	W	Estimated Low Frequency ESR loss in Output capacitor
127	CO_HF_LOSS			0.168	W	Estimated High frequency ESR loss in Output capacitor
128	Total CO LOSS			0.210	W	Total estimated losses in Output Capacitor
131	Input Bridge (BR1) and F	use (F1)	1	01210		
132	I^2t Rating		1	2.53	A^2*s	Minimum I^2t rating for fuse
133	Fuse Current rating			0.81	A	Minimum Current rating of fuse
134	VF			0.90	V	Input bridge Diode forward Diode drop
135	IAVG			0.50	A	Input average current at 70 VAC.
136	PIV INPUT BRIDGE			392	V	Peak inverse voltage of input bridge
137	PCOND LOSS BRIDGE			0.89	Ŵ	Estimated Bridge Diode conduction loss
				0.05		Input capacitor. Use metallized polypropylene or film
138	CIN			0.1	uF	foil type with high ripple current rating
139	RT1			9.79	ohms	Input Thermistor value
140	D_Precharge			1N5407	OHIHS	Recommended precharge Diode
143	PFS4 small signal compor	ents		110/10/		Recommended precharge blode
144	C REF			0.1	uF	REF pin capacitor value
145	RV1			4.0	MOhms	Line sense resistor 1
146	RV2			6.0	MOhms	Line sense resistor 2
			+	0.0		Typical value of the lower resistor connected to the V-
147	RV3			6.0	MOhms	PIN. Use 1% resistor only!
						,
148	RV4			151.7	kOhms	Description pending, could be modified based on feedback chain R1-R4
						V pin decoupling capacitor (RV4 and C V should have a
149	C_V			0.527	nF	time constant of 80us) Pick the closest available
- 17	·			5.527		capacitance.
150	C_VCC		1	1.0	uF	Supply decoupling capacitor
151	C C		1	100	nF	Feedback C pin decoupling capacitor
	Power good Vo lower		1			Vo lower threshold voltage at which power good signal
152	threshold VPG(L)			333	V	will trigger
153	PGT set resistor		1	312.7	kohm	Power good threshold setting resistor
156	Feedback Components		1	512.7		
157	R1			4.0	Mohms	Feedback network, first high voltage divider resistor
158	R2		1	6.0	Mohms	Feedback network, second high voltage divider resistor
159	R3		1	6.0	Mohms	Feedback network, second high voltage divider resistor
160	R4		1	151.7	kohms	Feedback network, lower divider resistor
100	N1		-	1.51.7	ROTHINS	Feedback network, loop speedup capacitor. (R4 and C1
161	C1			0.527	nF	should have a time constant of 80us) Pick the closest
101	C1			0.527	10	available capacitance.
162	R5	1		31.6	kohms	Feedback network: zero setting resistor
163	C2		1	1000	nF	Feedback component- noise suppression capacitor
105			1	1000		

100	Less Budget (Fetimeted)					
166	Loss Budget (Estimated at	t VACMIN)		0.76		
167	PFS Losses			0.76	W	Total estimated losses in PFS
168	Boost diode Losses			0.31	W	Total estimated losses in Output Diode
169	Input Bridge losses			0.89	W	Total estimated losses in input bridge module
170	Inductor losses			9.71	W	Total estimated losses in PFC choke
171	Output Capacitor Loss			0.15	W	Total estimated losses in Output capacitor
172	EMI choke copper loss			0.50	W	Total estimated losses in EMI choke copper
173	Total losses			11.82	W	Overall loss estimate
174	Efficiency		Info	0.80		Efficiency is low. Check choke losses.
177	CAPZero component selec	tion recommenda	ation			
178	CAPZero Device			CAP200DG		(Optional) Recommended CAPZero device to discharge X-Capacitor with time constant of 1 second
179	Total Series Resistance (Rcapzero1+Rcapzero2)			1.02	M-ohms	Maximum Total Series resistor value to discharge X- Capacitors
182	EMI filter components rec	ommendation				
183	CIN_RECOMMENDED			470	nF	Metallized polyester film capacitor after bridge, ratio with Po
184	CX2			330	nF	X capacitor after differencial mode choke and before bridge, ratio with Po
185	LDM_calc			317	uH	estimated minimum differencial inductance to avoid <10kHz resonance in input current
186	CX1			330	nF	X capacitor before common mode choke, ratio with Po
187	LCM			10	mH	typical common mode choke value
188	LCM_leakage			30	uH	estimated leakage inductance of CM choke, typical from 30~60uH
189	CY1 (and CY2)			220	pF	typical Y capacitance for common mode noise suppression
190	LDM_Actual			287	uH	cal_LDM minus LCM_leakage, utilizing CM leakage inductance as DM choke.
191	DCR_LCM			0.10	Ohms	total DCR of CM choke for estimating copper loss
192	DCR_LDM			0.10	Ohms	total DCR of DM choke(or CM #2) for estimating copper loss
194	Note: CX2 can be placed between CM chock and DM choke depending on EMI design requirement.					

Note: The warning/information in the spreadsheet was verified on actual bench tests for validation. The inductance values were also verified on bench tests to pass electrical performance data.

11 DC-DC Transformer Spreadsheet

2 APPLICATION VARIABLES 3 VOCRN, MAX 400 ∨ 400 Minimum input DC voltage 4 VOCRN, MAX 420 Minimum input DC voltage 5 VOUT 42.00 VOUT Minimum input DC voltage 6 IOUT 1.000 1.000 A Output overse 7 POUT 0.94 0.94 0.94 OC Cellicitor veltinate 8 EFRICENCY 0.94 0.94 0.94 OC Cellicitor veltinate 10 PRACOSHE ADAPTER ADAPTER Prover supply endoare Prover supply endoare 7 POUT AVA 500 Store Prover supply endoare Prover supply endoare 7 POUT AVA C 60 W Prover supply endoare Prover supply endoare 11 POUT_MAX C 1.82 Ω Antual denic supply endoare 12 POUT_MAX C 1.52 A Maximum currer time mode 13 ILIMIT_TYP	1	Power Integrations 2018		INFO	OUTPUT	UNITS	DCDC LYTSwitch6 Flyback Design Spreadsheet
4 VOCIN_MAX 420 420 V Maximum pipe DC voltage 5 VOUT 42.00 42.00 V Output voltage 6 IOUT 1.000 1.000 A Output voltage 7 POUT 42.00 W Output voltage 8 EFFICIENCY 0.94 0.94 DC-DC affickery estimate at full load 10 ENCLOSURE ADAPTER ADAPTER Power suppy encloare 11 ENCLOSURE ADAPTER ADAPTER Power suppy encloare 12 ENCLOSURE ADAPTER ADAPTER Power suppy encloare 13 ILIMIT_MODE STANDARD Standawer code Device breakdown voltage 13 DEVICE_CENERIC LVT160/Z Attual device code Attual device code 14 PRIMARY CONTROLLER LVT160/Z Attual device code Attual device code 14 DEVICE_CENERIC LVT160/Z Attual device code Attual device code 12 ILIMIT_MIN 1.348 A Mininum Outr	2	APPLICATION VARIABLES	5				•
5 VOUT 42.00 42.00 V Output current 7 POUT 1.000 1.000 A Output current 7 POUT 0.94 0.94 DcPC efficiency estimate at full load 9 FACTOR_Z ADAPTER ADAPTER Power supply enclosure 10 ENCLOSURE ADAPTER ADAPTER Power supply enclosure 11 INITM RODE STANDARD Device current limit mode 16 VDRAIN BREAKDOWN 650 650 V Device current limit mode 17 DEVICE_CODE LVT60X7 Carenet device code Maximum current limit mode 19 POUT_MAX 600 W Primary sortich on time drain resistance 21 ILIMIT_MIN 1.346 A Simplicitation of the primary sortich in time drain voltage 22 ILIMIT_MAX 1.552 A Maximum current limit of the primary sortich is higher than 3VB appe 23 VDRAIN_OF_PRSW 0.20 V Primary sortich is higher than 3VB appe 24 VDRAIN_OF_PRSW	3						
6 IOUT I.000 A. Output power 7 POUT 42.00 W Output power 8 EFFICIENCY 0.94 0.94 DC-DC affectore satimate at full load 8 EFFICIENCY 0.94 0.50 Z-factor estimate 10 ENCLOSURE ADAPTER ADAPTER Power supply enclosure 11 PINAMAY CONTROLLER STANDARD Device trensition Device trensition 15 ILIMIT_MODE STANDARD StanDARD Device trensition Cenerci device code 16 VDRAIN BREAKCOWN 650 60 W Power apability of the device based on thermal performance 18 DEVICE_CERTERIC LYT60X7 A Power apability of the device based on thermal performance 21 ILIMIT_MAX ILIMIT_MAR A Minimum current limit of the primary switch 22 ILIMIT_MAX ILIMIT_MAR ILIMIT_MAR Type and current limit of the primary switch 23 ILIMIT_MAX ILIMIT_MAR ILIMIT_MAR Maximum switching frequency at full oxit oxit oxit oxit oxit oxi	4	VDCIN_MAX	420		420		
7 POUT 42.00 W Output power 8 EFFICINY 0.94 0.94 DC-DC efficiency estimate at full load 9 FACTOR_Z ADAPTER ADAPTER Power supply enclosure 14 PRIMARY CONTROLLER SELECTION Tower supply enclosure Power supply enclosure 15 LIMIT MODE STANDARD STANDARD Device current limit node 16 VDRAIN BREAKDOWN 650 Control tower supply enclosure Control tower supply enclosure 18 DEVICE_CODE LYT60X7 Catual device code Control tower supply enclosure 19 POUT_MAX 60 W Power supply inficiencies device code 21 LIMIT_MIN 1.348 A Typical current limit of the primary workth on time drain resistance 23 LIMIT_MAX 1.552 A Maximum current limit of the primary switch 24 VDRAIN_OFF_RSW 0.20 V Primary switch in time drain voltage 24 VDRAIN_OFF_RSW 0.20 V Namum switching requery at full load and minimano DC input voltage	-		42.00			-	
8 EFFCIENCY 0.94 DC-DC effency estimate at fulload 01 EFCICSR Z ADAPTER ADAPTER Power supply endoaure 10 ENCLOSURE ADAPTER Power supply endoaure 11 ENCLOSURE ADAPTER Power supply endoaure 12 ENCLOSURE STANDARD STANDARD Device treakdown voltage 13 ILIMIT MODE STANDARD STANDARD Device treakdown voltage 14 PRIMARY CONTROLLER EVTER.C. LYT60X7 General device code 14 DEVICE_GENERIC LYT60X7 General device code Maintum current limit of the primary soutch 18 DEVICE_GENERIC LYT60X7 A maintum current limit of the primary soutch Maintum current limit of the primary soutch 12 ILIMIT_TMA 1.548 A Maintum current limit of the primary soutch 13 ILIMIT_TMAX 1.552 A Maintum current limit of the primary soutch 14 VDRAIN_ONE_PRSW 0.20 V The primary Maintum to the drin voltage 15 VDRAIN_ONE_PRSW 0.20 <td></td> <td></td> <td>1.000</td> <td></td> <td></td> <td></td> <td></td>			1.000				
9 FACTOR Z D 0.50 Z*dator 10 ENGCOURE ADAPTER ADAPTER Power supply enclosure 14 PRIMARY CONTROLLER SELECTION FANDARD Device current limit mode 15 ILIMIT, MODE STANDARD Device current limit mode 16 VORAIN_BREAKDOWN 650 V Device current limit mode 17 DEVICE_CODE LYT60X7 Cenenci device code Device current limit of device based on the many switch on time drain resistance at 100 degc. 19 POUT_MAX 66 W Primary switch on time drain resistance at 100 degc. 21 ILIMIT_MIN 1.348 A Minimum current limit of the primary switch on time drain voltage on the switch is higher than 583°. 22 ILIMIT_MAX 1.552 A Maxinch 23 ILIMIT_MAX 1.552 A Maxinch 24 VORAIN_OFF.PRSW Warning 590.0 V Primary switch on time drain voltage on the switch is higher than 583°. Decrease the device work is higher than 583°. Decr						W	
ID ENCLOSUBE ADAPTER ADAPTER Power supply enclosure 14 PRIMARY CONTROLLER SELECTION STANDARD Device current limit mode 15 ILIMIT_MODE STANDARD STANDARD Device current limit mode 16 VDRAIN BREAKDOWN 650 V Device current limit mode 17 DEVICE_GENERIC LVT60X7 VT60X7 Generic device code 18 DEVICE_CODE LVT60X7 VT60X7 Primary switch on time drain resistance at 100 degC. 20 RDSON_100DEG 1.82 Q Primary switch on time drain resistance at 100 degC. 21 ILIMIT_MIN 1.348 A Maximum current limit of the primary switch 22 ILIMIT_MAX 1.552 A Maximum current limit of the primary switch 23 ILIMIT_MAX 0.20 V Primary switch on time drain voltage 24 VORAIN_OFF_PRSW 0.20 V The pack drain voltage on the switch is higher than SSV: Decrease the device VOR 30 PSWTTCHING_MAX 60000 60000 Hz Maximum switch dray cycle			0.94				1
14 PRIMARY CONTROLER SELECTION 15 ILIMIT_MODE STANDARD STANDARD 16 VORAIN_BREADOWN 650 V Device current limit mode 16 VDRAIN_BREADOWN 650 V Device current limit mode 17 DEVICE_GODE LYT60X7 C Actual device code 18 DEVICE_GODE LYT60X7 C Actual device code 20 RDSON_100DEG 1.82 Ω Primary switch on time drain resistance at 100 degc. 21 ILIMIT_MIN 1.348 A Minimum current limit of the primary switch on time drain resistance at 100 degc. 22 ILIMIT_TP 1.450 A Typical current limit of the primary switch on time drain voltage on the switch is higher than 553°. 23 ILIMIT_MAX 1.552 A Maxinum current limit of the primary switch on time drain voltage on the switch is higher than 553°. 24 VDRAIN_O.PESW 0.20 V Primary switch on time drain voltage on the switch is higher than 553°. Device caperation 31 VOR 100.0 IU Primary switch on time drain resistance at intimum o							
15 ILIMIT_MODE STANDARD STANDARD Device corrent limit mode 16 VDRAIN_BREAKCOWN 650 V Device breakdown voltage 17 DEVICE_CODE LYT60X7 Ceneric device code 18 DEVICE_CODE LYT60X7 Generic device code 19 PUT_NAX 60 W Primarg applity of the device based on themal performance. 20 RDSON_100DEG 1.82 Q Primarg workth on time drain resistance at 100 degC. 21 ILIMIT_MIN 1.348 A Mainum current limit of the primary workth. 22 ILIMIT_MAX 1.552 A Mainum current limit of the primary workth. 23 ILIMIT_MAX 1.552 A Mainum current limit of the primary workth. 24 VDRAIN_OFF_PRSW 0.20 V Primary workth on time drain voltage on the switch is higher than SSV: Decrease the device VOR 25 VDRAIN_OFF_PRSW Warning 590.0 V The pack drain voltage on the switch is higher than SSV: Decrease the device VOR 30 PSWITCHING_MAX 60000 60000 Hz	-				ADAPTER		Power supply enclosure
16 VDRAIN_BREADOWN 650 550 V Device breakdown voltage 17 DEVICE_CODE LYT60X7 Generic device code 18 DEVICE_CODE LYT60X7 Generic device code 19 POUT_MAX 60 W Hower capability of the device based on 16 RDSON_100DEG 1.82 Ω at 100 degC. 21 ILIMIT_MIN 1.348 A switch Minimum current limit of the primary switch 22 ILIMIT_TYP 1.459 A Typical current limit of the primary switch 23 ILIMIT_MAX 1.552 A Minimum current limit of the primary switch 24 VDRAIN_OR_PRSW 0.20 V Primary switch on time drain voltage to switch is higher than s85V : Decrease the device VoR 25 VDRAIN_OR_PRSW Warming 590.0 V Nigher than s85V : Decrease the device VoR 30 FSWITCHING_MAX 60000 60000 Hz Maximum switching frequency at full load at minimum Dic input voltage 31 VOR 100.0 100.0 V pr					CTANDADD	-	Device example limit and de
17 DEVICE_CENERIC LYT607 Generic device code 18 DEVICE_CODE LYT607C Actual device code 19 POUT_MAX 60 W Power capability of the device based on thermal performance. 10 RDSON_100DEG 1.82 Ω Primary switch on time drain resistance at 100 degC. 11 ILIMIT_MIN 1.348 A Switch. 22 ILIMIT_TYP 1.450 A Typical current limit of the primary switch. 23 ILIMIT_MAX 1.552 A Switch. 24 VDRAIN_ON PRSW 0.20 V Primary switch on time drain voltage. 25 VDRAIN_OFF_PRSW Warning 590.0 V Warning which than S8V : Decrease the device WOR 29 WORST CASE ELECTRICAL PARAMETERS Maximum switching frequency at full load and minimum you voltage reflected to the primary switch turns primary switch duty cycle 31 VOR 100.0 100.0 V Primary switch duty cycle 32 K/P 1.19						N	
18 DEVICE_CODE LYT6667C Actu device code 19 POUT_MAX 60 W Power capability of the device based on themal performance 20 RDSON_100DEG 1.82 Ω Primary switch on time drain resistance at 100 degC. 21 ILIMIT_MIN 1.348 A Switch on time drain resistance at 100 degC. 21 ILIMIT_TP 1.450 A Typical current limit of the primary switch. 23 ILIMIT_TP 1.450 A Typical current limit of the primary switch. 23 ILIMIT_MAX 0.20 V Primary switch on time drain voltage 24 VDRAIN_OFF_PRSW 0.20 V The pack drain voltage on the writch is switch is switch on time drain voltage on the writch is switch on time drain voltage the writch is voltage reflected to the primary switch unsupport on the primary switch unsupport voltage reflected to the primary		VDRAIN_BREAKDOWN				V	
19 POUT_MAX 60 W Power capability of the device based on thermal performance 20 RDSON_100DEG 1.82 Ω Primary switch on time drain resistance at 100 degC. 21 ILIMIT_MIN 1.348 A Winnum current limit of the primary switch 22 ILIMIT_TYP 1.450 A Typical current limit of the primary switch 23 ILIMIT_MAX 1.552 A Maximum current limit of the primary switch 24 VDRAIN_OR_PESW 0.20 V Primary switch on time drain voltage 24 VDRAIN_OR_FF_PSW Warning 590.0 V bight rehan 585V : Decrease the device 25 VDRAIN_OFF_PSW Warning 590.0 V bight rehan 585V : Decrease the device 26 WORST CASE ELECTRICAL PARAMETERS			LYIOUX/				
19 POUL_WA 00 W Iternal performance 20 RDSON_100DEG 1.82 Ω Primary switch on time drain resistance at 100 degC 21 ILIMIT_MIN 1.348 A Minimum current limit of the primary switch on time drain resistance at 100 degC 22 ILIMIT_MAX 1.552 A Morinum current limit of the primary switch on time drain voltage 23 ILIMIT_MAX 1.552 A Morinum current limit of the primary switch on time drain voltage 24 VDRAIN_OFF_PRSW 0.20 V Primary switch on time drain voltage 25 VDRAIN_OFF_PRSW Warning 590.0 V higher than 550'. Decrease the device 29 WORST CASE ELECTRICAL PARAMETERS Maximum switching frequency at full load and minimum DC input voltage and minimum DC input voltage 30 FSWITCHING_MAX 60000 60000 Hz Maximum switching frequency at full load and minimum DC input voltage 31 VOR 100.0 100.0 V Secondary voltage reflected to the primary switch on-time 32 KP 1.19 Measure of continuous/discontinuous / disco	10				LTIOUO/C		
40 NOSON_1000CG 1.32 34 at 100 degC 21 ILIMIT_MIN 1.348 A Minimum current limit of the primary switch 21 ILIMIT_YP 1.450 A Typical current limit of the primary switch 23 ILIMIT_MAX 1.552 A Maximum current limit of the primary switch 24 VDRAIN_OFF_PRSW 0.20 V The peak drain voltage on the switch is 25 VDRAIN_OFF_PRSW Warning 590.0 V higher than S85V : Decrease the device VOR 29 WORST CASE ELECTRICAL PARAMETERS Maximum switching frequency at full load and minimum DC input voltage 30 FSWTTCHING_MAX 60000 60000 Hz and minimum DC input voltage 31 VOR 100.0 100.0 V primary switch unstream 32 KP 1.19 Measure of continuous/discontinuous 33 MODE_OPERATION DCM Mode of operation 34 DUTYCYCLE 0.174 Primary switch on-time 35 TIME_ON 3.45 us Pri	19	POUT_MAX			60	W	thermal performance
1 1.348 A switch 22 1LIMIT_TYP 1.450 A Typkal current limit of the primary switch 23 ILIMIT_MAX 1.552 A switch 24 VDRAIN_ON_PRSW 0.20 V Primary switch on time drain voltage 25 VDRAIN_OFF_PRSW Warning 590.0 V higher than 585V: Decrease the device 29 WORST CASE ELECTRICAL PARAMETERS Maximum switching frequency at full load and minimum C input voltage The peak drain voltage on the switch is higher than 585V: Decrease the device 30 FSWITCHING_MAX 60000 60000 Hz and minimum C input voltage 31 VOR 100.0 100.0 V primary switch furns when the primary switch furns off 31 VOR 100.0 100.0 V primary switch dury cycle 32 KP 1.19 Measure of continuous/discontinuous mode of operation 33 IMODE_OPERATION DCM Mode of operation 34 DUTYCYCLE 0.174 Primary switch ortime 35 TIME_OFF 1.380 us Primary switch ortime 36 <td>20</td> <td>RDSON_100DEG</td> <td></td> <td></td> <td>1.82</td> <td>Ω</td> <td>at 100 degC</td>	20	RDSON_100DEG			1.82	Ω	at 100 degC
23 LILIMIT_MAX 1.552 A Maximum current limit of the primary switch 24 VDRAIN_ON_PRSW 0.20 V Primary switch on time drain voltage 25 VDRAIN_OFF_PRSW Warning 590.0 V The peak drain voltage on the switch is time than S8V : Decrease the device VOR 29 WORST CASE ELECTRICAL PARAMETERS FSWITCHING_MAX 60000 60000 Hz Maximum switching frequency at full load and minimum DC input voltage 30 FSWITCHING_MAX 60000 60000 Hz Maximum switching frequency at full load and minimum DC input voltage. 31 VOR 100.0 100.0 V primary when the primary switch turns off 32 KP 1.19 Measure of continuous/discontinuous mode of operation 33 MODE_OPERATION DCM Mode of operation 34 DUTYCYCLE 0.174 Primary switch duty cycle 35 TIME_OFF 1.380 us Primary switch duty cycle 36 TIME_OFF 1.380 us Primary switch duty cycle 37 LPRIMARY_TOL 5.0 % Primary switch areace contain dutance 38 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>switch</td>							switch
23 LLIPIT_PMA 1.332 A switch 24 VDRAIN_ON_PRSW 0.20 V Primary switch on time drain voltage 25 VDRAIN_OFF_PRSW Warning 590.0 V Primary switch on time drain voltage 29 WORST CASE ELECTRICAL PARAMETERS VOR Maximum switching frequency at full load and minimum DC input voltage 30 FSWITCHING_MAX 60000 60000 Hz Maximum switching frequency at full load and minimum DC input voltage 31 VOR 100.0 100.0 V Scondary voltage reflected to the primary switch turns off. 32 KP 1.19 Measure of continuous/discontinuous mode of operation Mode of operation 33 MODE_OPERATION DCM Mode of operation Mode of operation 34 DUTVCYCLE 0.174 Primary switch off-time 13.80 us 35 TIME_ON 3.45 us Primary switch ortime 14.111 35 TIME_ON 5.0 % Primary switch ortime 14.111 36 TIME_ON 1.330 us Primary switch arearce 14.1111 14.111 <td< td=""><td>22</td><td>ILIMIT_TYP</td><td></td><td></td><td>1.450</td><td>A</td><td></td></td<>	22	ILIMIT_TYP			1.450	A	
25 VDRAIN_OFF_PRSW Warning 590.0 V The peak drain voltage on the switch is higher than 585V : Decrease the device VOR 29 WORST CASE ELECTRICAL PARAMETERS	23				1.552		switch
25 VDRAIN_OFF_PRSW Warning 590.0 V higher than 585V : Decrease the device VOR 29 WORST CASE ELECTRICAL PARAMETERS Maximum switching frequency at full load and minimum DC input voltage 30 FSWITCHING_MAX 60000 60000 Hz Maximum switching frequency at full load and minimum DC input voltage 31 VOR 100.0 100.0 V Primary switch uns gredited to the primary when the primary switch turns off 32 KP 1.19 Measure of continuous/discontinuous mode of operation 33 MODE_OPERATION DCM Mode of operation 34 DUTYCYCLE 0.174 Primary switch off-fime 35 TIME_OR 3.45 us Primary switch off-fime 36 TIME_OR 906.4 uH Minimum primary inductance 39 LPRIMARY_TYP 954.1 uH Typical primary inductance 39 LPRIMARY_MAX 1001.8 uH Maximum primary inductance 43 IPEAK_PRIMARY 1.398 A Primary switch current pedestal 44 IPED	24	VDRAIN_ON_PRSW			0.20	V	
30 FSWITCHING_MAX 60000 Hz Maximum Switching frequency at full load and minimum DC input voltage 31 VOR 100.0 100.0 V primary when the primary switch turns off 32 KP 1.19 Measure of continuous/discontinuous mode of operation 33 MODE_OPERATION DCM Mode of operation 34 DUTYCYCLE 0.174 Primary switch ortime 35 TIME_ON 3.45 us Primary switch off-time 36 TIME_OFF 13.80 us Primary switch off-time 37 LPRIMARY_MIN 996.4 uH Minimum primary inductance 38 LPRIMARY_TOL 5.0 % Primary switch off-time 39 LPRIMARY_MAX 1001.8 uH Maximum primary inductance 41 IPEDESTAL_PRIMARY 1.398 A Primary switch average current 44 IPEDESTAL_PRIMARY 0.108 A Primary switch average current 45 IAVG_PRIMARY 0.318 A Primary switch average current <t< td=""><td>25</td><td>VDRAIN_OFF_PRSW</td><td></td><td>Warning</td><td>590.0</td><td>v</td><td>higher than 585V : Decrease the device</td></t<>	25	VDRAIN_OFF_PRSW		Warning	590.0	v	higher than 585V : Decrease the device
30 PSWLETING_MAX 60000 HZ and minimum DC input voltage 31 VOR 100.0 100.0 V primary when the primary switch turns off 32 KP 1.19 Measure of continuous/discontinuous mode of operation 33 MODE_OPERATION DCM Mode of operation 34 DUTYCYCLE 0.174 Primary switch duty cycle 35 TIME_ON 3.45 us Primary switch on-time 36 TIME_ON 3.45 us Primary switch duty cycle 37 LPRIMARY_MIN 906.4 uH Minimum primary inductance 38 LPRIMARY_TOL 5.0 % Primary inductance 39 LPRIMARY_TOL 5.0 % Primary inductance 39 LPRIMARY_TOL 5.0 % Primary inductance 41 IPEDESTAL_PRIMARY 1.001.8 uH Maximum primary inductance 42 PRIMARY CURRENTS 0.000 A Primary switch everage current 44 IPEDESTAL_PRIMARY 0.108 A Primary switch average current 44 IPEDESTAL_PRIMARY 0.318 A Primary switch average current 45 IAVG_PRIMARY 0.318 A Primary swi	29	WORST CASE ELECTRICA	L PARAMETERS				·
31 VOR 100.0 V primary when the primary switch turns off 32 KP 1.19 Measure of continuous/discontinuous mode of operation 33 MODE_OPERATION DCM Mode of operation 34 DUTYCYCLE 0.174 Primary switch duty cycle 35 TIME_ON 3.45 us Primary switch off-time 36 TIME_OFF 13.80 us Primary switch off-time 37 LPRIMARY_MIN 906.4 uH Minimum primary inductance 38 URPIMARY_TOL 5.0 % Primary switch carce tolerance 40 LPRIMARY_TOL 5.0 % Primary switch carce tolerance 41 IPEAK_PRIMARY 1001.8 uH Maximum primary inductance 42 PRIMARY CURRENTS 1001.8 A Primary switch current 43 IPEAK_PRIMARY 0.398 A Primary switch current 44 IPEDESTAL_PRIMARY 0.318 A Primary switch ripple current 45 IAVG_PRIMARY 0.318 A Primary switch ripple current 46 IRIPPLE_PRIMARY 0.328 A Primary switch ripple current 47 IRMS_PRIMARY 0.318 A Primary switch	30	FSWITCHING_MAX	60000		60000	Hz	
32 KP 1.19 mode of operation 33 MODE_OPERATION DCM Mode of operation 34 DUTYCYCLE 0.174 Primary switch duty cycle 35 TIME_ON 3.45 us Primary switch on-time 36 TIME_OFF 13.80 us Primary switch on-time 37 LPRIMARY_MIN 906.4 uH Minimum primary inductance 38 LPRIMARY_TVP 954.1 uH Typical primary inductance 39 LPRIMARY_TOL 5.0 % Primary switch duty cycle 40 LPRIMARY_URRENTS 1001.8 uH Maximum primary inductance 42 PRIMARY CURRENTS 1.398 A Primary switch current pedestal 45 IAVG_PRIMARY 0.108 A Primary switch average current 44 IPEDESTAL_PRIMARY 0.318 A Primary switch fingle current 47 IRMPL_PRIMARY 0.338 A Primary switch RMS current 49 SECONDARY 0.3344 A <	31	VOR	100.0		100.0	v	primary when the primary switch turns
34 DUTYCYCLE 0.174 Primary switch duty cycle 35 TIME_ON 3.45 us Primary switch on-time 36 TIME_OFF 13.80 us Primary switch off-time 37 LPRIMARY_MIN 906.4 uH Minimum primary inductance 38 LPRIMARY_TP 954.1 uH Typical primary inductance 39 LPRIMARY_MAX 1001.8 uH Maximum primary inductance 40 LPRIMARY_MAX 1001.8 uH Maximum primary inductance 42 PRIMARY_MAX 1001.8 uH Maximum primary switch current pedestal 44 IPEAK_PRIMARY 0.108 A Primary switch current pedestal 45 IAVG_PRIMARY 0.108 A Primary switch current pedestal 45 IAVG_PRIMARY 0.318 A Primary switch RMS current 49 SECONDARY CURRENTS 0.324 A Secondary winding peak current 51 IPEAK_SECONDARY 1.521 A Secondary winding RMS current	32	КР			1.19		
35 TIME_ON 3.45 us Primary switch on-time 36 TIME_OFF 13.80 us Primary switch off-time 37 LPRIMARY_MIN 906.4 uH Minimum primary inductance 38 LPRIMARY_TYP 954.1 uH Typical primary inductance 39 LPRIMARY_TOL 5.0 % Primary inductance 40 LPRIMARY_MAX 1001.8 uH Maximum primary inductance 41 IPREMC_PRIMARY 1.011.8 uH Maximum primary inductance 42 PRIMARY CURRENTS 0.000 A Primary switch peak current 44 IPEDESTAL_PRIMARY 0.108 A Primary switch average current 45 IAVG_PRIMARY 0.318 A Primary switch ripple current 46 IRIPPLE_PRIMARY 0.3318 A Primary switch RMS current 49 SECONDARY CURENTS 0.000 A Secondary winding peak current 50 IPEAK_SECONDARY 0.3344 A Secondary winding current pedestal 51 IPEDESTAL_SECONDARY 1.521 A Secondary win	33	MODE_OPERATION			DCM		Mode of operation
36 TIME_OFF 13.80 us Primary switch off-time 37 LPRIMARY_MIN 906.4 uH Minimum primary inductance 38 LPRIMARY_TOP 954.1 uH Typical primary inductance 39 LPRIMARY_TOL 5.0 % Primary inductance tolerance 40 LPRIMARY_MAX 1001.8 uH Maximum primary inductance 41 IPEAK_PRIMARY 1.398 A Primary switch peak current 43 IPEAK_PRIMARY 0.000 A Primary switch verse current 44 IPEDESTAL_PRIMARY 0.108 A Primary switch verse current 45 IAVG_PRIMARY 0.318 A Primary switch ripple current 46 IRIPPLE_PRIMARY 0.318 A Primary switch ripple current 47 IRMS_PRIMARY 0.318 A Primary switch RMS current 50 IPEAK_SECONDARY 0.000 A Secondary winding peak current 51 IPEDESTAL_SECONDARY 0.000 A Secondary winding Current pedestal <td>34</td> <td></td> <td></td> <td></td> <td>0.174</td> <td></td> <td></td>	34				0.174		
37 LPRIMARY_MIN 906.4 uH Minimum primary inductance 38 LPRIMARY_TYP 954.1 uH Typical primary inductance 39 LPRIMARY_TOL 5.0 % Primary inductance tolerance 40 LPRIMARY_MAX 1001.8 uH Maximum primary inductance 41 LPENETS 1001.8 uH Maximum primary inductance 42 PRIMARY CURRENTS 1.398 A Primary switch peak current 44 IPEDESTAL_PRIMARY 0.000 A Primary switch current pedestal 45 IAVG_PRIMARY 0.108 A Primary switch average current 46 IRIPLE_PRIMARY 0.318 A Primary switch righe current 47 IRMS_PRIMARY 0.318 A Primary switch RMS current 49 SECONDARY 0.321 A Secondary winding peak current 51 IPEDESTAL_SECONDARY 0.000 A Secondary winding RMS current 52 IRMS_SECONDARY 0.521 A Secondary winding RMS current 53 IRIPPLE_CAP_OUT 1.521 A Sec	35				3.45	us	
38 LPRIMARY_TYP 954.1 uH Typical primary inductance 39 LPRIMARY_TOL 5.0 % Primary inductance tolerance 40 LPRIMARY_TOL 1001.8 uH Maximum primary inductance 42 PRIMARY CURRENTS 1.398 A Primary switch peak current 43 IPEAK_PRIMARY 0.000 A Primary switch peak current pedestal 44 IPEDESTAL_PRIMARY 0.108 A Primary switch average current 44 IPEDESTAL_PRIMARY 0.318 A Primary switch average current 45 IAVG_PRIMARY 0.318 A Primary switch RMS current 46 IRIPPLE_PRIMARY 0.318 A Primary switch RMS current 49 SECONDARY CURRENTS 0.318 A Secondary winding peak current 50 IPEAK_SECONDARY 0.000 A Secondary winding current pedestal 51 IPEDESTAL_SECONDARY 1.521 A Secondary winding RMS current 53 IRIPPLE_CAP_OUT 1.521 A <					13.80	us	
39 LPRIMARY_TOL 5.0 % Primary inductance tolerance 40 LPRIMARY_MAX 1001.8 uH Maximum primary inductance 42 PRIMARY_CURRENTS 1.091.8 uH Maximum primary inductance 43 IPEAK_PRIMARY 1.398 A Primary switch peak current 44 IPEDESTAL_PRIMARY 0.000 A Primary switch current pedestal 45 IAVG_PRIMARY 0.108 A Primary switch average current 46 IRIPPLE_PRIMARY 0.318 A Primary switch ripple current 47 IRMS_PRIMARY 0.318 A Primary switch RMS current 49 SECONDARY CURRENTS 0.314 A Secondary winding peak current 50 IPEAK_SECONDARY 0.400 A Secondary winding current pedestal 51 IPEDESTAL_SECONDARY 1.521 A Secondary winding RMS current 53 IRIPPLE_CAP_OUT - - - 54 CORE RM8 Core selection - 60 CORE RM8 Core cose sectional area -							
40 LPRIMARY_MAX 1001.8 uH Maximum primary inductance 42 PRIMARY CURRENTS 43 IPEAK_PRIMARY 1.398 A Primary switch peak current 44 IPEDESTAL_PRIMARY 0.000 A Primary switch current pedestal 44 IPEDESTAL_PRIMARY 0.108 A Primary switch average current 45 IAVG_PRIMARY 0.108 A Primary switch average current 46 IRIPLE_PRIMARY 0.318 A Primary switch ripple current 47 IRMS_PRIMARY 0.318 A Primary switch RMS current 49 SECONDARY CURRENTS 0.318 A Primary switch RMS current 50 IPEAK_SECONDARY 3.344 A Secondary winding peak current 51 IPEDESTAL_SECONDARY 1.521 A Secondary winding RMS current 51 IPEDECAP_OUT I I Image Secondary winding RMS current 53 IRMEPCAP_OUT I I Image Secondary winding RMS current 58 CORE RM8 RM8 Core selection 60 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></t<>						-	
42 PRIMARY CURRENTS 43 IPEAK_PRIMARY 1.398 A Primary switch peak current 44 IPEDESTAL_PRIMARY 0.000 A Primary switch current pedestal 45 IAVG_PRIMARY 0.108 A Primary switch average current 46 IRIPPLE_PRIMARY 0.108 A Primary switch average current 47 IRMS_PRIMARY 0.318 A Primary switch ripple current 49 SECONDARY CURRENTS 0.318 A Primary switch RMS current 50 IPEAK_SECONDARY 3.344 A Secondary winding peak current 51 IPEDESTAL_SECONDARY 0.000 A Secondary winding current pedestal 52 IRMS_SECONDARY 1.521 A Secondary winding RMS current 53 IRIPPLE_CAP_OUT 1 1 1 54 CORE RM8 Core selection 59 CORE B6581110000R095 Core code 61 AE 64.00 mm^2 Core code 61 AE 4100 nH/turns^2 Ungapped core effective inductance							
43 IPEAK_PRIMARY 1.398 A Primary switch peak current 44 IPEDESTAL_PRIMARY 0.000 A Primary switch current pedestal 45 IAVG_PRIMARY 0.108 A Primary switch average current 46 IRIPPLE_PRIMARY 1.398 A Primary switch ripple current 47 IRMS_PRIMARY 0.318 A Primary switch ripple current 47 IRMS_PRIMARY 0.318 A Primary switch RMS current 49 SECONDARY CURRENTS 0.318 A Primary switch RMS current 50 IPEAK_SECONDARY 3.344 A Secondary winding peak current 51 IPEDESTAL_SECONDARY 0.000 A Secondary winding current pedestal 52 IRMS_SECONDARY 1.521 A Secondary winding RMS current 53 IRIPPLE_CAP_OUT 1 1 1 57 TRANSFORMER CONSTRUCTION PARAMETERS 58 Core selection 59 CORE RM8 RM8 Core code 61 AE 64.00 mm^2 Core code 61					1001.8	uH	Maximum primary inductance
44 IPEDESTAL_PRIMARY 0.000 A Primary switch current pedestal 45 IAVG_PRIMARY 0.108 A Primary switch average current 46 IRIPPLE_PRIMARY 1.398 A Primary switch ripple current 47 IRMS_PRIMARY 0.318 A Primary switch RMS current 49 SECONDARY CURRENTS 3.344 A Secondary winding peak current 50 IPEAK_SECONDARY 3.344 A Secondary winding current pedestal 51 IPEDESTAL_SECONDARY 0.000 A Secondary winding current pedestal 52 IRMS_SECONDARY 1.521 A Secondary winding RMS current 53 IRIPPLE_CAP_OUT 1 1 1 54 CORE RM8 Core selection 59 CORE RM8 RM8 Core code 60 CORE CODE B65811J0000R095 Core code Core code 61 AE 64.00 mm^2 Core cods sectional area 62 LE 38.00 mm Core orgs sectional area 63 AL			-		1 200		Duineau autikak analy suggest
45IAVG_PRIMARY0.108APrimary switch average current46IRIPPLE_PRIMARY1.398APrimary switch ripple current47IRMS_PRIMARY0.318APrimary switch RMS current49SECONDARY CURRENTS50IPEAK_SECONDARY3.344ASecondary winding peak current51IPEDESTAL_SECONDARY0.000ASecondary winding current pedestal52IRMS_SECONDARY1.521ASecondary winding RMS current53IRIPPLE_CAP_OUT57TRANSFORMER CONSTRUCTION PARAMETERS58CORERM8Core selection60COREB65811J0000R095Core code61AE64.00mm^22Core cross sectional area62LE38.00mmCore magnetic path length63AL4100nH/turrs^2Ungapped core effective inductance64VE2430.0mm^33Core volume							· · ·
46 IRIPPLE_PRIMARY 1.398 A Primary switch ripple current 47 IRMS_PRIMARY 0.318 A Primary switch ripple current 49 SECONDARY CURRENTS 3.344 A Secondary winding peak current 50 IPEAK_SECONDARY 3.344 A Secondary winding current pedestal 51 IPEDESTAL_SECONDARY 0.000 A Secondary winding current pedestal 52 IRMS_SECONDARY 1.521 A Secondary winding RMS current 53 IRIPPLE_CAP_OUT 1 1 1 57 TRANSFORMER CONSTRUCTION PARAMETERS 58 Core Selection 59 CORE RM8 RM8 Core selection 60 CORE CODE B65811J0000R095 Core code 61 AE 64.00 mm^22 Core magnetic path length 62 LE 38.00 mm Core magnetic path length 63 AL 4100 nH/turns^2 Ungapped core effective inductance 64 VE 2430.0 mm^3 Core volume <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>+ · · ·</td>		_					+ · · ·
47 IRMS_PRIMARY 0.318 A Primary switch RMS current 49 SECONDARY CURRENTS 3.344 A Secondary winding peak current 50 IPEAK_SECONDARY 3.344 A Secondary winding peak current 51 IPEDESTAL_SECONDARY 0.000 A Secondary winding current pedestal 52 IRMS_SECONDARY 1.521 A Secondary winding RMS current 53 IRIPPLE_CAP_OUT 1 1 1 57 TRANSFORMER CONSTRUCTION PARAMETERS 58 CORE SELECTION 59 CORE RM8 RM8 Core selection 60 CORE CODE B65811J0000R095 Core code 61 AE 64.00 mm^22 Core magnetic path length 62 LE 38.00 mm Core magnetic path length 63 AL 4100 nH/turns^2 Ungapped core effective inductance 64 VE 2430.0 mm^3 Core volume							, , , , , , , , , , , , , , , , , , ,
49 SECONDARY CURRENTS 50 IPEAK_SECONDARY 3.344 A Secondary winding peak current 51 IPEDESTAL_SECONDARY 0.000 A Secondary winding current pedestal 52 IRMS_SECONDARY 1.521 A Secondary winding RMS current 53 IRIPPLE_CAP_OUT 1 1 1 57 TRANSFORMER CONSTRUCTION PARAMETERS 58 CORE SELECTION 59 CORE RM8 RM8 Core selection 60 CORE CODE B65811J0000R095 Core code 61 AE 64.00 mm^22 Core cores sectional area 62 LE 38.00 mm Core magnetic path length 63 AL 4100 nH/turns^2 Ungapped core effective inductance 64 VE 2430.0 mm^3 Core volume							
50 IPEAK_SECONDARY 3.344 A Secondary winding peak current 51 IPEDESTAL_SECONDARY 0.000 A Secondary winding current pedestal 52 IRMS_SECONDARY 1.521 A Secondary winding RMS current 53 IRIPPLE_CAP_OUT			L		0.310	A	
51 IPEDESTAL_SECONDARY 0.000 A Secondary winding current pedestal 52 IRMS_SECONDARY 1.521 A Secondary winding RMS current 53 IRIPPLE_CAP_OUT 57 TRANSFORMER CONSTRUCTION PARAMETERS 58 CORE SELECTION 59 CORE RM8 Core selection 60 CORE CODE B65811J0000R095 Core code 61 AE 64.00 mm^22 Core cross sectional area 62 LE 38.00 mm Core magnetic path length 63 AL 4100 nH/turns^2 Ungapped core effective inductance 64 VE 2430.0 mm^3 Core volume					2 244	Δ	Secondary winding peak current
52 IRMS_SECONDARY 1.521 A Secondary winding RMS current 53 IRIPPLE_CAP_OUT 57 TRANSFORMER CONSTRUCTION PARAMETERS 58 CORE SELECTION 59 CORE RM8 Core selection 60 CORE CODE B6581130000R095 Core code 61 AE 64.00 mm^22 Core ross sectional area 62 LE 38.00 mm Core magnetic path length 63 AL 4100 nH/turns^2 Ungapped core effective inductance 64 VE 2430.0 mm^3 Core volume							
57 TRANSFORMER CONSTRUCTION PARAMETERS 58 CORE SELECTION 59 CORE 60 CORE CODE 61 AE 62 LE 63 AL 64 VE 64 VE	52	IRMS_SECONDARY					, , ,
58 CORE SELECTION 59 CORE RM8 RM8 Core selection 60 CORE CODE B65811J0000R095 Core code 61 AE 64.00 mm^22 Core cross sectional area 62 LE 38.00 mm Core magnetic path length 63 AL 4100 nH/turns^2 Ungapped core effective inductance 64 VE 2430.0 mm^3 Core volume				ETERC		I	l
59CORERM8RM8Core selection60CORE CODEB65811J0000R095Core code61AE64.00mm^2Core cross sectional area62LE38.00mmCore magnetic path length63AL4100nH/turns^2Ungapped core effective inductance64VE2430.0mm^3Core volume			CTION PARAM	LIEKS			
60 CORE CODE B65811J0000R095 Core code 61 AE 64.00 mm^2 Core cross sectional area 62 LE 38.00 mm Core magnetic path length 63 AL 4100 nH/turns^2 Ungapped core effective inductance 64 VE 2430.0 mm^3 Core volume			DMO		DMO	1	Core selection
61 AE 64.00 mm^2 Core cross sectional area 62 LE 38.00 mm Core magnetic path length 63 AL 4100 nH/turns^2 Ungapped core effective inductance 64 VE 2430.0 mm^3 Core volume			01412			+	
62 LE 38.00 mm Core magnetic path length 63 AL 4100 nH/turns^2 Ungapped core effective inductance 64 VE 2430.0 mm^3 Core volume				+		mm^2	
63 AL 4100 nH/turns^2 Ungapped core effective inductance 64 VE 2430.0 mm^3 Core volume				├			
64 VE 2430.0 mm^3 Core volume			L				
						· · · · · · · · · · · · · · · · · · ·	
	65	BOBBIN			B65812N1012D001		Bobbin

DER-750 42 W LED Ballast Driver Using PFS7623C & LYT6067C

66	AW		30.00	mm^2	Window area of the bobbin
67	BW		10.03	mm	Bobbin width
68	MARGIN		0.0	mm	Safety margin width (Half the primary to secondary creepage distance)
70	PRIMARY WINDING				• • • • •
71	NPRIMARY		67		Primary turns
72	BPEAK		3711	Gauss	Peak flux density
73	BMAX		3215	Gauss	Maximum flux density
74	BAC		1607	Gauss	AC flux density (0.5 x Peak to Peak)
75	ALG		213	nH/turns^2	Typical gapped core effective inductance
76	LG		0.359	mm	Core gap length
77	LAYERS_PRIMARY		2		Number of primary layers
78	AWG_PRIMARY		31	AWG	Primary winding wire AWG
79	OD_PRIMARY_INSULATED		0.272	mm	Primary winding wire outer diameter with insulation
80	OD_PRIMARY_BARE		0.227	mm	Primary winding wire outer diameter without insulation
81	CMA_PRIMARY		251	Cmil/A	Primary winding wire CMA
83	PRIMARY BIAS WINDING		11		Drimery hiss trung
84 86	NBIAS_PRIMARY SECONDARY WINDING		11		Primary bias turns
86 87	SECONDARY WINDING		28		Secondary turns
87	AWG SECONDARY		28	AWG	Secondary turns Secondary winding wire AWG
	OD_SECONDARY_INSULA			AWG	Secondary winding wire Awg
89	TED		0.760	mm	with insulation Secondary winding wire outer diameter
90	OD_SECONDARY_BARE		0.455	mm	without insulation
91	CMA_SECONDARY		211	Cmil/A	Secondary winding wire CMA
93	SECONDARY BIAS WINDING	ì 		1	
94	NBIAS_SECONDARY		9		Secondary bias turns (Required only for VOUT>24V or VOUT<4.4V)
98	PRIMARY COMPONENTS SE	ECTION			
99			100.4	1	
100	OV REQUIRED		428.4	V	Required DC over-voltage threshold
101	OV ACTUAL	Warning	430.2	v	The device voltage stress will be higher than 90% of the device BVDSS when overvoltage is trigerred
102	RLS		3.64	MΩ	Connect two 1.82 MOhm resistors to the V-pin for the required UV/OV threshold
103	BROWN-IN ACTUAL		103.2	V	Actual DC brown-in threshold
104	BROWN-OUT ACTUAL		93.4	V	Actual DC brown-out threshold
107	PRIMARY BIAS WINDING D	IODE			•
108	VBIAS_PRIMARY		15.0	V	Rectified bias voltage
109	VF_BIAS_PRIMARY		0.70	v	Secondary bias winding diode forward drop
110	VREVERSE_PRIBIASDIODE PRIMARY		83.96	v	Primary bias diode reverse voltage (not accounting parasitic voltage ring)
111	 CBIAS_PRIMARY		22	uF	Primary bias winding rectification capacitor
112	СВРР		0.47	uF	BPP pin capacitor
116	SECONDARY COMPONENTS	1			
117	FEEDBACK				
117 118	RFB_UPPER		100.00	kΩ	Upper feedback resistor (connected to the first output voltage)
			100.00 3.09	kΩ kΩ	Upper feedback resistor (connected to the first output voltage) Lower feedback resistor
118	RFB_UPPER				the first output voltage)
118 119	RFB_UPPER RFB_LOWER		3.09	kΩ	the first output voltage) Lower feedback resistor Lower feedback resistor decoupling
118 119 120 122	RFB_UPPER RFB_LOWER CFB_LOWER RECTIFIER		3.09 330	kΩ	the first output voltage) Lower feedback resistor Lower feedback resistor decoupling
118 119 120 122 123	RFB_UPPER RFB_LOWER CFB_LOWER RECTIFIER VREVERSE_RECTIFIER		3.09 330 217.5	kΩ	the first output voltage) Lower feedback resistor Lower feedback resistor decoupling capacitor Secondary rectifier reverse voltage (not accounting parasitic voltage ring)
118 119 120 122 123 124	RFB_UPPER RFB_LOWER CFB_LOWER RECTIFIER VREVERSE_RECTIFIER TYPE_RECTIFIER	AUTO	3.09 330 217.5 DIODE	kΩ	the first output voltage) Lower feedback resistor Lower feedback resistor decoupling capacitor Secondary rectifier reverse voltage (not accounting parasitic voltage ring) Type of secondary rectifier used
118 119 120 122 123 124 125	RFB_UPPER RFB_LOWER CFB_LOWER RECTIFIER VREVERSE_RECTIFIER TYPE_RECTIFIER RECTIFIER RECTIFIER	AUTO	3.09 330 217.5 DIODE STTH1R04	kΩ	the first output voltage) Lower feedback resistor Lower feedback resistor decoupling capacitor Secondary rectifier reverse voltage (not accounting parasitic voltage ring) Type of secondary rectifier used Secondary rectifier
118 119 120 122 123 124	RFB_UPPER RFB_LOWER CFB_LOWER RECTIFIER VREVERSE_RECTIFIER TYPE_RECTIFIER		3.09 330 217.5 DIODE	kΩ	the first output voltage) Lower feedback resistor Lower feedback resistor decoupling capacitor Secondary rectifier reverse voltage (not accounting parasitic voltage ring) Type of secondary rectifier used Secondary rectifier Secondary rectifier Secondary rectifier forward voltage drop Breakdown voltage of the secondary
118 119 120 122 123 124 125 126	RFB_UPPER RFB_LOWER CFB_LOWER RECTIFIER VREVERSE_RECTIFIER TYPE_RECTIFIER RECTIFIER VF_RECTIFIER		3.09 330 217.5 DIODE STTH1R04 1.500	kΩ	the first output voltage) Lower feedback resistor Lower feedback resistor decoupling capacitor Secondary rectifier reverse voltage (not accounting parasitic voltage ring) Type of secondary rectifier used Secondary rectifier Secondary rectifier

DER-750 42 W LED Ballast Driver Using PFS7623C & LYT6067C

131	SECONDARY BIAS WINDI				
132	VBIAS_SECONDARY	NG DIODE	12	V	Rectified secondary bias voltage
133	VF_BIAS_SECONDARY		0.7	v	Secondary bias winding diode forward drop
134	VREVERSE_BIASDIODE_S ECONDARY		68.42	V	Secondary bias diode reverse voltage (not accounting parasitic voltage ring)
135	CBIAS_SECONDARY		22	uF	Secondary bias winding rectification capacitor
139	TOLERANCE ANALYSIS				
140	USER_VDC		410	V	Input DC voltage corner to be evaluated
141	USER_ILIMIT	TYP	1.450	A	Current limit corner to be evaluated
142	USER_LPRIMARY	ТҮР	954.1	uH	Primary inductance corner to be evaluated
143	MODE_OPERATION		DCM		Mode of operation
144	КР		1.281		Measure of continuous/discontinuous mode of operation
145	FSWITCHING		51963	Hz	Switching frequency at full load and valley of the rectified minimum AC input voltage
146	DUTYCYCLE		0.160		Steady state duty cycle
147	TIME_ON		3.08	us	Primary switch on-time
148	TIME_OFF		16.17	us	Primary switch off-time
149	IPEAK_PRIMARY		1.322	А	Primary switch peak current
150	IPEDESTAL_PRIMARY		0.000	А	Primary switch current pedestal
151	IAVERAGE_PRIMARY		0.106	А	Primary switch average current
152	IRIPPLE_PRIMARY		1.322	A	Primary switch ripple current
153	IRMS_PRIMARY		0.305	A	Primary switch RMS current
154	BPEAK		3302	Gauss	Peak flux density
155	BMAX		2942	Gauss	Maximum flux density
156	BAC		1471	Gauss	AC flux density (0.5 x Peak to Peak)

Note: The warning/information in the spreadsheet was verified on actual bench tests for validation. The inductance values were also verified on bench tests to pass electrical performance data.

12 **Performance Data**

All measurements were performed at room temperature.

CV/CC Output Characteristic Curve 12.1

CC regulation was measured using E-Load

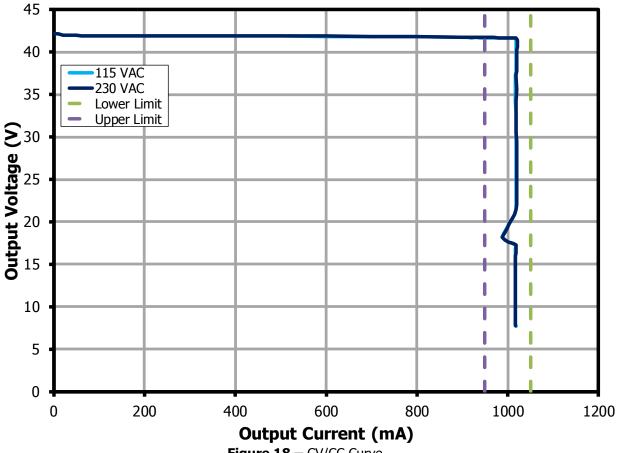
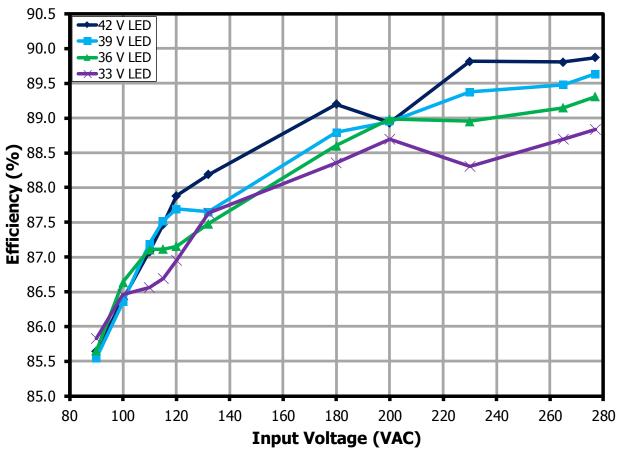



Figure 18 – CV/CC Curve.

12.2 System Efficiency

Efficiency is fairly high, above 85% throughout the input voltage range.

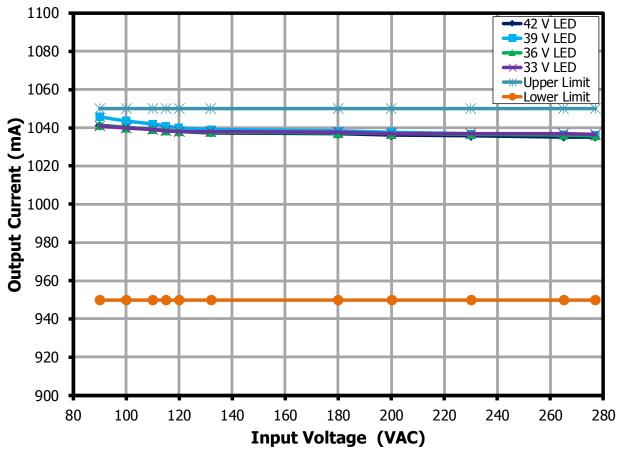


Figure 19 – Efficiency vs. Line and LED Load.

12.3 Output Current Regulation

Output current regulation is within 5% range. Output current for all input voltages is between 950-1050 mA.

Figure 20 – Current Regulation vs. Line and LED Load.

12.4 *Power Factor*

Power Factor is greater than 0.9 throughout all the input voltage range.

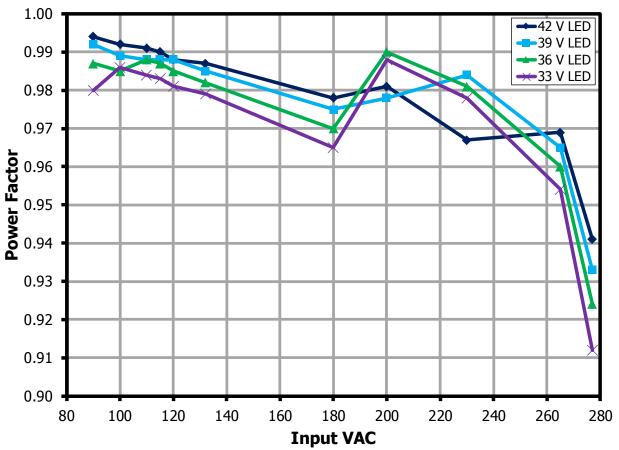
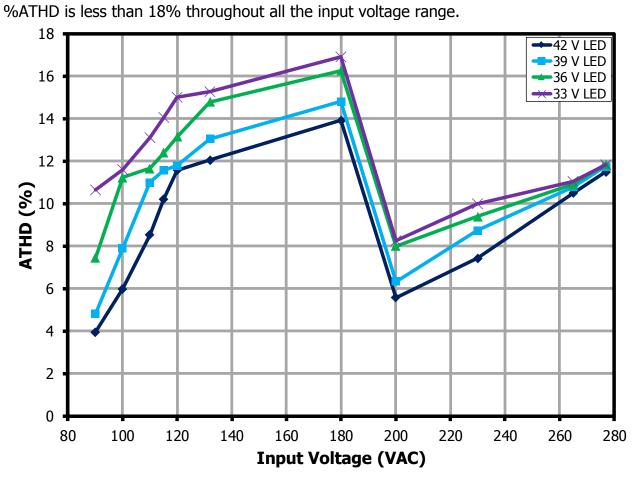



Figure 21 – Power Factor vs. Line and LED Load.

%ATHD

12.5

Figure 22 – %ATHD vs. Line and LED Load.

12.6 Individual Harmonic Content at 42 V LED Load

Current harmonic content is well below the Class C limit.

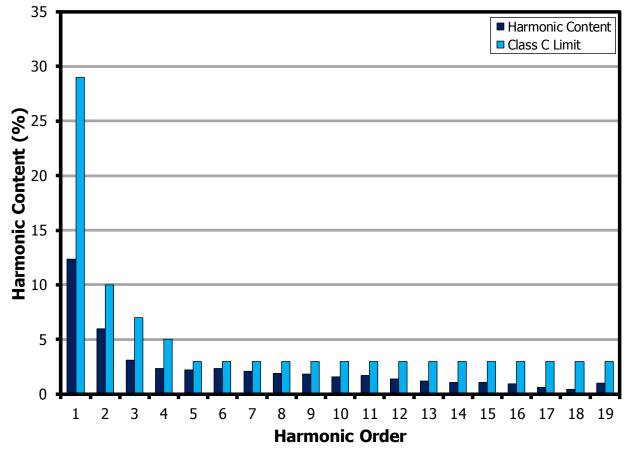


Figure 23 – 42 V LED Load Input Current Harmonics at 230 VAC, 50 Hz.

12.7 No-Load Input Power

Integration time: 3 min

No Load input power is less than 250 mW.

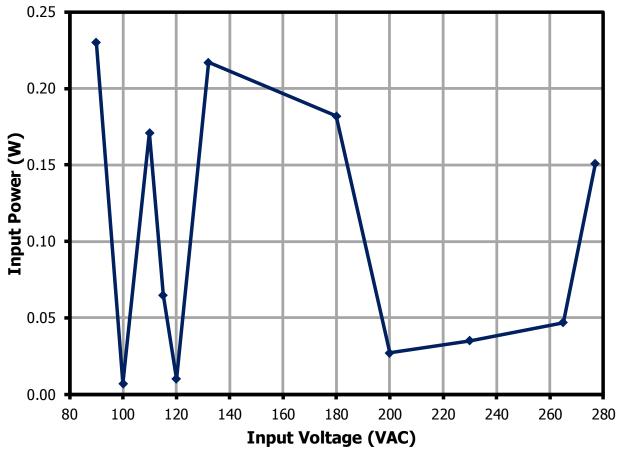


Figure 24 – No-Load Input Power vs. Line.

13 Test Data

13.1 *42 V LED Load*

Inp	ut		Input M	leasur	ement		LED Lo	rement	Efficiency	
VAC (V _{RMS})	Freq (Hz)	V _{IN} (V _{RMS})	I _{IN} (mA _{RMS})	P _{IN} (W)	PF	%ATHD	V _{OUT} (V _{DC})	I _{OUT} (mA _{DC})	Р _{оит} (W)	(%)
90	60	90	560	50.0	0.994	3.9	41.1	1041	42.8	85.6
100	60	100	499	49.5	0.992	6.0	41.1	1040	42.7	86.3
110	60	109	450	49.0	0.991	8.5	41.1	1039	42.6	87.1
115	60	114	428	48.7	0.99	10.2	41.0	1038	42.59	87.4
120	60	119	408	48.3	0.988	11.5	40.9	1037	42.5	87.8
132	60	131	369	48.1	0.987	12.1	40.9	1037	42.4	88.2
180	50	180	270	47.5	0.978	13.9	40.8	1036	42.4	89.2
200	50	200	242	47.6	0.981	5.6	40.8	1036	42.3	88.9
230	50	230	211	47.1	0.967	7.4	40.8	1035	42.2	89.8
265	50	265	183	47.0	0.969	10.5	40.7	1035	42.2	89.8
277	60	277	180	46.9	0.941	11.5	40.7	1035	42.2	89.8

13.2 **39 V LED Load**

Inp	ut		Input M	leasur	ement		LED Loa	ad Measur	ement	Efficiency
VAC (V _{RMS})	Freq (Hz)	V _{IN} (V _{RMS})	I _{IN} (mA _{RMS})	P _{IN} (W)	PF	%ATHD	V _{OUT} (V _{DC})	I _{OUT} (mA _{DC})	Р _{оит} (W)	(%)
90	60	90	530	47.2	0.992	4.8	38.6	1045	40.4	85.5
100	60	100	471	46.6	0.989	7.9	38.5	1043	40.2	86.3
110	60	109	423	46.1	0.988	11.1	38.4	1042	40.1	87.1
115	60	114	402	45.7	0.988	11.5	38.4	1040	40.0	87.5
120	60	119	384	45.5	0.988	11.7	38.3	1039	39.9	87.6
132	60	131	349	45.4	0.985	13.1	38.3	1039	39.8	87.6
180	50	180	255	44.7	0.975	14.8	38.3	1038	39.7	88.7
200	50	199	228	44.6	0.978	6.3	38.2	1037	39.7	88.9
230	50	230	195	44.3	0.984	8.7	38.2	1036	39.6	89.3
265	50	265	172	44.2	0.965	10.7	38.1	1036	39.5	89.4
277	60	277	170	44.1	0.933	11.7	38.1	1035	39.5	89.6

13.3 *36 V LED Load*

Inp	ut		Input M	leasur	ement		LED Loa	ad Measur	ement	Efficiency
VAC (V _{RMS})	Freq (Hz)	V _{IN} (V _{RMS})	I _{IN} (mA _{RMS})	P _{IN} (W)	PF	%ATHD	V _{OUT} (V _{DC})	I _{OUT} (mA _{DC})	Р _{оит} (W)	(%)
90	60	90	483	42.8	0.987	7.4	35.2	1041	36.7	85.6
100	60	100	430	42.3	0.985	11.2	35.2	1040	36.6	86.6
110	60	109	387	42.1	0.988	11.6	35.2	1039	36.6	87.1
115	60	114	370	42.0	0.987	12.4	35.2	1038	36.6	87.1
120	60	119	355	41.9	0.985	13.1	35.2	1038	36.5	87.1
132	60	131	322	41.7	0.982	14.7	35.2	1037	36.5	87.4
180	50	179	236	41.2	0.97	16.2	35.2	1037	36.5	88.6
200	50	199	207	41.1	0.99	8.0	35.2	1036	36.5	88.9
230	50	230	181	41.1	0.981	9.4	35.2	1036	36.5	88.9
265	50	265	160	40.9	0.96	10.9	35.2	1036	36.5	89.1
277	60	277	159	40.8	0.924	11.8	35.2	1036	36.5	89.3

13.4 *33 V LED Load*

Inp	ut		Input M	leasur	ement		LED Loa	ad Measur	ement	Efficiency
VAC (V _{RMS})	Freq (Hz)	V _{IN} (V _{RMS})	I _{IN} (mA _{RMS})	P _{IN} (W)	PF	%ATHD	V _{OUT} (V _{DC})	I _{OUT} (mA _{DC})	Р _{оит} (W)	Efficiency (%)
90	60	90	446	39.3	0.98	10.6	32.4	1040	33.7	85.8
100	60	100	395	38.9	0.986	11.5	32.3	1039	33.6	86.4
110	60	109	359	38.8	0.984	13.1	32.3	1039	33.6	86.5
115	60	114	343	38.7	0.983	14.1	32.3	1038	33.6	86.6
120	60	119	328	38.6	0.981	15.0	32.3	1038	33.5	86.9
132	60	131	296	38.2	0.979	15.2	32.3	1038	33.5	87.6
180	50	180	218	37.9	0.965	16.9	32.3	1037	33.5	88.3
200	50	200	191	37.7	0.988	8.3	32.3	1037	33.5	88.7
230	50	230	168	37.9	0.978	10.0	32.3	1037	33.5	88.3
265	50	264	149	37.7	0.954	11.0	32.2	1036	33.4	88.7
277	60	276	149	37.6	0.912	11.8	32.2	1036	33.4	88.8

13.5 *No-Load*

Input		Input Measurement					
VAC (V _{RMS})	Freq (Hz)	V _{IN} (V _{RMS})	I _{IN} (mA _{RMS})	P _{IN} (W)	PF	%ATHD	V _{OUT} V (V _{DC})
90	60	89.9	15.9	0.23	0.125	8.1	42.0
100	60	100	16.2	0.007	0.004	32.7	42.0
110	60	109	19.1	0.171	0.083	28.4	42.0
115	60	115	17.5	0.065	0.032	6.9	42.0
120	60	119	16.9	0.01	0.005	6.7	42.0
132	60	132	20.1	0.217	0.084	6.7	42.0
180	50	180	20.1	0.182	0.05	14.1	42.0
200	50	200.03	20.6	0.027	0.007	3.0	42.0
230	50	230	23.3	0.035	0.007	8.2	42.0
265	50	265	26.1	0.047	0.007	7.9	41.9
277	60	277	32.7	0.151	0.017	14.6	41.9

17-Sep-19

V _{IN} (V _{RMS})	Freq	I _{IN} (mA _{RMS})	P _{IN} (W)	PF	%THD
230	50	211/05	46.94	0.967	7.454
Harmonic Content			Class C Limit		
nth	mA	%	mA Limit	mA Limit	Remarks
Order	Content	Content	<25 W	>25 W	Reillai KS
1	209.89				
2	0.09	0.043		2	pass
3	12.35	5.884	159.596	29.01	pass
5	5.99	2.854	89.186	10	pass
7	3.13	1.491	46.94	7	pass
9	2.35	1.12	23.47	5	pass
11	2.21	1.053	16.429	3	pass
13	2.32	1.105	13.901	3	pass
15	2.08	0.991	12.048	3	pass
17	1.86	0.886	10.631	3	pass
19	1.81	0.862	9.512	3	pass
21	1.59	0.758	8.606	3	pass
23	1.7	0.81	7.857	3	pass
25	1.37	0.653	7.229	3	pass
27	1.18	0.562	6.693	3	pass
29	1.05	0.5	6.232	3	pass
31	1.08	0.515	5.83	3	pass
33	0.92	0.438	5.476	3	pass
35	0.62	0.295	5.163	3	pass
37	0.42	0.2	4.884	3	pass
39	1	0.476	4.634	3	pass
41	0.34	0.162	4.408	3	pass

13.6 :- C stant at 220 MAC 4 _

14 **Dimming Performance**

Dimming performance data were taken at room temperature.

14.1 *Dimming Curve*

14.1.1 0 V - 10 V Dimming Curve

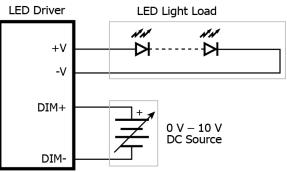


Figure 25 – 0 V- 10 V Dimming Set-up.

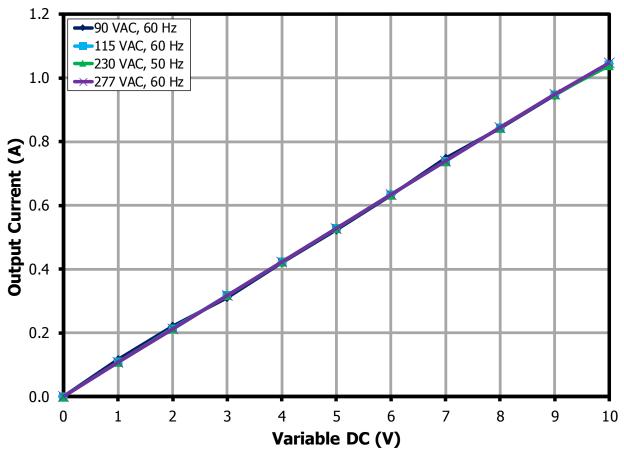
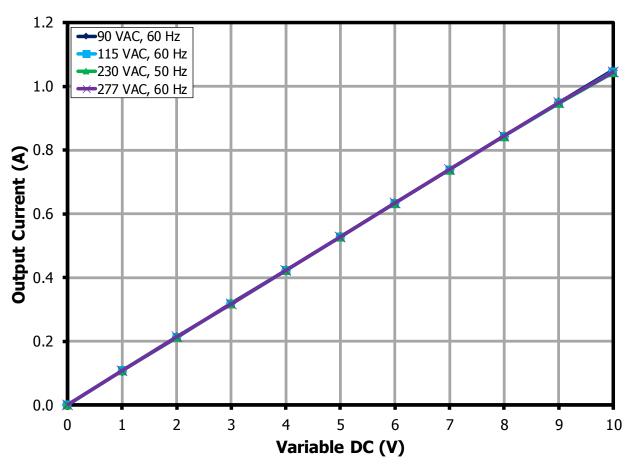
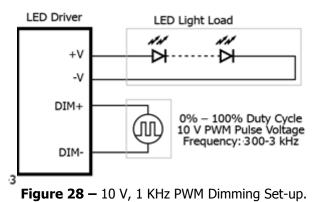
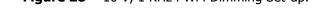
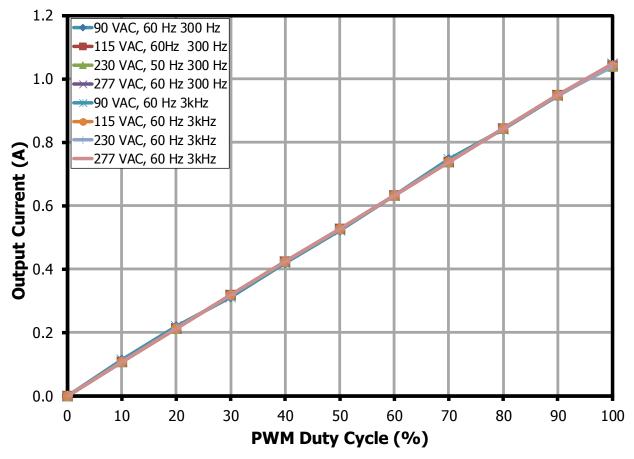


Figure 26 – 0 V – 10 V Dimming Curve at 42 V LED Load.


Figure 27 – 0 V - 10 V Dimming Curve at 33 V LED Load.

14.1.2 10 V 1 kHz PWM Dimming Curve

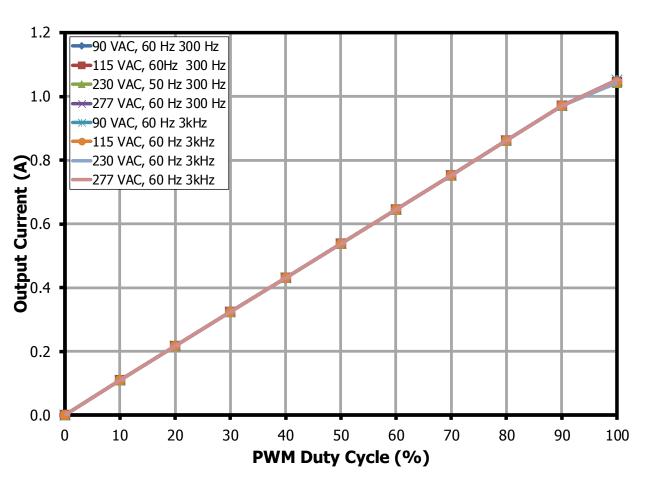
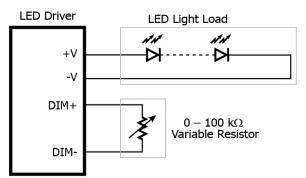
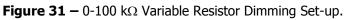




Figure 30 – 1 kHz, 10 V PWM Dimming Curve at 33 V LED Load.

14.1.3 Variable Resistor Dimming Curve

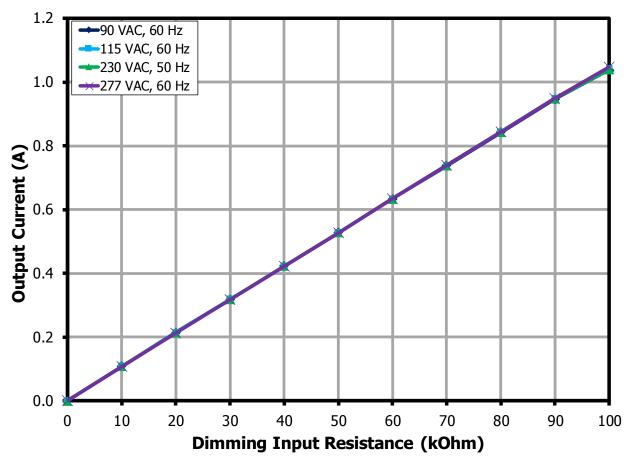
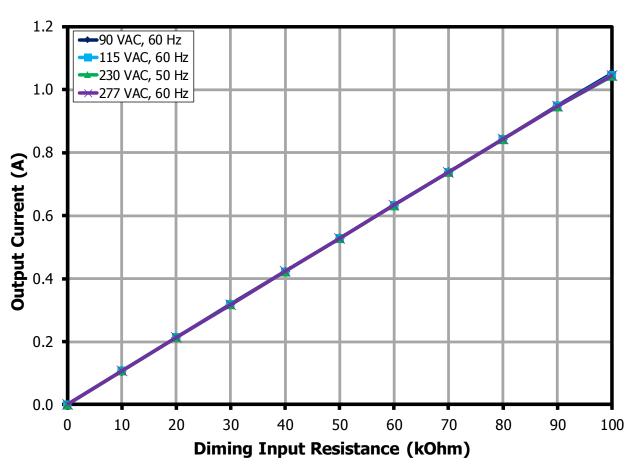



Figure 32 – 0-100 k Ω Variable Resistor Dimming Curve at 42 V LED Load.

Figure 33 – 0-100 k Ω Variable Resistor Dimming Curve at 33 V LED Load.

15 **Thermal Performance**

15.1 Thermal Scan at 25 °C Ambient

Figure 34 – Test Set-up Picture - Open Frame.

Unit in open frame was placed inside an acrylic enclosure to prevent airflow that might affect the thermal measurements. Temperature was measured using FLIR Thermal Camera.

15.1.1 Thermal Scan at 90 VAC Full Load

Thermal scan was performed at worst case input voltage of 90 VAC at room ambient temperature.

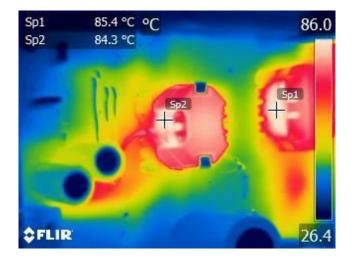


Figure 35 – 90 VAC, 42 V LED Load. Spot 1: PFC Transformer Winding: 85.4 °C. Spot 2: DC-DC Transformer Winding: 84.3 °C.

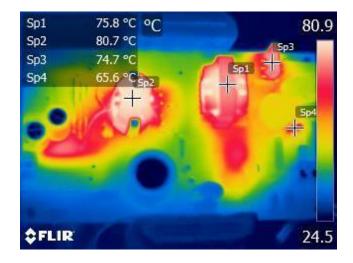


Figure 36 – 90 VAC, 42 V LED Load. Spot 1: DC-DC Transformer Core: 75.8 °C. Spot 2: PFC Transformer Core: 80.7 °C. Spot 3: Bridge Rectifier: 74.7 °C. Spot 4: Input Thermistor: 65.6 °C.

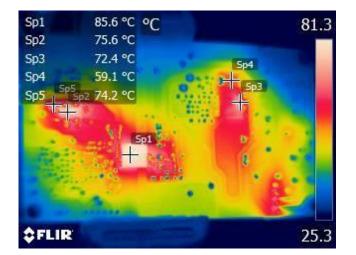


Figure 37 – 90 VAC, 42 V LED Load. Spot 1: LYTSwitch-6 (U4): 85.6 °C. Spot 2: Output Diode (D4): 75.6 °C. Spot 3: HiperPFS-4 (U2): 72.4 °C. Spot 4: Boost Diode (D5): 59.1 °C. Spot 5: Snubber Resistor (R6): 74.2 °C.

15.1.2 Thermal Scan at 277 VAC Full Load

Thermal scan was performed at worst case input voltage of 277 VAC at room ambient temperature.

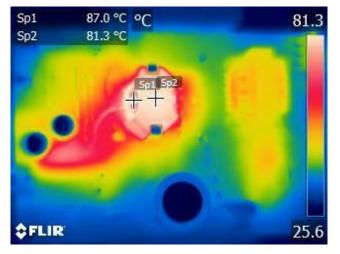
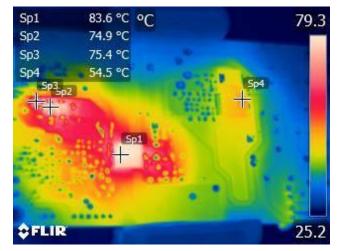



Figure 38 – 90 VAC, 42 V LED Load. Spot 1: PFC Transformer Winding: 87 °C. Spot 2: PFC Transformer Core: 81.3 °C.

Figure 39 – 90 VAC, 42 V LED Load. Spot 1: LYTSwitch-6 (U4): 83.6 °C. Spot 2: Output Diode (D4): 74.9 °C. Spot 3: Snubber Resistor (R6): 75.4 °C. Spot 4: HiperPFS-4 (U2): 54.5 °C.

15.2 Thermal Performance at 60 °C Ambient

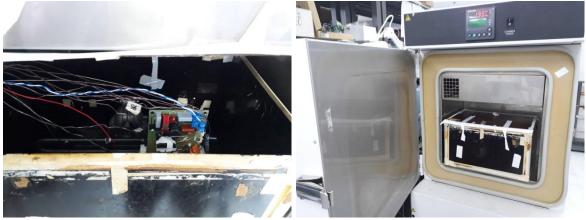


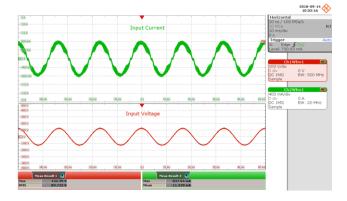
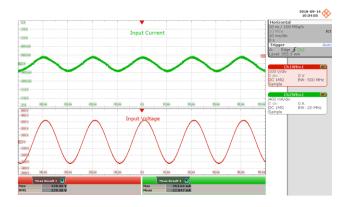
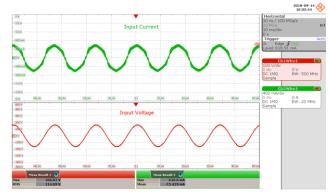
Figure 40 – Test Set-up Picture Thermal at 60 °C Ambient - Open Frame.

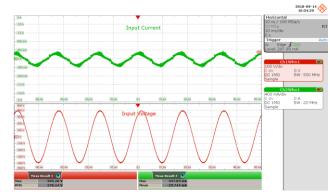
Unit in open frame was placed inside an enclosure to prevent airflow that might affect the thermal measurements. Ambient temperature inside enclosure is 60 °C. Temperature was measured using type T thermocouple.

No.	Componente	Temperature (°C)		
NO.	Components	90 VAC	277 VAC	
1	Ambient Temperature	60.9	60.7	
2	BR1 – Bridge Diode	94.2	71.1	
3	D4 – Output Diode	89.1	88.8	
4	R6 – Snubber Resistor	87.5	87.6	
5	D5 – Boost Diode	85	74	
6	U2 – HiperPFS-4 Control	93	77.9	
7	U2 – HiperPFS-4 FET	102.3	81.4	
8	U4 – LYTSwitch-6 Control	89	88.4	
9	U4 – LYTSwitch-6 FET	91.8	90.6	
10	T2 – EE25 Core	100.9	77.1	
11	T2 – EE25 Winding	116	83.8	
12	T4 – RM8 Core	99.8	101.4	
13	T4 – RM8 Winding	105.8	104.5	

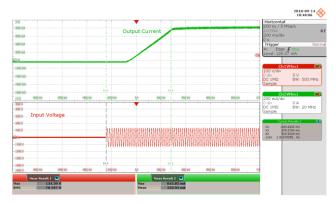
16 Waveforms

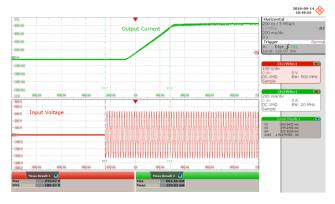
16.1 Input Voltage and Input Current at 42 V LED Load

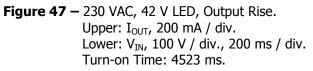




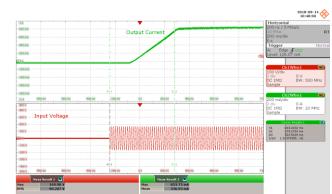

Figure 41 –90 VAC, 42 V LED Load. Upper: $I_{\rm IN}$ 400 mA / div. Lower: $V_{\rm IN}$, 100 V / div., 10 ms / div.

 $\label{eq:Figure 43-230 VAC, 42 V LED Load.} \\ Upper: I_{IN}, 400 \text{ mA / div.} \\ \text{Lower: } V_{IN}, 100 \text{ V / div.}, 10 \text{ ms / div.} \\ \end{aligned}$


 $\label{eq:Figure 42-115} \begin{array}{l} \mathsf{Figure 42-115} \ \mathsf{VAC}, \ \mathsf{42} \ \mathsf{V} \ \mathsf{LED} \ \mathsf{Load}. \\ \\ \mathsf{Upper:} \ I_{\mathrm{IN}}, \ \mathsf{400} \ \mathsf{mA} \ / \ \mathsf{div}. \\ \\ \mathsf{Lower:} \ \mathsf{V}_{\mathrm{IN}}, \ \mathsf{100} \ \mathsf{V} \ / \ \mathsf{div}., \ \mathsf{10} \ \mathsf{ms} \ / \ \mathsf{div}. \end{array}$


 $\label{eq:Figure 44-277 VAC, 42 V LED Load.} \\ Upper: I_{IN}, 400 \text{ mA / div.} \\ Lower: V_{IN}, 100 \text{ V / div.}, 10 \text{ ms / div.} \\ \end{aligned}$




16.2 Start-up Profile at 42 V LED Load

 $\label{eq:Figure 45-90 VAC, 42 V LED, Output Rise.} \\ Upper: I_{OUT}, 200 mA / div. \\ Lower: V_{IN}, 100 V / div., 200 ms / div. \\ Turn-on Time: 523 ms. \\ \end{array}$

 $\label{eq:Figure 46-115} \begin{array}{l} \text{Figure 46} - 115 \text{ VAC}, \ 42 \text{ V LED}, \ \text{Output Rise.} \\ \text{Upper: } I_{\text{OUT}}, \ 200 \text{ mA} \ / \ \text{div.} \\ \text{Lower: } V_{\text{IN}}, \ 100 \text{ V} \ / \ \text{div.}, \ 200 \text{ ms} \ / \ \text{div.} \\ \text{Turn-on Time: } 523 \text{ ms.} \end{array}$

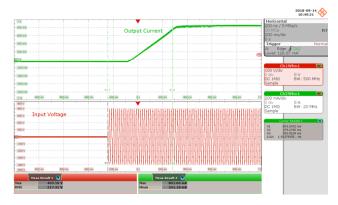


Figure 48 – 277 VAC, 42 V LED, Output Rise. Upper: I_{OUT} , 200 mA / div. Lower: V_{IN} , 100 V / div., 200 ms / div. Turn-on Time: 523 ms.

16.3 Start-up Profile at 30 V LED Load

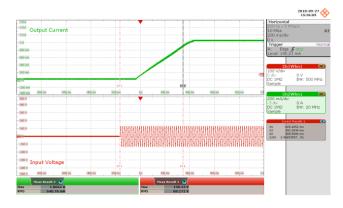
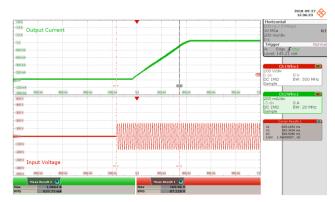
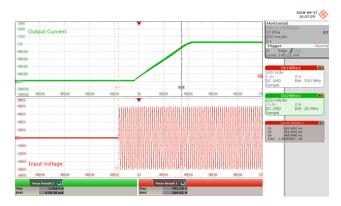
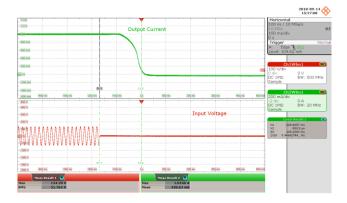
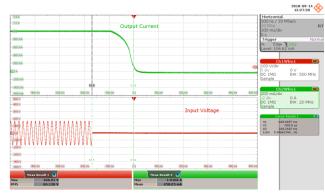



Figure 49 – 90 VAC, 30 V LED, Output Rise. Upper: I_{OUT} , 200 mA / div. Lower: V_{IN} , 100 V / div., 200 ms / div. Turn-on Time: 508 ms.

 $\label{eq:Figure 50-115} \begin{array}{l} \text{Figure 50-115} \ \text{VAC}, \ 30 \ \text{V} \ \text{LED}, \ \text{Output} \ \text{Rise}. \\ & \text{Upper: } I_{\text{OUT}}, \ 200 \ \text{mA} \ / \ \text{div}. \\ & \text{Lower: } V_{\text{IN}}, \ 100 \ \text{V} \ / \ \text{div}., \ 200 \ \text{ms} \ / \ \text{div}. \\ & \text{Turn-on Time: } 508 \ \text{ms}. \end{array}$

Figure 51 – 230 VAC, 30 V LED, Output Rise. Upper: I_{OUT} , 200 mA / div. Lower: V_{IN} , 100 V / div., 200 ms / div. Turn-on Time: 508 ms.


Figure 52 – 277 VAC, 30 V LED, Output Rise. Upper: I_{OUT} , 200 mA / div. Lower: V_{IN} , 100 V / div., 200 ms / div. Turn-on Time: 508 ms.

16.4 Output Current Fall at 42 V LED Load

 $\begin{array}{l} \textbf{Figure 53-90 VAC, 42 V LED, Output Fall.} \\ Upper: I_{OUT}, 200 \text{ mA / div.} \\ Lower: V_{IN}, 100 \text{ V / div.}, 100 \text{ ms / div.} \\ Hold-up Time: 168 \text{ ms.} \end{array}$

 $\label{eq:Figure 54-115} \begin{array}{l} \text{Figure 54} - 115 \text{ VAC}, \ 42 \text{ V LED}, \ \text{Output Fall}. \\ \text{Upper: } I_{\text{OUT}}, \ 200 \text{ mA} \ / \ \text{div}. \\ \text{Lower: } V_{\text{IN}}, \ 100 \text{ V} \ / \ \text{div}., \ 100 \text{ ms} \ / \ \text{div}. \\ \text{Hold-up Time: } 168 \text{ ms}. \end{array}$

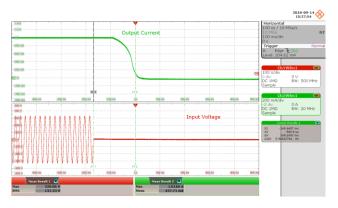


Figure 55 – 230 VAC, 42 V LED, Output Fall. Upper: I_{OUT} , 200 mA / div. Lower: V_{IN} , 100 V / div., 100 ms / div. Hold-up Time: 168 ms.

 $\label{eq:Figure 56-277 VAC, 42 V LED, Output Fall. Upper: I_{OUT}, 200 mA / div. \\ Lower: V_{IN}, 100 V / div., 100 ms / div. \\ Hold-up Time: 168 ms. \\ \end{tabular}$

16.5 Output Current Fall at 30 V LED Load

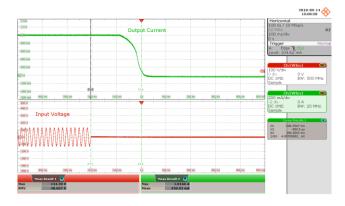
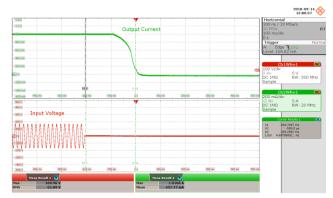



Figure 57 – 90 VAC, 30 V LED, Output Fall. Upper: I_{OUT} , 200 mA / div. Lower: V_{IN} , 100 V / div., 100 ms / div. Hold-up Time: 118 ms.

 $\label{eq:Figure 58-115} \begin{array}{l} \mathsf{Figure 58-115} \ \mathsf{VAC}, \ \mathsf{30} \ \mathsf{V} \ \mathsf{LED}, \ \mathsf{Output} \ \mathsf{Fall}. \\ \mathsf{Upper:} \ \mathsf{I}_{\mathsf{OUT}}, \ \mathsf{200} \ \mathsf{mA} \ / \ \mathsf{div}. \\ \mathsf{Lower:} \ \mathsf{V}_{\mathsf{IN}}, \ \mathsf{100} \ \mathsf{V} \ / \ \mathsf{div}., \ \mathsf{100} \ \mathsf{ms} \ / \ \mathsf{div}. \\ \mathsf{Hold-up} \ \mathsf{Time:} \ \mathsf{118} \ \mathsf{ms}. \end{array}$

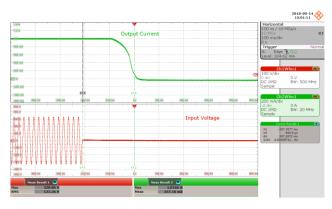
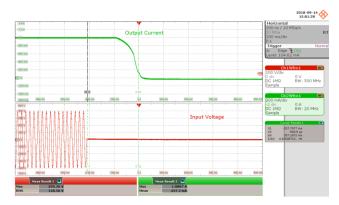



Figure 59 – 230 VAC, 30 V LED, Output Fall. Upper: I_{OUT} , 200 mA / div. Lower: V_{IN} , 100 V / div., 100 ms / div. Hold-up Time: 118 ms.

 $\label{eq:Figure 60-277 VAC, 30 V LED, Output Fall. Upper: I_{OUT}, 200 mA / div. \\ Lower: V_{IN}, 100 V / div., 100 ms / div. \\ Hold-up Time: 118 ms. \\ \end{tabular}$

16.6 *Power Cycling*

No high-voltage overshoots during ac power cycling observed.

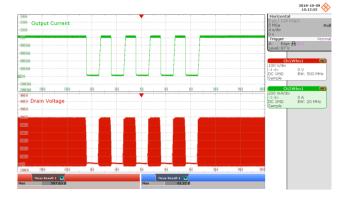


Figure 61 – 90 VAC, 42 V LED. 2s Off, 2s On. Upper: I_{OUT}, 200 mA / div. Lower: V_{IN}, 100 V / div., 4 s / div.

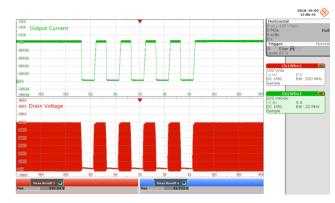
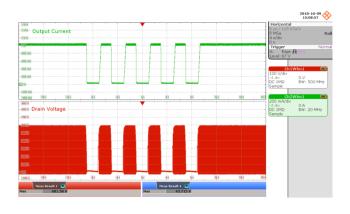
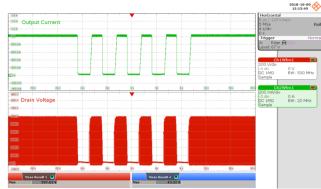
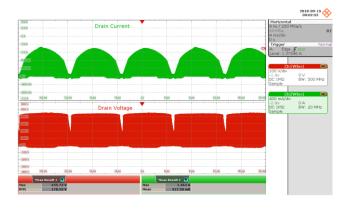
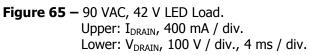
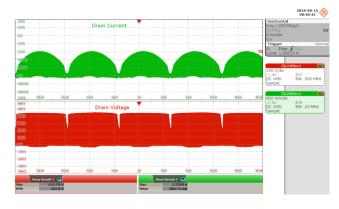
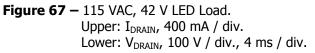



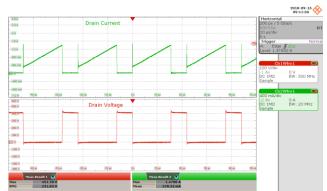
Figure 62 – 115 VAC, 42 V LED. 2s Off, 2s On. Upper: I_{OUT} , 200 mA / div. Lower: V_{IN} , 100 V / div., 4 s / div.

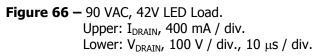



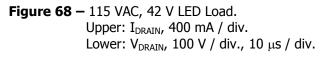

Figure 63 – 230 VAC, 42 V LED. 2s Off, 2s On. Upper: I_{OUT} , 200 mA / div. Lower: V_{IN} , 100 V / div., 4 s / div.

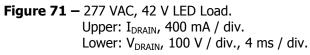

Figure 64 – 277 VAC, 42 V LED. 2s Off, 2s On. Upper: I_{OUT} , 200 mA / div. Lower: V_{IN}, 100 V / div., 4 s / div.



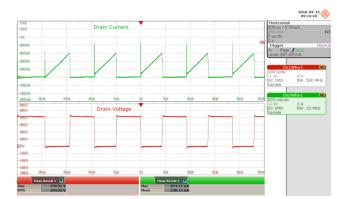

16.7 **PFS7623C (U2) Drain Voltage and Current at Normal Operation**

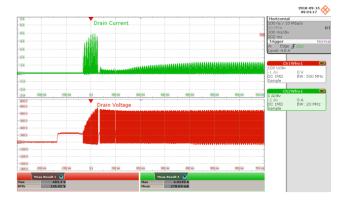


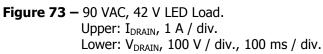


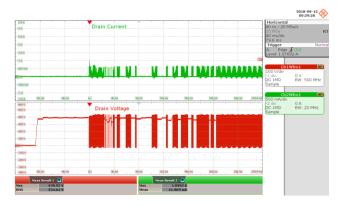


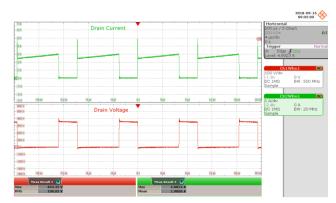
 $\begin{array}{l} \textbf{Figure 69-230 VAC, 42 V LED Load.} \\ \textbf{Upper: } I_{\text{DRAIN}}\text{, 400 mA / div.} \\ \textbf{Lower: } V_{\text{DRAIN}}\text{, 100 V / div., 4 ms / div.} \end{array}$

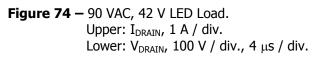


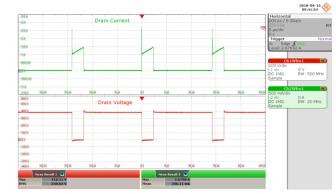

Figure 70 – 230 VAC, 42 V LED Load. Upper: I_{DRAIN} , 200 mA / div. Lower: V_{DRAIN} , 100 V / div., 5 μ s / div.

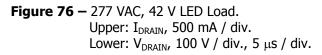


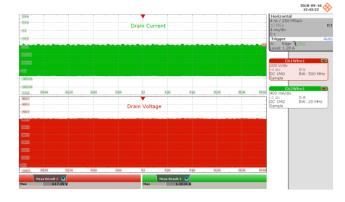

 $\label{eq:Figure 72 - 277 VAC, 42 V LED Load.} \\ Upper: I_{DRAIN}, 200 mA / div. \\ Lower: V_{DRAIN}, 100 V / div., 5 \ \mu s / div. \\ \end{array}$


16.8 **PFS7623C (U2) Drain Voltage and Current at Start-up**









16.9 LYTSwitch-6 (U4) Drain Voltage and Current at Normal Operation

16.9.1 42 V LED Load

 $\begin{array}{l} \mbox{Figure 77} - 90 \mbox{ VAC, } 42 \mbox{ V LED Load.} \\ \mbox{ Upper: } I_{\mbox{DRAIN}}, \mbox{ 400 mA / div.} \\ \mbox{ Lower: } V_{\mbox{DRAIN}}, \mbox{ 100 V / div., } 4 \mbox{ ms / div.} \end{array}$

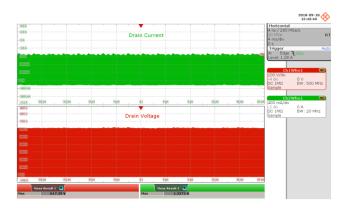



Figure 78 – 90 VAC, 42 V LED Load. Upper: I_{DRAIN}, 400 mA / div. Lower: V_{DRAIN}, 100 V / div., 10 μs / div.

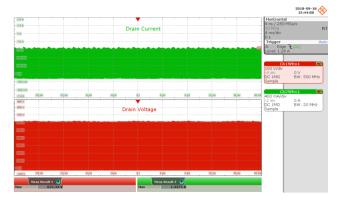
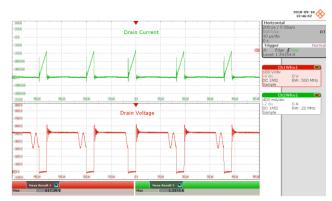
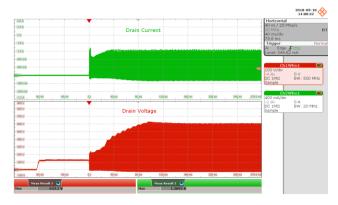


Figure 80 – 115 VAC, 42 V LED Load. Upper: I_{DRAIN}, 400 mA / div. Lower: V_{DRAIN}, 100 V / div., 10 μs / div.



16.9.2 33 V LED Load

 $\label{eq:Figure 87-277 VAC, 30 V LED Load.} \\ Upper: I_{DRAIN}, 400 \mbox{ mA / div.} \\ Lower: V_{DRAIN}, 100 \mbox{ V / div.}, 1 \mbox{ ms / div.} \\ \end{aligned}$


Figure 86 – 90 VAC, 30V LED Load. Upper: I_{DRAIN} , 400 mA / div. Lower: V_{DRAIN} , 100 V / div., 10 μ s / div.

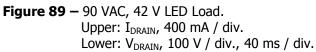
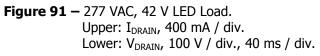
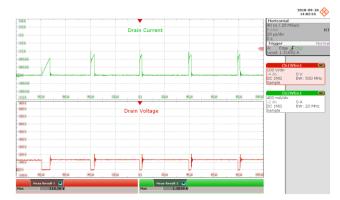
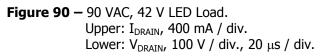
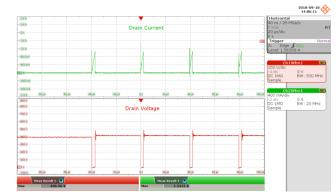


Figure 88 – 277 VAC, 30 V LED Load. Upper: $I_{DRAIN},$ 400 mA / div. Lower: $V_{DRAIN},$ 100 V / div., 10 μs / div.




16.10 LYTSwitch-6 (U4) Drain Voltage and Current at Start-up





16.11 *LYTSwitch-6 (U4) Drain Voltage and Current during Output Short-Circuit*

Figure 93 – 90 VAC, Output Shorted. Upper: I_{DRAIN}, 400 mA / div. Lower: V_{DRAIN}, 100 V / div., 1 s / div.

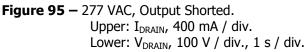
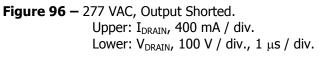
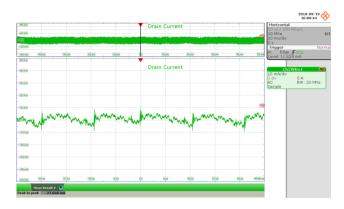



Figure 94 – 90 VAC, Output Shorted. Upper: I_{DRAIN} , 400 mA / div. Lower: V_{DRAIN} , 100 V / div., 1 μ s / div.

16.12 Input Power during Output Short-Circuit


Input Power					
VAC (V _{RMS})	Freq (Hz)	P (W)			
90	60	0.083			
120	60	0.145			
230	50	0.319			
277	60	0.281			

16.13 Output Ripple Current at Full load

Figure 97 – 90 VAC, 60 Hz, 42 V LED Load. Upper: I_{OUT}, 10 mA / div., 10 ms / div.

Figure 99 – 230 VAC, 50 Hz, 42 V LED Load. Upper: I_{OUT}, 10 mA / div., 10 ms / div.

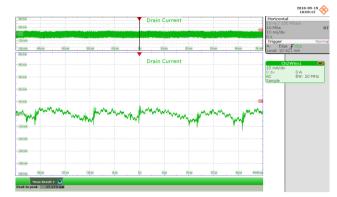
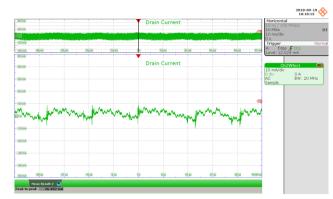



Figure 98 – 115 VAC, 60 Hz, 42 V LED Load. Upper: I_{OUT}, 10 mA / div., 10 ms / div.

Figure 100 – 277 VAC, 50 Hz, 42 V LED Load. Upper: I_{OUT}, 10 mA / div., 10 ms / div.

V _{IN}	I _{PK-PK}	I _{MEAN}	% Ripple	% Flicker
(VAC)	(mA)	(mA)	$100 \times (I_{RP}-P) / (I_{OUT})$	$100 \times (I_{RP^-P}) / (2*I_{OUT})$
90	28.45		2.76	1.38
115	27.27	1020	2.64	1.32
230	27.67	1030	2.68	1.34
305	26.48		2.66	1.33

16.14 Output Ripple Current at 30 V LED Load

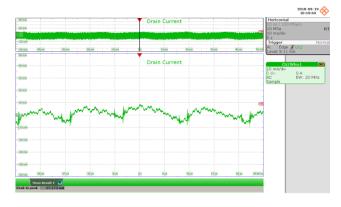


Figure 101 – 90 VAC, 50 Hz, 33 V LED Load. Upper: I_{OUT}, 10 mA / div., 10 ms / div.

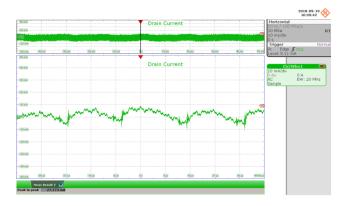
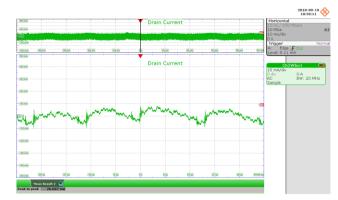
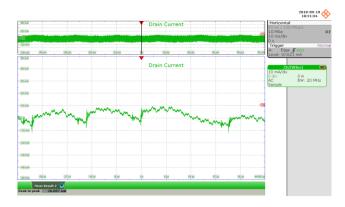




Figure 103 – 230 VAC, 50 Hz, 33 V LED Load. Upper: I_{OUT}, 10 mA / div., 10 ms / div.

Figure 102 – 115 VAC, 50 Hz, 33 V LED Load. Upper: I_{OUT}, 10 mA / div., 10 ms / div.

Figure 104 – 277 VAC, 50 Hz, 33 V LED Load. Upper: I_{OUT}, 10 mA / div., 10 ms / div.

Í	V _{IN}	I _{PK-PK}	I _{MEAN}	% Ripple	% Flicker
	(VAC)	(mA)	(mA)	$100 \times (I_{RP}P) / (I_{OUT})$	$100 \times (I_{RP^-P}) / (2*I_{OUT})$
I	90	27.27		2.64	1.26
	115	26.08	1030	2.53	1.32
I	230	27.27	1030	2.64	1.26
I	305	26.08		2.53	1.32

17 Conducted EMI

17.1 *Test Set-up*

LED metal heat sink is connected to ground. Unit with input ground wire connection is placed on top of LED metal heat sink. See below set-up picture.

17.2 Equipment and Load Used

- 1. Rohde and Schwarz ENV216 two line V-network.
- 2. Rohde and Schwarz ESRP EMI test receiver.
- 3. Hioki 3322 power hitester.
- 4. Chroma measurement test fixture.
- 5. 42 V LED load with input voltage set at 230 VAC and 115 VAC.

Figure 105 – Conducted EMI Test Set-up.

17.2.1 EMI Test Results: Set-up 1

Figure 106 – Conducted EMI QP Scan at 42 V LED Load, 115 VAC, 60 Hz, and EN55015 B Limits.

Trace/Detector	Frequency	Level dBµV	DeltaLimit
2 Average	460.5000 kHz	43.62 L1	-3.06 dB
2 Average	177.0000 kHz	51.51 N	-3.12 dB
2 Average	411.0000 kHz	43.58 N	-4.05 dB
1 Quasi Peak	177.0000 kHz	56.87 N	-7.76 dB
2 Average	222.0000 kHz	43.77 N	-8.97 dB
2 Average	7.0828 MHz	40.37 N	-9.63 dB
1 Quasi Peak	465.0000 kHz	46.71 L1	-9.89 dB
1 Quasi Peak	413.2500 kHz	45.96 N	-11.62 dB
1 Quasi Peak	516.7500 kHz	42.16 L1	-13.84 dB
1 Quasi Peak	7.0805 MHz	45.62 N	-14.38 dB
1 Quasi Peak	89.0000 kHz	69.81 N	-14.94 dB
1 Quasi Peak	10.2845 MHz	44.79 L1	-15.21 dB
1 Quasi Peak	827.2500 kHz	40.62 L1	-15.38 dB
1 Quasi Peak	1.1063 MHz	40.06 L1	-15.94 dB

Figure 107 – Conducted EMI Data at 115 VAC, 42 V LED Load.

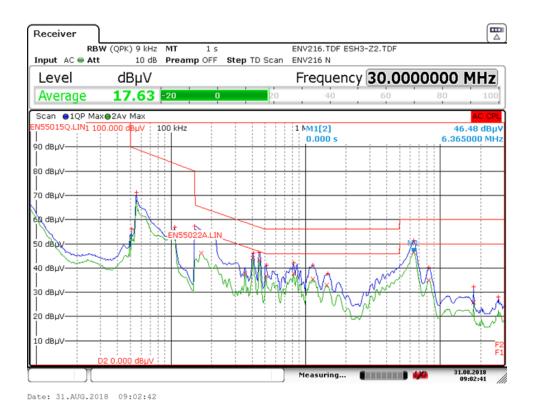


Figure 108 - Conducted EMI QP Scan at 42 V LED Load, 230 VAC, 50 Hz, and EN55015 B Limits.

Trace/Detector	Frequency	Level dBµV	DeltaLimit
2 Average	456.0000 kHz	43.42 N	-3.35 dB
2 Average	6.3650 MHz	46.48 L1	-3.52 dB
2 Average	406.5000 kHz	44.11 N	-3.61 dB
2 Average	816.0000 kHz	37.72 L1	-8.28 dB
1 Quasi Peak	150.0000 kHz	57.41 N	-8.59 dB
1 Quasi Peak	6.3605 MHz	51.37 L1	-8.63 dB
2 Average	168.0000 kHz	46.13 N	-8.93 dB
2 Average	510.0000 kHz	36.75 L1	-9.25 dB
1 Quasi Peak	451.5000 kHz	46.33 N	-10.52 dB
2 Average	1.1378 MHz	35.41 L1	-10.59 dB
2 Average	354.7500 kHz	37.62 N	-11.23 dB
1 Quasi Peak	408.7500 kHz	46.12 N	-11.55 dB
2 Average	1.4370 MHz	32.93 N	-13.07 dB
1 Quasi Peak	816.0000 kHz	42.17 L1	-13.83 dB

Figure 109 – Conducted EMI Data at 230 VAC, 42 V LED Load.

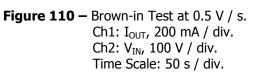
18 Line Surge

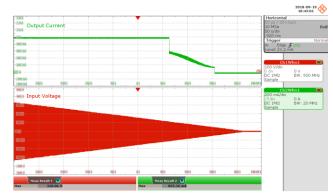
The unit was subjected to ± 2500 V, 100 kHz ring wave and ± 1000 V differential surge with 10 strikes at each condition. A test failure was defined as a non-recoverable interruption of output requiring repair or recycling of input voltage.

Surge Level (V)	Input Voltage (VAC)	Injection Location	Injection Phase (°)	Line Impedance	Test Result (Pass/Fail)
+1000	115	L to N	0	2Ω	Pass
-1000	115	L to N	0	2Ω	Pass
+1000	115	L to N	90	2Ω	Pass
-1000	115	L to N	90	2Ω	Pass
+1000	115	L to N	270	2Ω	Pass
-1000	115	L to N	270	2Ω	Pass
+1000	230	L to N	0	2Ω	Pass
-1000	230	L to N	0	2Ω	Pass
+1000	230	L to N	90	2Ω	Pass
-1000	230	L to N	90	2Ω	Pass
+1000	230	L to N	270	2Ω	Pass
-1000	230	L to N	270	2Ω	Pass

18.1 Differential Surge Test Results

18.2 Ring Wave Surge Test Results


	_				
Surge Level (V)	Input Voltage (VAC)	Injection Location	Injection Phase (°)	Line Impedance	Test Result (Pass/Fail)
+2500	115	L to N	0	12Ω	Pass
-2500	115	L to N	0	12Ω	Pass
+2500	115	L to N	90	12Ω	Pass
-2500	115	L to N	90	12Ω	Pass
+2500	115	L to N	270	12Ω	Pass
-2500	115	L to N	270	12Ω	Pass
+2500	230	L to N	0	12Ω	Pass
-2500	230	L to N	0	12Ω	Pass
+2500	230	L to N	90	12Ω	Pass
-2500	230	L to N	90	12Ω	Pass
+2500	230	L to N	270	12Ω	Pass
-2500	230	L to N	270	12Ω	Pass



19 Brown-in/Brown-out Test

No abnormal overheating, current overshoot/undershoot was observed during and after 0.5 V / s and 1 V / s brown in and brown out test.

 $\label{eq:Figure 111} \begin{array}{c} \mbox{ Brown-out Test at } 0.5 \mbox{ V / s} \\ \mbox{ Ch1: } I_{OUT}, \mbox{ 200 mA / div.} \\ \mbox{ Ch2: } V_{IN}, \mbox{ 100 V / div.} \\ \mbox{ Time Scale: 50 s / div.} \end{array}$

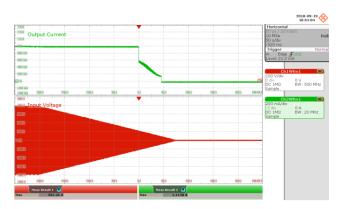
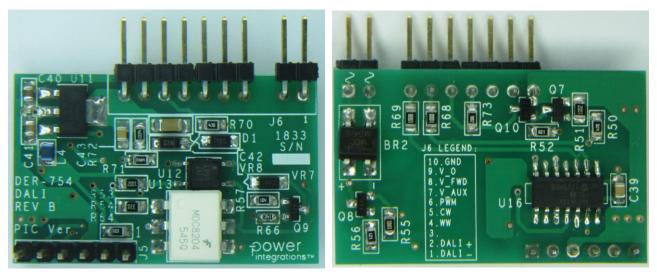



Figure 112 – Brown-in Test at 1 V / s. Ch1: I_{OUT} , 200 mA / div. Ch2: V_{IN} , 100 V / div. Time Scale: 50 s / div.

 $\label{eq:Figure 113} \begin{array}{c} \mbox{Figure 113} - \mbox{Brown-out Test at } 1 \mbox{ V / s.} \\ \mbox{Ch1: } I_{OUT}, \mbox{ 200 mA / div.} \\ \mbox{Ch2: } V_{IN}, \mbox{ 100 V / div.} \\ \mbox{Time Scale: 50 s / div.} \end{array}$

20 Appendix


20.1 DALI and CCT Interface Circuit

In any dimming system, the LED drivers and controllers must be able to speak the same language. For digital dimming systems, this language is an open standard such as the Digital Addressable Lighting Interface (DALI) protocol. DALI is a two-way digital protocol which consist a set of commands to and from LED drivers or ballasts within a defined data structures and specified electrical parameters.

The DER-750 board has a provision for a Correlated Color Temperature (CCT) function. CCT describes the color appearance of a white LED. CCT will allow the user to select between three color temperatures: neutral white, cool white and warm white. At power-up, the default LED color is neutral white. To change the color to cool white, the user toggles the AC with a 1 second turn-off duration. By toggling the AC, the LED color is changed.

This daughterboard is capable of providing DALI 2.0. The rest of the appendix details the circuit description, schematic and PCB layout, board level testing and set-up procedures.

For the software, use "*DALI_CG_PIC16F18326.X.production.hex"* to program the microcontroller via J5 header.

Figure 114 – Daughterboard Top View.

Figure 115 – Daughterboard Bottom View.

20.2 *Circuit Description*

20.2.1 Input Voltage Regulator

To supply power to the microcontroller, the output voltage (V_0) in the motherboard is tapped as input to a linear voltage regulator U11 that supplies a fixed 5 V to the microcontroller U16 and the rest of the daughterboard. The output voltage was selected as the input voltage source, instead of the auxiliary winding output (V_{AUX}), because it can provide sufficient hold-up time of more than 2 seconds. This specification is crucial to the operation of the CCT toggle, wherein the microcontroller is expected to operate specifically when the AC is turned off for a fixed duration. C40 and C41 are decoupling capacitors for linear regulator U11. Inductor L4 and C39 are low pass filters for the microcontroller's voltage supply.

20.2.2 DALI Dimming Circuit

The DALI bus carries the data signals and a DALI interface circuit provides communication between a microcontroller and DALI bus. In this case the microcontroller is PIC16F18326 (U16). The interface circuit is isolated with the microcontroller part via two optocouplers (U12 and U13). The optocouplers provide isolation and avoid the risk of sharing common ground. For data receive, the DALI bus output signal drives the optocoupler U12 via Q9 to transfer the data to the microcontroller. For data transmit, the microcontroller drives the optocoupler U13 directly to get into the DALI bus modulated via Q8.

20.2.3 CCT Circuit

The CCT circuit is comprised of a forward voltage detection circuit, and two MOSFETs that control two LED strings. This is implemented by turning on either one of two MOSFETs, or both at the same time – resulting in the three color combinations. Gate resistors R68 and R69 limit the current supplied by the microcontroller to the MOSFET gate pins.

A change in LED color is triggered by toggling the AC supply. To detect both turn-off and turn-on edge transition, the forward voltage level is sensed by the microcontroller. The forward voltage V_{FWD} is a switching voltage signal. Peak detection circuit comprised of R70, D1 and C42 captures only the peak of V_{FWD} . The resulting voltage level seen by C42, ranging from 40V to 70V, is too high for the microcontroller input. Zener diode VR8 and resistors R71, R72 provide a fixed step-down factor. This level is then inside the microcontroller input's operating limits. Labeled as COMP_IN, this voltage is used by the microcontroller as a comparator input to quickly detect the change in forward voltage level. The value of R72 is tuned to accommodate the input voltage range 90 VAC to 277 VAC.

The data that were received or transmitted from the microcontroller is now used to control the LED output current (i.e LED brightness). The microcontroller generates a

PWM output signal (pin 5), and the brightness of the LED can be changed upon the duty of the PWM signal.

20.2.4 Connector Pinouts

The daughterboard has two input connectors J5 and J6. Programming port J5 provides an interface for a Microchip PICkit 3 programmer/debugger. J6 provides an interface to the motherboard. The tables below summarize the function of each pin.

Pin Number	Label	Description
1	MCLR / VPP	Reset
2	VDD	Power on target
3	GND	Ground
4	PGD (ICSPDAT)	Programming Data Signal
5	PGC (ICSPCLK)	Programming Clock Signal
6	PGM (LVP)	Low voltage programming

20.2.6 J6 Pinout

Pin Number	Label	Description	
1	DALI-	DALI negative input	
2	DALI+	DALI positive input	
3	-	Not connected	
4	WW	Gate signal for warm white MOSFET	
5	CW	Gate signal for cool white MOSFET	
6	PWM	PWM signal used as input for dimming circuit	
7	V_AUX	Auxiliary winding voltage	
8	V_FWD	Forward pin voltage	
9	V_0	Output voltage	
10	GND	Ground	

20.3 *Schematic*

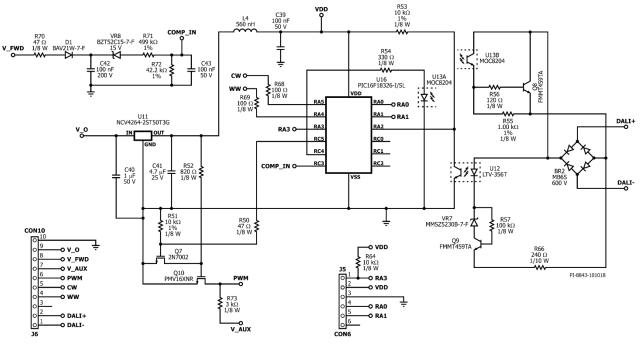
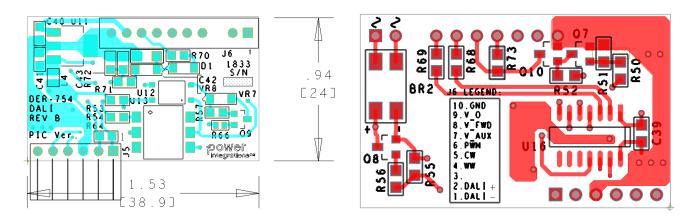



Figure 116 – Schematic Diagram.

20.4 *PCB Layout*

Figure 117 – Top.

Figure 118 – Bottom.

20.5 Board Level Test for DALI

Please follow below procedures to test the DALI daughter board.

- 20.5.1 Lab Equipment to be Used DC Power Supply 1 (up to 36 V, 100 mA) DC Power Supply 2 (up to 10 V, 100 mA) Digital Oscilloscope
- 20.5.2 Wiring Diagram for the Test Set-up

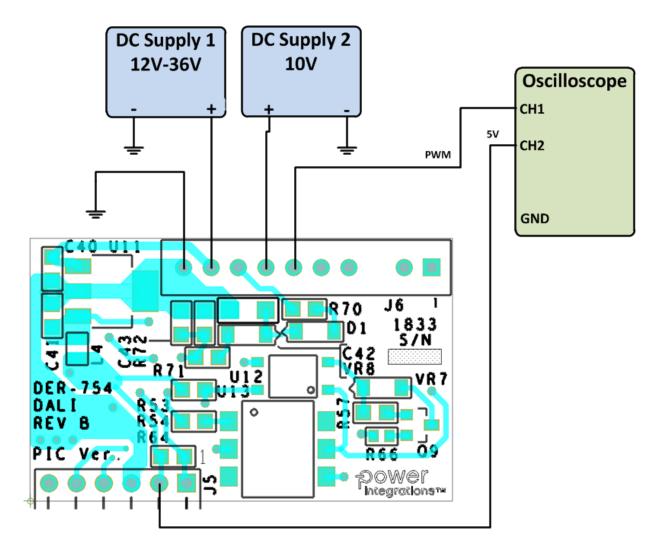


Figure 119 – Wiring Diagram for Testing DALI Dimming in Daughter Board.

20.5.3 Procedures

- 1. Construct the wiring diagram on the figure above.
- 2. Connect the positive terminal of DC power supply 1 to V_0 pin (Pin 9) of J6, and the negative terminal on GND pin (Pin 10)
- 3. Connect the positive terminal of DC power supply 2 to V_{AUX} pin (Pin 7) of J6, and the negative terminal on GND pin (Pin 10)
- 4. Connect the two channels of the oscilloscope accordingly: CH1 on PWM pin (Pin 6 of J6), CH2 on 5 V pin (Pin 2 OF J5), and the GND terminals on the GND pin (Pin 10).
- 5. Turn on both DC power supplies.
- 6. On the oscilloscope, set CH1 vertical scale to 5 V / div. Set CH2 vertical scale to 1 V / div. And set the horizontal scale to 50 μ s / div.
- 7. Confirm that the measured RMS voltage on CH2 is in the range 4.75 V 5.25 V.
- 8. Confirm that the measured duty cycle on CH1 is in the range 97% 100%.
- 9. Confirm that the RMS voltage measured on CH1 is in the range 9.5 V 10.5 V.
- 10. Any measurement outside the specified range indicates that there could be something wrong with the DALI circuit.

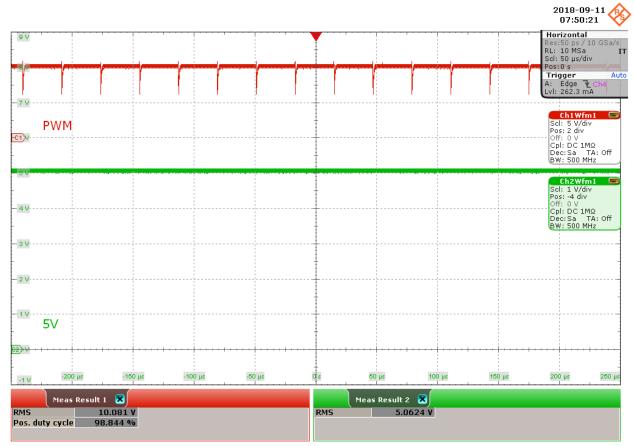


Figure 120 – Sample Measurements for Step 7 to Step 9.

20.6 Board Level Test for CCT

Please follow below procedures to test the DALI daughter board.

- 20.6.1 Lab Equipment to be Used DC Power Supply 1 (up to 36 V, 100 mA) DC Power Supply 2 (up to 45 V, 100 mA) Digital Oscilloscope
- 20.6.2 Wiring Diagram for the Test Set-up

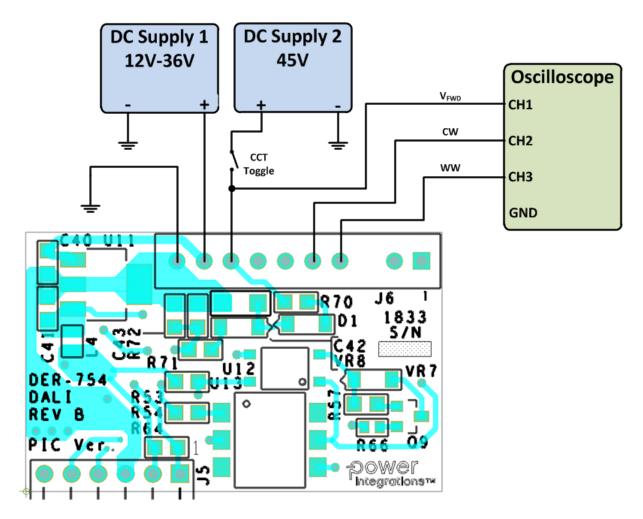


Figure 121 – Wiring Diagram for Testing CCT in Daughter Board.

20.6.3 Procedures

- 1. Construct the wiring diagram on the figure above.
- 2. Connect the positive terminal of DC power supply 1 to V_0 pin (Pin 9) of J6, and the negative terminal on GND pin (Pin 10)
- 3. Connect the positive terminal of DC power supply 2 to V_{FWD} pin (Pin 8) of J6, and the negative terminal on GND pin (Pin 10). You may choose to insert a switch in series on the positive terminal. This will emulate the CCT toggle command.
- 4. Connect the three channels of the oscilloscope accordingly: CH1 on V_{FWD} pin (Pin 8), CH2 on CW pin (Pin 5), CH3 on WW pin (Pin 4), and the GND terminals on the GND pin (Pin 10).
- 5. Turn on both DC power supplies, and close the CCT toggle switch, if present.
- 6. Upon turning on, measure the mean voltage of CH2 and CH3. It should both be 5V, indicating that two LED strings will be turned on.
- 7. Momentarily open and then close the toggle switch, or equivalently, turn off dc power supply 2 and then back on again.
- 8. Confirm that CH2 measures 5V, and CH3 measures 0V. This indicates that only cool white string will be turned on.
- 9. Repeat step 7.
- 10. Confirm that CH2 measures 0V, and CH3 measures 5V. This indicates that only warm white string will be turned on.
- 11. Repeat step 7 again.
- 12. Both CH2 and CH3 should measure 5V again. This indicates that the color state has returned back to its default state.
- 13. If the color state change behavior described in steps 6 to 12 are not observed, there may be something wrong with the forward voltage sensing circuit.

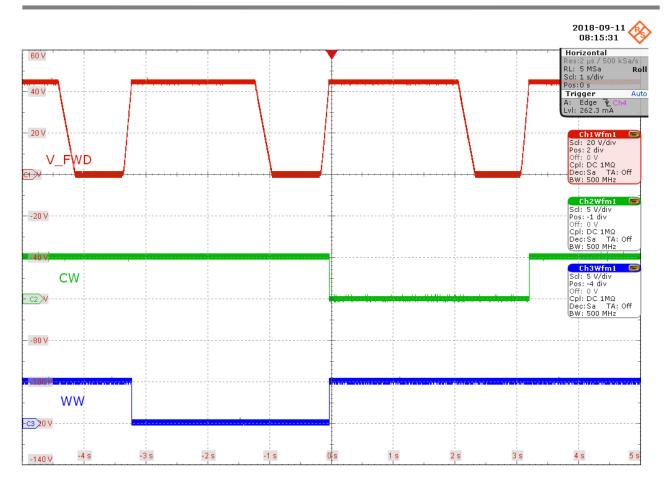


Figure 122 – Color State Change as Describe in Step 6 to Step 12

20.7 DALI Dimming and CCT Set-up

Before testing the DALI dimming, make sure to check the following:

- 1. The DALI Daughter Board **should be** connected to the main board.
- 2. Resistors R59 and R60 should not be placed.
- 3. The female jumpers (Sullins PN: SPC02SYAN) **should be disconnected** from connectors J4 and J5.
- 4. Refer to the figure below for the proper wiring diagram.

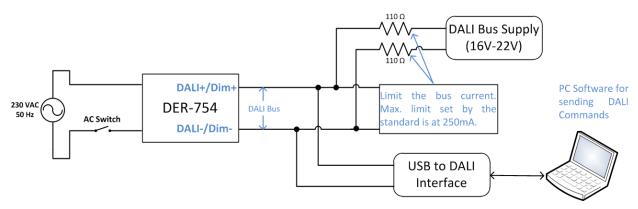
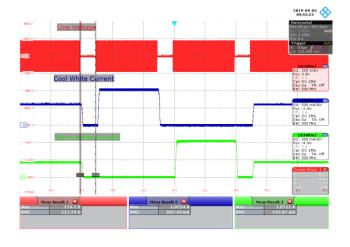


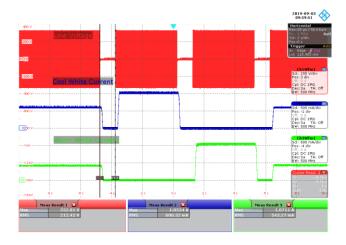
Figure 123 – Wiring Diagram for Testing the DALI Dimming and CCT Response.

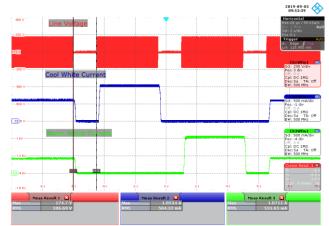
20.8 Bill of Materials

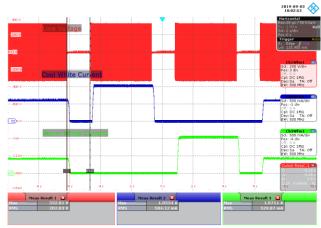
20.8.1 Electricals


Item	Qty	Ref Des	Description	Mfg Part Number	Mfg
1	1	BR2	600 V, 0.5 A, Bridge Rectifier, SMD, MBS-1, 4-SOIC	MB6S-TP	Micro Commercial
2	1	C39	100 nF, 50 V, Ceramic, X7R, 0805	CC0805KRX7R9BB104	Yageo
3	1	C40	1 μ F, ±10% ,50 V, Ceramic, X7R, AEC-Q200, Automotive, Boardflex Sensitive, 0805, -55°C \sim 125°C	CGA4J3X7R1H105K125AE	TDK
4	1	C41	4.7 μF ±10%, 25 V, X7R, -55°C ~ 125°C	TMK212AB7475KG-T	Taiyo Yuden
5	1	C42	100 nF, 200 V, Ceramic, X7R, 1206	C1206C104K2RACTU	Kemet
6	1	C43	100 nF, 50 V, Ceramic, X7R, 0805	CC0805KRX7R9BB104	Yageo
7	1	D1	250 V, 0.2 A, Fast Switching, 50 ns, SOD-123	BAV21W-7-F	Diodes, Inc.
8	1	J5	6 Position (1 x 6) header, 0.1 pitch, R/A Tin	22-05-2061	Molex
9	1	J6	10 Position (1 x 10) header, 0.1 pitch, Vertical	22-28-4100	Molex
10	1	L4	560 nH, 230 mADC, 1.9 Ω max, Q=23 @ 50 MHz, Fr= 320 MHz, unshielded, ceramic, wirewound, -40°C ~ 125°C, Wirewound, 0805, SMD	AISC-0805-R56G-T	Abracon
11	1	Q7	60 V, 115 mA, SOT23-3	2N7002-7-F	Diodes, Inc.
12	1	Q8	NPN, Small Signal BJT, 450 V, 0.5 A, 150 mA ,SOT-23	FMMT459TA	Diodes, Inc.
13	1	Q9	NPN, Small Signal BJT, 450 V, 0.5 A, 150 mA ,SOT-23	FMMT459TA	Diodes, Inc.
14	1	Q10	MOSFET, N-CH, 20V, SOT23	PMV16XNR	NXP
15	1	R50	RES, 47 Ω, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ470V	Panasonic
16	1	R51	RES, 10 kΩ, 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF1002V	Panasonic
17	1	R52	RES, 820 Ω, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ821V	Panasonic
18	1	R53	RES, 10 kΩ, 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF1002V	Panasonic
19	1	R54	RES, 330 Ω, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ331V	Panasonic
20	1	R55	RES, 1.00 kΩ, 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF1001V	Panasonic
21	1	R56	RES, 120 Ω, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ121V	Panasonic
22	1	R57	RES, 100 kΩ, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ104V	Panasonic
23	1	R64	RES, 10 kΩ, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ103V	Panasonic
24	1	R66	RES, 240 Ω, 5%, 1/10 W, Thick Film, 0603	ERJ-3GEYJ241V	Panasonic
25	1	R68	RES, 100 Ω, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ101V	Panasonic
26	1	R69	RES, 100 Ω, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ101V	Panasonic
27	1	R70	RES, 47 Ω, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ470V	Panasonic
28	1	R71	RES, 499 kΩ, 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF4993V	Panasonic
29	1	R72	RES, 42.2 kΩ, 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF4222V	Panasonic
30	1	R73	RES, 3 kΩ, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ302V	Panasonic
31	1	U11	IC, Linear Voltage Regulator, Positive, Fixed, 1 Output, 5 V, 0.1 A, SOT-223, SOT-223-3, TO-261-4, TO-261AA	NCV4264-2ST50T3G	ON Semi
32	1	U12	Optoisolator, Transistor Output, 3750 Vrms, 1 Channel,-55°C ~ 110 °C, 4-SOP (2.54 mm)	LTV-356T	Lite-On
33	1	U13	Optoisolator, Transistor with Base Output, 4170 Vrms, -40°C ~ 100 °C, 1 Channel, 6-SMD	MOC8204SR2M	ON Semi
34	1	U16	IC, PIC, PIC®, XLP™, 16F Microcontroller IC, 8-Bit, 32 MHz, 28 KB (16K x 14), FLASH, 14-SOIC	PIC16F18326-I/SL	Microchip
35	1	VR7	DIODE ZENER 4.7 V 500 mW SOD123	MMSZ5230B-7-F	Diodes, Inc.
36	1	VR8	15 V, 5%, 500 mW, SOD-123	BZT52C15-7-F	ON Semi

20.8.2 Mechanicals


Item	Qty	Ref Des	Description	Mfg Part Number	Mfg
1	1	J5	6 Position (1 x 6) header, 0.1 pitch, R/A Tin	22-05-2061	Molex
2	1	J6	10 Position (1 x 10) header, 0.1 pitch, Vertical	22-28-4100	Molex


20.9 CCT Toggle Performance


 $\label{eq:Figure 124-120 VAC 60 Hz, 1000 mA LED Load.} 1.0 s Turn Off Pulse. Upper: V_{IN}, 200 V / div. Middle: I_{WW}, 500 mA / div. Lower: I_{CW}, 500 mA / div., 2 s / div. \\ \end{tabular}$

 $\begin{array}{l} \mbox{Figure 126}-230\ \mbox{VAC 50 Hz},\,1000\ \mbox{mA LED Load}.\\ 1.0\ \mbox{s Turn Off Pulse}.\\ Upper:\ \mbox{V}_{IN},\,200\ \mbox{V}\ /\ \mbox{div}.\\ Middle:\ \mbox{I}_{WW},\,500\ \mbox{mA}\ /\ \mbox{div}.\\ Lower:\ \mbox{I}_{CW},\,500\ \mbox{mA}\ /\ \mbox{div}.\,2\ \mbox{s}\ /\ \mbox{div}. \end{array}$

 $\label{eq:Figure 125 - 120 VAC 60 Hz, 1000 mA LED Load. \\ 1.5 s Turn Off Pulse. \\ Upper: V_{IN}, 200 V / div. \\ Middle: I_{WW}, 500 mA / div. \\ Lower: I_{CW}, 500 mA / div., 2 s / div. \\ \end{array}$

 $\label{eq:Figure 127 - 230 VAC 50 Hz, 1000 mA LED Load. \\ 1.5 s Turn Off Pulse. \\ Upper: V_{IN}, 200 V / div. \\ Middle: I_{WW}, 500 mA / div. \\ Lower: I_{CW}, 500 mA / div., 2 s / div. \\ \end{array}$

۷.					
	Date	Author	Revision	Description and Changes	Reviewed
	25-Jan-18	DL	1.0	Initial Release.	Apps & Mktg
	22-Aug-19	KM	1.1	Updated schematic and BOM and PCB.	
	03-Sep-19	CA	1.2	Updated Spreadsheet and Appendix.	
ſ	17-Sep-19	KM	1.3	Updated Figures 6 and 9.	

21 Revision History

For the latest updates, visit our website: www.power.com

Reference Designs are technical proposals concerning how to use Power Integrations' gate drivers in particular applications and/or with certain power modules. These proposals are "as is" and are not subject to any qualification process. The suitability, implementation and qualification are the sole responsibility of the end user. The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may base on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information scontained herein. No responsibility is accepted for the accuracy or sufficiency of any of the statements, technical information, recommendations or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

Patent Information

The products and applications illustrated herein (including transformer construction and circuits' external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at <u>WWW.pOWEr.COM</u>. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.power.com/ip.htm.

The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, LYTSwitch, InnoSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS, HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, HuxLink, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2015 Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: usasales@power.com

GERMANY

(IGBT Driver Sales) HellwegForum 1 59469 Ense, Germany Tel: +49-2938-64-39990 Email: igbtdriver.sales@power.com

KOREA RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 e-mail: koreasales@power.com CHINA (SHANGHAI) Rm 2410, Charity Plaza, No. 88, North Caoxi Road, Shanghai, PRC 200030

Phone: +86-21-6354-6323

Fax: +86-21-6354-6325 e-mail: chinasales@power.com

INDIA #1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 Fax: +91-80-4113-8023 e-mail: indiasales@power.com

SINGAPORE

51 Newton Road, #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 e-mail: singaporesales@power.com

CHINA (SHENZHEN)

17/F, Hivac Building, No. 2, Keji Nan 8th Road, Nanshan District, Shenzhen, China, 518057 Phone: +86-755-8672-8689 Fax: +86-755-8672-8690 e-mail: chinasales@power.com

ITALY

Via Milanese 20, 3rd. Fl. 20099 Sesto San Giovanni (MI) Italy Phone: +39-024-550-8701 Fax: +39-028-928-6009 e-mail: eurosales@power.com

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 11493, Taiwan R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 e-mail: taiwansales@power.com

GERMANY

(AC-DC/LED Sales) Lindwurmstrasse 114 80337, Munich Germany Phone: +49-895-527-39110 Fax: +49-895-527-39200 e-mail: eurosales@power.com

JAPAN

Kosei Dai-3 Building 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: japansales@power.com

UK

Cambridge Semiconductor, a Power Integrations company Westbrook Centre, Block 5, 2nd Floor Milton Road Cambridge CB4 1YG Phone: +44 (0) 1223-446483 e-mail: eurosales@power.com

