Design Example Report

Title	$\mathbf{2 9}$ W High Power Factor Isolated Flyback Using LYTSwitch ${ }^{\text {TM }} \mathbf{- 6 ~ L Y T G 0 6 7 C ~ w i t h ~ 3 - i n - 1 ~}$ and DALI Dimming
Specification	180 VAC - 265 VAC Input; 36 V, 800 mA Output
Application	LED Lighting
Author	Applications Engineering Department
Document Number	DER-740
Date	July 30, 2018
Revision	1.0

Summary and Features

- Accurate constant current regulation
- Industry first AC/DC controller with isolated, safety rated feedback without optocoupler
- High power factor, >0.9 at 180 VAC to 265 VAC
- Ultrafast transient response
- Highly energy efficient, >86\%
- Integrated protection and reliability features
- Output short-circuit protection
- Line and output OVP
- Thermal foldback and over-temperature shutdown with hysteretic automatic power recovery
- CCM + Quasi-Resonant switching for precision CC/CV operation without need for loop compensation
- Meets IEC 2.5 kV ring wave, 1 kV differential surge
- Meets EN55015 conducted EMI

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuit's external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at https://www.power.com/company/intellectual-property-licensing/.

Power Integrations

Table of Contents
1 Introduction 4
2 Power Supply Specification 6
3 Schematic 7
4 Circuit Description 8
4.1 Input Circuit Description 8
4.2 Primary Circuit. 8
4.3 LYTSwitch-6 Secondary-Side Control 9
4.4 PFC Circuit Operation. 9
4.5 3-in-1 Dimming Circuit 10
4.5.1 3-in-1 Dimming Set-up 12
5 PCB Layout 13
6 Bill of Materials 14
6.1 Electrical 14
6.2 Mechanicals and Miscellaneous 15
6.3 Female Shorting Jumper for Connectors J4 and J5 15
7 Flyback Transformer (T1) Specification 16
7.1 Electrical Diagram 16
7.2 Electrical Specifications 16
7.3 Material List 16
7.4 Transformer Build Diagram 17
7.5 Transformer Construction. 17
7.6 Transformer Winding Illustrations 18
8 PFC Inductor (T2) Specifications 24
8.1 Electrical Diagram 24
8.2 Electrical Specifications 24
8.3 Material List 24
8.4 Inductor Build Diagram 25
8.5 Inductor Construction 25
8.6 Inductor Winding Illustrations 26
9 Design Spreadsheet. 28
10 Performance Data 32
10.1 Output Current Regulation 32
10.2 System Efficiency 33
10.3 Power Factor 34
10.4 \%ATHD 35
10.5 Individual Harmonics Content at Full Load. 36
10.6 No-Load Input Power 37
10.7 CV/CC Curve 38
10.8 Dimming Performance: 3-in-1 Dimming 39
10.8.1 Variable Supply Dimming 39
10.8.2 Variable Resistor Dimming 40
10.8.3 Variable Duty PWM Dimming 41
11 Test Data 42
11.1 Test Data at Full Load 42
11.2 Test Data at No-Load 42
11.3 Individual Harmonic Content at 230 VAC 60 Hz and Full Load. 43
12 Thermal Performance 44
12.1 Thermal Measurements at Ambient Room Temperature 44
12.2 Thermal Performance at Ambient Room Temperature with Unit Inside Casing 47
12.3 Thermal Performance at High Ambient Temperature 49
13 Waveforms 51
13.1 Input Voltage and Input Current at Full Load 51
13.2 Start-up Profile at Full Load (DALI Disabled) 52
13.3 Start-up Profile Full Load (DALI Enable) 53
13.4 Turn-Off Profile Full Load 54
13.5 LYTSwitch-6 Drain Voltage and Current Waveforms at Normal Operation 55
13.6 LYTSwitch-6 Drain Voltage and Current at Full Load Start-up 57
13.7 LYTSwitch-6 Drain Voltage and Current during Output Short-Circuit. 59
13.8 PFC Diode Voltage and Current at Normal Operation 61
13.9 PFC Diode Voltage and Current at Start-up Full Load 62
13.10 Output Current Ripple 63
13.10.1 Equipment Used 63
13.10.2 Ripple Ratio and Flicker \% Measurement 63
14 Conducted EMI 65
14.1 Test Set-up 65
14.1.1 Equipment and Load Used 65
14.2 EMI Test Result 66
14.2.1 Non Earthed Conducted EMI 66
14.2.2 Earthed Conducted EMI 67
15 Appendix 68
15.1 Pin Functions 69
15.2 Schematic 69
15.3 PCB Layout 70
15.4 Board Level Test for DALI Daughter Board 71
15.4.1 Lab Equipment to be used 71
15.4.2 Wiring Diagram for the Test Set-up 71
15.4.3 Procedures 72
15.5 DALI Dimming Set-up 73
15.6 Bill of Materials 74
15.6.1 DALI Circuit (PIC16F18326) 74
15.6.2 Mechanicals 74
15.7 Dimming Performance with DALI Command 75
16 Revision History 76

Important Note: Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

1 Introduction

This engineering report describes an isolated flyback LED driver compatible with both 3-in-1 dimming and DALI dimming. It is designed to drive a nominal LED voltage string of 36 V at 800 mA from an input voltage range of 180 VAC to 265 VAC . The LED driver utilizes the LYT6067C from the LYTSwitch-6 family of devices.

DER-740 is a high-line input flyback converter design added with a switched valley-fill PFC circuit. Through the PFC circuit, the design meets the high power factor requirement in LED lighting application while reducing loss by direct energy transfer. The key design goals were high efficiency, high power factor across the input voltage range, and both 3-in-1 dimmable and DALI dimmable from 0\% to 100%.

This document contains the power supply specification, schematic diagram, bill of materials, transformer documentation, printed circuit board layout, and performance data.

Figure 1 - Populated Circuit Board.

Figure 2 - Populated Circuit Board, Top View.

Figure 3 - Populated Circuit Board, Bottom View.

2 Power Supply Specification

The table below represents the minimum acceptable performance of the design. Actual performance is listed in the results section.

Description	Symbol	Min	Typ	Max	Units	Comment
Input Voltage Frequency	$\begin{aligned} & \mathbf{V}_{\text {IN }} \\ & \mathbf{f}_{\text {LINE }} \end{aligned}$	180	$\begin{gathered} 230 \\ 50 \\ \hline \end{gathered}$	265	$\mathrm{Vac} / \mathrm{Hz}$	2 Wire - No P.E.
Output Output Voltage Output Current Total Output Power Continuous Output Power	$V_{\text {OUT }}$ $\mathbf{I}_{\text {OUT }}$ Pout	30	$\begin{gathered} 36 \\ 800 \\ \\ 29 \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \\ \mathrm{~W} \end{gathered}$	CC Threshold: 0.8 A
Efficiency Full Load Average Efficiency	η		$\begin{gathered} 86 \\ >86 \end{gathered}$		$\begin{aligned} & \% \\ & \% \\ & \hline \end{aligned}$	At $230 \mathrm{VAC} / 50 \mathrm{~Hz}$. $25^{\circ} \mathrm{C}$ Ambient Temperature. Meets DOE Level VI.
Environmental Conducted EMI Safety Ring Wave (100 kHz) Differential Mode (L1-L2)				EN5501	kV kV	
Power Factor			0.9			Measured at $180 \mathrm{VAC} / 50 \mathrm{~Hz}$ and $265 \mathrm{VAC} / 50 \mathrm{~Hz}$.
Ambient Temperature	$\mathrm{T}_{\text {AMB }}$			40	${ }^{\circ} \mathrm{C}$	Free Air Convection, Sea Level. At 230 VAC Input.

3 Schematic

Figure 4 - Schematic.

4 Circuit Description

The LYTSwitch-6 device (LYT6067C) combines a 650 V power MOSFET, sense elements, a safety-rated feedback mechanism, along with both primary-side and secondary-side controllers in one device. Since LYTSwitch-6 ICs use an integrated communication link, FluxLink ${ }^{\top \mathrm{M}}$, accurate control of the secondary-side by the primary-side is possible and close component proximity is utilized. The LYTSwitch-6 IC is designed to deliver a 29 W flyback power supply with a switched valley-fill PFC providing a high power factor for 800 mA constant current output at a nominal voltage of 36 V throughout the input range of 180 VAC to 265 VAC.

$4.1 \quad$ Input Circuit Description

Fuse F1 isolates the circuit and provides protection from component failures. Varistor RV1 acts as a voltage clamp in case of voltage spikes from transient line surge. Bridge rectifier BR1 rectifies the AC line voltage and provide a full wave rectified DC across the input capacitors C2 and C3. Capacitor C1, L2, C2, L3, and C3 forms a 2-stage LC EMI filter to suppress differential and common mode noise caused by the PFC and flyback switching action.

The bulk capacitor (C4) provides input line ripple voltage filtering for a stable flyback DC supply voltage and helps reduce EMI noise. It also stores excess energy generated by the PFC during the power switch turn off time.

Rectifier diode (D16) delivers the charging current to C 4 from the input rectified voltage. During FET off time, D16 blocks current from PFC supply so that flyback DC supply is isolated.

4.2 Primary Circuit

One end of transformer (T2) primary is connected to the positive output terminal of the bulk capacitor (C4) while the other side is connected to the drain of the integrated 650 V power MOSFET inside the LYTSwitch-6 IC (U4).

A low cost RCD snubber clamp formed by D8, R46, R17, and C9 limits the peak Drain voltage spike of U4 at the instant turn-off of the MOSFET. The clamp helps dissipate the energy stored in the leakage reactance of transformer T2.

The VOLTAGE MONITOR (V) pin of the LYTSwitch-6 IC is connected to the positive of the bulk capacitor (C4) to provide input voltage information. The voltage across the bulk capacitor (C4) is sensed and converted into current through V pin resistors R4 and R45 to provide detection of overvoltage. The Iov- determines the input overvoltage threshold. The IC is kick-started by an internal high-voltage current source that charges the BPP pin capacitor C11 when AC is first applied. Primary-side will listen for secondary request signals for around 82 ms . After initial power-up, primary-side assumes control first and requires a handshake to pass the control to the secondary-side. During normal operation
the primary-side block is powered from an auxiliary winding on the transformer. The output of this is configured as a flyback winding which is rectified and filtered using diode D7 and capacitor C10. Resistor R18 limits the current being supplied to the BPP pin of the LYTSwitch-6 (U4).

The thermal shutdown circuitry senses the primary MOSFET die temperature. The threshold ($\mathrm{T}_{\text {SD }}$) is typically set to $142^{\circ} \mathrm{C}$ with $70{ }^{\circ} \mathrm{C}$ hysteresis $\mathrm{T}_{\text {SD(H). }}$. When the die temperature rises above this threshold the power MOSFET is disabled and remains disabled until the die temperature falls by $\mathrm{T}_{\mathrm{SD}(H)}$ at which point it is re-enabled. A large hysteresis of $70^{\circ} \mathrm{C}$ is provided to prevent over-heating of the PCB due to continuous fault condition.

4.3 LYTSwitch-6 Secondary-Side Control

The secondary side control of the LYTSwitch-6 IC provides output voltage, output current sensing and drive a MOSFET providing synchronous rectification. The secondary of the transformer is rectified by D10 and filtered by the output capacitors C16 and C18. An optional RC snubber (R48 and C14) can be added across the output diode to reduce the voltage stress across it. The secondary side of the IC is powered from an auxiliary winding FL3 and FL4.

During constant voltage mode operation, output voltage regulation is achieved through sensing the output voltage via divider resistors R29 and R30. The voltage across R30 is fed into the FEEDBACK (FB) pin with an internal reference voltage threshold of 1.265 V . Filter capacitor C19 is added across R30 to eliminate unwanted noise that might trigger the OVP function or increase the output ripple voltage.

During constant current operation, the output current is set by the sense resistors R43 and R24 across the IS pin and the GND pin. The internal reference threshold for the IS pin is 35.8 mV . Diode D13 in parallel with the current sense resistor serves as protection for IS pin during output short-circuit conditions.

The thermal foldback is activated when the secondary controller die temperature reaches $124{ }^{\circ} \mathrm{C}$, the output power is reduced by reducing the constant current reference threshold.

4.4 PFC Circuit Operation

Without the added PFC circuit, the power factor of the flyback power supply is normally around 0.5 to 0.6 at full load condition. Input from the bridge rectifier (BR1) will just directly feed the bulk capacitor (C4) that charges and recharges till the next voltage peak fed to it. The input charging pulse current must be high enough to sustain the load until the next peak. This means that the charging pulse current is around 5-10 times higher than the average current with a high phase angle difference from the voltage waveform; hence, the expected PF from this standard configuration is low and THD is high.

The added PFC circuit is called "Switched Valley-Fill Single Stage PFC" (SVF S2PFC). Composed of an inductor (T1) and diodes (D1 and D17) connected directly to the DRAIN (D) pin of the LYTSwitch-6 IC. Through this, the LYTSwitch-6 IC flyback switching action is able to draw a high frequency pulse current from the full wave rectified input. This will reduce the rms input current and the phase angle difference from the input line voltage will be lower; hence, power factor will increase and will improve THD.

The PFC inductor T1 operates in DCM mode. At turn ON time, current delivered by the rectified input is stored in the PFC inductor which is then delivered via direct energy transfer to the flyback transformer T2. Excess energy from the PFC inductor that is not delivered to the load is being stored to the bulk capacitor. During no-load and light load conditions, the secondary requires less energy from the primary; therefore, more excess energy from the PFC inductor is stored on the bulk capacitor causing the voltage to rise gradually which will be higher than that of the peak input. For this a Zener-resistor clamp (VR1, VR2, R47) was added in parallel with the bulk capacitor to limit the rise in voltage. The expected voltage stress across the bulk capacitor C 4 will be higher than the peak input voltage. The Zener voltage is set at 400 V ; when the bulk voltage goes beyond this, the Zener diodes conduct and bleed current from the bulk capacitor through resistor R47. This prevents the bulk capacitor voltage to rise above 450 V . The power dissipation of this Zener-resistor clamp should be considered at the worst-case creeping of the bulk voltage - happens usually at light load condition. Diodes D1 and D17 are connected in series to withstand voltage stress caused by the resonance ringing during the FET turn off. The variability of the PFC inductor peak current will be compensated by the LYTSwitch-6 IC primary and secondary-side control maintaining the voltage regulation at all conditions.

$4.5 \quad$ 3-in-1 Dimming Circuit

The 3-in-1 Dimming circuit enables utilizing just two terminals for three possible types of dimming input signals. Dimming is done by sensing the output current, amplifying the signal, comparing it with a variable reference and injecting current into the FB pin.

Output current is sensed through IS pin resistors R43 and R24. The output current passes through these resistors and the resulting voltage signal is then passed through the non-inverting amplifier circuit R15, R16, R63, U14A, and C27. The gain is set by R16 and R63 to 262 or about 9.4 V maximum. The output of the op-amp (pin 1) connects to the positive input (pin 5) through R62. The signal going to the negative input (pin 6) comes from either of three possible inputs: variable DC supply ($0-10 \mathrm{~V}$), variable resistance ($0-100 \mathrm{k} \Omega$), or variable duty PWM signal ($0-100 \%, 300-3 \mathrm{kHz}$).

The basic principle of the circuitry is that the output at pin 1 of U14A will always try to match the voltage at pin 6 of U14B which is set by the dimming input. Since U14A is configured as a non-inverting Op-Amp and its input voltage signal is directly proportional to the output current, an increase in the voltage at pin 6 of U14B will result to an increase in the output current. When the dimming input is a variable DC supply, the
voltage at pin 6 of U14B will just be the set voltage of the DC supply. When the dimming input is a variable duty PWM signal, the averaging circuit composed of R20 and C26 converts the signal into DC before feeding to the op-amp input. A constant current source composed of R64, R66, U8, and Q10 is used to convert the variable resistance input into the desired variable DC signal. U8 clamps the voltage at R66, therefore setting the emitter current constant. The emitter current of Q10 is roughly equal to its collector current (around $100 \mu \mathrm{~A}$) which is connected to the variable resistance input which in turn produces the $0-10 \mathrm{~V}$ needed at pin 6 of U14B. VR3 and D18 are placed for protection in case the user have interchanged the dimming input causing inverted polarity or in case the user forgot to remove the jumpers of connectors J 4 and $\mathrm{J5}$ and engaged the DALI dimming. The dimming circuit can also be controlled via DALI dimming instead of $3-\mathrm{in}-1$ dimming by disconnecting the jumpers of J 4 and $\mathrm{J5}$.

At start-up, the op-amp output is initially low which causes an unwanted spike in output current. To counter this effect, a blanking circuit Q11, R65, and C38 is added which initially pulls the inverting input (pin 6) down and in turn results to op-amp output high.

The op-amp output (pin 7) is connected to the FB pin through D9 and R14. Depending on the op-amp output, current is injected into the FB pin. The feedback voltage will go up as current is injected. This will normally bring the output voltage down in CV mode. However, since the LED load is a constant voltage, it can't bring the voltage down. Instead, the output current goes down as a consequence.

The current injection loop has to be slow enough in order not to trigger feedback overvoltage protection when doing a step load from 100% to 0%. This is done by increasing the value of R14.

A low-input offset operational amplifier is also recommended to reduce unit-to-unit variability. It is also important to place the dimming circuit close to the IS pin and FB pin to prevent noise from disturbing the loop.
4.5.1 3-in-1 Dimming Set-up

Before testing the 3-in-1 dimming, make sure to check the following:

1. The DALI Board should not be connected to the main board.
2. The female jumpers (Sullins PN: SPC02SYAN) should be inserted to connectors J4 and 35.
3. Refer to the figures below for the proper wiring diagram.

1. Variable DC Supply

Figure 5 - Dimming Set-up for Variable DC supply dimming input.

2. Variable PWM Duty Cycle

Figure 6 - Dimming Set-up for Variable PWM Duty Cycle dimming input.

3. Variable Resistor

Figure 7 - Dimming Set-up for Variable Resistor dimming input.

5 PCB Layout

Figure 8 - Main Board Top Side.

Figure 9 - Main Board Bottom Side.

6 Bill of Materials

6.1 Electrical

Item	Qty	Ref Des	Description	Mfg. Part Number	Mfg.
1	1	BR1	$\begin{aligned} & \text { Bridge Rectifier, } 1000 \mathrm{~V}, 4 \mathrm{~A}, 4-\mathrm{ESIP}, \mathrm{D} 3 \mathrm{~K},-55^{\circ} \mathrm{C} \sim 150^{\circ} \mathrm{C}(\mathrm{TJ}) \text {, Vf }=1 \mathrm{~V} @ \\ & 7.5 \mathrm{~A} \end{aligned}$	UD4KB100-BP	Micro Commercial
2	1	C1	$0.1 \mu \mathrm{~F}, \pm 20 \%$, Film Capacitor,X2 Safety Rated, 310 VAC, 630 VDC, Polypropylene (PP), Metallized Radial	BFC233920104	Vishay
3	1	C2	$330 \mathrm{nF}, 450 \mathrm{~V}$, METALPOLYPRO	ECW-F2W334JAQ	Panasonic
4	1	C3	$330 \mathrm{nF}, 450 \mathrm{~V}$, METALPOLYPRO	ECW-F2W334JAQ	Panasonic
5	1	C4	$22 \mu \mathrm{~F}, \pm 20 \%, 450 \mathrm{~V}$, Electrolytic, $-25^{\circ} \mathrm{C} \sim 105^{\circ} \mathrm{C}, 8000 \mathrm{Hrs} @ 105^{\circ} \mathrm{C}$, (16 x 31.5)	UPW2W220MHD	Nichicon
6	1	C9	$470 \mathrm{pF}, \pm 10 \%, 500 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}$, Ceramic Capacitor, $-55^{\circ} \mathrm{C} \sim 125^{\circ} \mathrm{C}$, Surface Mount, MLCC 1206	CC1206KKX7RBBB471	Yageo
7	1	C10	$22 \mu \mathrm{~F}, 35 \mathrm{~V}$, Electrolytic, Gen. Purpose, (5×11)	UVR1V220MDD6TP	Nichicon
8	1	C11	470 nF, 50 V, Ceramic, X7R, 0805	GRM21BR71H474KA88L	Murata
9	1	C12	3.3 nF , Ceramic, Y1	440LD33-R	Vishay
10	1	C13	2.2 HF, 25 V, Ceramic, X7R, 1206	TMK316B7225KL-T	Taiyo Yuden
11	1	C14	220 pF, 630 V, Ceramic, NPO, 1206	C3216C0G2J221J	TDK
12	1	C15	22μ F, 35 V, Electrolytic, Gen. Purpose, (5×11)	UVR1V220MDD6TP	Nichicon
13	1	C16	470μ F, 50 V, Electrolytic, Gen. Purpose, (10×20)	EKMG500ELL471MJ20S	United ChemiCon
14	1	C18	$470 \mu \mathrm{~F}, 50 \mathrm{~V}$, Electrolytic, Gen. Purpose, (10×20)	EKMG500ELL471MJ20S	United ChemiCon
15	1	C19	330 pF 50 V, Ceramic, X7R, 0603	CC0603KRX7R9BB331	Yageo
16	1	C26	2.2 ¢F, 25 V, Ceramic, X7R, 0805	C2012X7R1E225M	TDK
17	1	C27	1 uF, $\pm 10 \%$, 50 V, Ceramic, X7R, AEC-Q200, Automotive, Boardflex Sensitive, 0805 (2012 Metric), $-55^{\circ} \mathrm{C} \sim 125^{\circ} \mathrm{C}$	CGA4J3X7R1H105K125AE	TDK
18	1	C28	$1 \mu \mathrm{~F} 16 \mathrm{~V}$, Ceramic, X7R, 0603	C1608X7R1C105M	TDK
19	1	C37	$\begin{aligned} & 1 \mathrm{uF}, \pm 20 \%, 16 \mathrm{~V}, \text { Ceramic, X7R, Boardflex Sensitive, Soft Termination, - } \\ & 55^{\circ} \mathrm{C} \sim 125^{\circ} \mathrm{C}, 0603 \text { (1608 Metric), } \end{aligned}$	C0603X105M4RAC7867	Kemet
20	1	C38	1 uF, $\pm 10 \%$, 50 V, Ceramic, X7R, AEC-Q200, Automotive, Boardflex Sensitive, 0805 (2012 Metric), $-55^{\circ} \mathrm{C} \sim 125^{\circ} \mathrm{C}$	CGA4J3X7R1H105K125AE	TDK
21	1	D1	600 V, 2 A, Super Fast, 35 ns, DO-214AC, SMA	ES2J-LTP	Micro Commercial
22	1	D7	250 V, 0.2 A, Fast Switching, 50 ns , SOD-123	BAV21WS-7-F	Diodes, Inc.
23	1	D8	600 V, 1 A, Rectifier, Glass Passivated, POWERDI123	DFLR1600-7	Diodes, Inc.
24	1	D9	75 V, 0.15 A, Switching,SOD-323	BAV16WS-7-F	Diodes, Inc.
25	1	D10	$400 \mathrm{~V}, 2$ A, Super Fast, 35 ns , DO-214A, SMB	ES2G-13-F	Diodes, Inc.
26	1	D11	$400 \mathrm{~V}, 1 \mathrm{~A}$, DIODE SUP FAST 1A PWRDI 123	DFLU1400-7	Diodes, Inc.
27	1	D13	$200 \mathrm{~V}, 1 \mathrm{~A}$, MINI2	DA22F2100L	Panasonic
28	1	D16	600 V, 1 A, Standard Recovery, SMA	S1J-13-F	Diodes, Inc.
29	1	D17	600 V, 2 A, Super Fast, 35 ns , DO-214AC, SMA	ES2J-LTP	Micro Commercial
30	1	D18	100 V, 0.2 A, Fast Switching, 50 ns, SOD-323	BAV19WS-7-F	Diodes, Inc.
31	1	F1	$2 \mathrm{~A}, 250 \mathrm{~V}$, Slow, Long Time Lag, RST	RST 2	Belfuse
32	1	L2	18.7 mH, 0.22 A, Common Mode Choke	RL-4400-1-18.7	Renco
33	1	L3	$1000 \mu \mathrm{H}, 1.20$ ohm, Isat: 0.880 A , Irms: 0.490 A	RL-5480-4-1000	Renco
34	1	Q10	PNP, Small Signal BJT, $40 \mathrm{~V}, 0.2 \mathrm{~A}$, SOT-23	MMBT3906LT1G	On Semi
35	1	Q11	$60 \mathrm{~V}, 115 \mathrm{~mA}$, SOT23-3	2N7002-7-F	Diodes, Inc.
36	1	R4	RES, $2.2 \mathrm{M} \Omega, 5 \%$, $1 / 4 \mathrm{~W}$, Carbon Film	CFR-25JB-2M2	Yageo
37	1	R14	RES, $56 \mathrm{k} \Omega, 5 \%, 1 / 10 \mathrm{~W}$, Thick Film, 0603	ERJ-3GEYJ563V	Panasonic
38	1	R15	RES, $1 \mathrm{k} \Omega, 1 \%, 1 / 16 \mathrm{~W}$, Thick Film, 0603	ERJ-3EKF1001V	Panasonic
39	1	R16	RES, $1.00 \mathrm{k} \Omega, 1 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6ENF1001V	Panasonic
40	1	R17	RES, $510 \mathrm{k} \Omega, 5 \%$, 1/4 W, Thick Film, 1206	ERJ-8GEYJ514V	Panasonic

41	1	R18	RES, $10 \mathrm{k} \Omega, 5 \%$, 1/4 W, Thick Film, 1206	ERJ-8GEYJ103V	Panasonic
42	1	R19	RES, 1 k $\Omega, 1 \%, 1 / 16$ W, Thick Film, 0603	ERJ-3EKF1001V	Panasonic
43	1	R20	RES, $20 \mathrm{k} \Omega, 1 \%, 1 / 16 \mathrm{~W}$, Thick Film, 0603	ERJ-3EKF2002V	Panasonic
44	1	R22	RES, $47 \Omega, 5 \%, 1 / 4 \mathrm{~W}$, Thick Film, 1206	ERJ-8GEYJ470V	Panasonic
45	1	R24	RES, $0.39 \Omega 1 / 4 \mathrm{~W}, 1 \%$,Thick Film, 1206	ERJ-8RQFR39V	Panasonic
46	1	R29	RES, $102 \mathrm{k} \Omega, 1 \%$, $1 / 4 \mathrm{~W}$, Metal Film	MFR-25FBF-102K	Yageo
47	1	R30	RES, $3.57 \mathrm{k} \Omega, 1 \%, 1 / 16 \mathrm{~W}$, Thick Film, 0603	ERJ-3EKF3571V	Panasonic
48	1	R34	RES, 1 k , , 1\%, 1/16 W, Thick Film, 0603	ERJ-3EKF1001V	Panasonic
49	1	R43	RES, SMD, $0.05 \Omega, 1 \%, 1 / 2 \mathrm{~W}, 1206, \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C},-55^{\circ} \mathrm{C} \sim 155^{\circ} \mathrm{C}$	CSR1206FT50L0	Stackpole
50	1	R45	RES, $2.2 \mathrm{M} \Omega, 5 \%, 1 / 4 \mathrm{~W}$, Thick Film, 1206	ERJ-8GEYJ225V	Panasonic
51	1	R46	RES, $20 \Omega, 5 \%, 1 / 4 \mathrm{~W}$, Thick Film, 1206	ERJ-8GEYJ200V	Panasonic
52	1	R47	RES, 4.7 k , 5\%, 1/4 W, Thick Film, 1206	ERJ-8GEYJ472V	Panasonic
53	1	R48	RES, $100 \Omega, 5 \%, 1 / 2 \mathrm{~W}$, Thick Film, 1210	ERJ-14YJ101U	Panasonic
54	1	R62	RES, $1 \mathrm{k} \Omega, 1 \%, 1 / 4 \mathrm{~W}$, Metal Film	MFR-25FBF-1K00	Yageo
55	1	R63	RES, $261 \mathrm{k} \Omega, 1 \%, 1 / 16 \mathrm{~W}$, Thick Film, 0603	ERJ-3EKF2613V	Panasonic
56	1	R64	RES, $9.1 \mathrm{k} \Omega, 5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6GEYJ912V	Panasonic
57	1	R65	RES, $10 \mathrm{k} \Omega, 5 \%, 1 / 10 \mathrm{~W}$, Thick Film, 0603	ERJ-3GEYJ103V	Panasonic
58	1	R66	RES, $6.34 \mathrm{k} \Omega, 1 \%$, 1/16 W, Thick Film, 0603	ERJ-3EKF6341V	Panasonic
59	1	RV1	275 VAC, 23 J, 7 mm, RADIAL	V275LA4P	Littlefuse
60	1	T1	Bobbin, EE13, Vertical, 10 pins	P-1302-2	Pin Shine
61	1	T2	Bobbin, PQ20/20, Vertical, 14 pins	CPV-PQ20/20-1S14PZ	Ferroxcube
62	1	U14	IC, DUAL Op Amp, General Purpose, 2.7 MHz , Rail to Rail, 8-SOIC (0.154 ", 3.90 mm Width), 8 -SO	TSX712IDT	ST Micro
63	1	U4	LYT6067C , LYTSwitch Integrated Circuit, InSOP24D	LYT6067C	Power Integrations
64	1	U8	1.24 V Shunt Regulator IC, 1\%, -40 to 85 C, SOT23-3	LMV431AIMF	National Semi
65	1	VR1	DIODE, ZENER, 200 V , 800 MW , DO219AB	BZD27C200P-E3-08	Vishay
66	1	VR2	DIODE, ZENER, 200 V , 800 MW , DO219AB	BZD27C200P-E3-08	Vishay
67	1	VR3	$15 \mathrm{~V}, 5 \%, 500 \mathrm{~mW}$, SOD-123	BZT52C15-7-F	ON Semi

6.2 Mechanicals and Miscel/aneous

Item	Qty	Ref Des	Description	Mfg. Part Number	Mfg.
68	1	J1	CONN TERM BLOCK 5.08MM 3POS, Screw - Leaf Spring, Wire Guard	ED120/3DS	On Shore Tech
69	1	$J 2$	2 Position (1 x 2) header, $5 \mathrm{~mm}(0.196)$ pitch, Vertical, Screw - Rising Cage Clamp	1715022	Phoenix Contact
70	1	J3	CONN TERM BLOCK, 2 POS, 5mm, PCB	ED500/2DS	On Shore Tech
71	1	$J 4$	2 Position (1 x 2) header, 0.1 pitch, Vertical	$22-03-2021$	Molex
72	1	J5	2 Position (1 x 2) header, 0.1 pitch, Vertical	$22-03-2021$	Molex
73	1	J7-CON	8 Position (1 x 8) header, 0.1 pitch, Vertical	$22-28-4080$	Molex
74	1	JP1	Wire Jumper, Insulated, \#24 AWG, 0.8 in	C2003A-12-02	Gen Cable
75	1	JP2	Wire Jumper, Insulated, \#24 AWG, 0.4 in	C2003A-12-02	Gen Cable
76	1	JP3	Wire Jumper, Insulated, \#24 AWG, 0.8 in	C2003A-12-02	Gen Cable
77	1	JP4	Wire Jumper, Insulated, \#24 AWG, 0.8 in	C2003A-12-02	Gen Cable

6.3 Female Shorting Jumper for Connectors J4 and J5

Qty	Description	Mfg Part Number	Mfg
2	CONN JUMPER SHORTING GOLD FLASH, FEM, 2POS .100 POLAR	SPCO2SYAN	Sullins Connector

7 Flyback Transformer (T1) Specification

7.1 Electrical Diagram

Figure 10 - Transformer Electrical Diagram.

7.2 Electrical Specifications

Parameter	Condition	Spec.
Nominal Primary Inductance	Measured at 1 V PK-PK, 100 kHz switching frequency, between pin 3 and pin 2 with all other windings open.	$730 \mu \mathrm{H}$
Tolerance	Tolerance of Primary Inductance.	$\pm 5 \%$
Leakage Inductance	Measured across primary winding with all other windings shorted	$<5 \mu \mathrm{H}$

7.3
Material List
Item $[\mathbf{1]}$ Core: PQ2020 PC95 or Equivalent. $[\mathbf{2]}$ Bobbin, PQ2020, Vertical, 5 Pins. $[\mathbf{3]}$ Magnet Wire: \#25 AWG. $[4]$ Magnet Wire: \#32 AWG. $[5]$ TIW: \# 29 AWG. $[6]$ TIW: \# 31 AWG. $[7]$ Polyester Tape: 12 mm. $[8]$ Polyester Tape: 12 mm.

7.4 Transformer Build Diagram

Figure 11 - Transformer Build Diagram.

7.5 Transformer Construction

Winding Directions	Bobbin is oriented on winder jig such that terminal pin 1-6 is on the right side. The winding direction is clockwise.
Winding 1	Use magnetic wire Item [3]. Start at pin 3 and wind 24 turns in 1 layer. Do not terminate winding, leave the winding floating.
Insulation	Apply 1 layer of polyester tape, Item [7] for insulation
Winding 2	Use 5-filar magnetic wire on Item [4]. Start at pin (5) and wind 7 turns. End at pin (4).
Insulation	Apply 1 layer of polyester tape, Item [7] for insulation.
Winding 3	Start on the other side of the bobbin. Use a triple insulated wire on Item [5]. Starting with a fly lead (FL1), wind 11 turns evenly in 1 layer. Do not terminate winding yet.
Insulation	Apply 1 layer of polyester tape, Item [7] for insulation.
Winding 4	Start on the side of FL1. Use a trifilar triple insulated wire, Item [6]. Start as a fly lead (FL4), wind 7 turns evenly in 1 layer and finish as a fly lead (FL3).
Insulation	Apply 1 layers of polyester tape, Item [7] for insulation.
Winding 5	Continuing from winding 3, wind 11 turns and finish with a fly lead (FL2).
Insulation	Apply 1 layers of polyester tape, Item [7] for insulation.
Winding 6	Continuing from W1, wind 25 turns evenly and finish at pin (2).
Insulation	Apply 2 layers of polyester tape, Item [7] for insulation.
Core Grinding	Grind the center leg of the ferrite core to meet the nominal inductance specification of 730 $\mu \mathrm{H}$.
Assemble Core	Use Item [8] to fix the 2 cores into the bobbin. Cut the terminal of the clip on the left side of the bobbin, looking at the bottom side facing the fly leads of the secondary winding.
Pins	Cut any excess pins of the bobbin (pins without wire terminations).
Finish	Dip the transformer in a 2:1 varnish and thinner solution.

7.6 Transformer Winding II/ustrations

Winding Directions
Bobbin is oriented on winder jig such
that terminal pin $1-6$ is on the right
side. The winding direction is clockwise.
Winding $\mathbf{1}$
Use magnetic wire Item [3]. Start at pin
3 and wind 24 turns in 1 layer. Do not
terminate winding, leave the winding
floating.
Insulation
Apply 1 layer of polyester tape, Item [7]
for insulation
Winding 2
Use 5-filar magnetic wire on Item [4]. Start
at pin (5) and wind 7 turns. End at pin (4).
Insulation
Apply 1 layer of polyester tape, Item [7] for
Winding 3
Start on the other side of the bobbin. Use a triple
insulated wire on Item [5]. Starting with a fly lead
(FL1), wind 11 turns evenly in 1 layer. Do not
terminate winding yet.

Winding 4

Start on the side of FL1. Use a trifilar triple insulated wire, Item [6]. Start as a fly lead (FL4), wind 7 turns evenly in 1 layer and finish as a fly lead (FL3).

Apply 1 layer of polyester tape, Item [7] for insulation.
Winding 5
Continuing from winding 3, wind 11 turns and
finish with a fly lead (FL2).
Apply 1 layers of polyester tape, Item [7] for
insulation.
Winding 6
Continuing from W1, wind 25 turns evenly and
finish at pin(2).
Ansply 2 layers of polyester tape, Item [7] for
insulation.

Core Termination

Use two PC44 PQ2020 cores, Item [1]. Grind the center leg of the ferrite core to meet the nominal inductance specification of $730 \mu \mathrm{H}$.

Core Fixing

Use Item [8] to fix the 2 cores into the bobbin. Cut the terminal of the clip on the left side of the bobbin, looking at the bottom side facing the fly leads of the secondary winding.

Pins
Cut any excess pins of the bobbin (pins without wire terminations).

8 PFC Inductor (T2) Specifications

8.1 Electrical Diagram

Figure 12 - Inductor Electrical Diagram.

8.2 Electrical Specifications

Parameter	Condition	Spec.
Nominal Primary Inductance	Measured at 1 $\mathrm{V}_{\text {PK-PK, }} 100 \mathrm{kHz}$ switching frequency, between pin 9 and pin 6.	$680 \mu \mathrm{H}$
Tolerance	Tolerance of Primary Inductance.	$\pm 5 \%$

8.3 Material List

Item	Description
$[\mathbf{1]}$	Core: EE13.
$[\mathbf{2}]$	Bobbin: Bobbin, EE13, Vertical, 10 pins.
$[\mathbf{3}]$	Magnet Wire: \#26 AWG.
$[\mathbf{4}]$	Transformer tape: 6.5 mm.
$[\mathbf{5}]$	Transformer tape: 4 mm.

8.4 Inductor Build Diagram

Figure 13 - Inductor Build Diagram.

8.5 Inductor Construction

Winding Directions	Bobbin is oriented on winder jig such that terminal pin 1-10 is in the left side. The winding direction is clockwise.
Winding 1	Prepare the magnetic wire Item [3] for winding. Start at pin 6 and wind 91 turns in 8 layers.
Insulation	Add 1 layer of tape, Item [4] for every 2 layers of winding 1.
Winding 1	Finish the winding on pin 9.
Insulation	Add 2 layers of tape, Item [4] for insulation.
Core Grinding	Grind the center leg of the ferrite core evenly until it meets the nominal inductance of $680 ~ \mu \mathrm{H}$. Inductance is measured across pin 9 and pin 6.
Assemble Core	Assemble the 2 cores on the bobbin.
Core Termination	lepare a copper strip with a soldered magnetic wire, Item [3], at the middle as shown in the picture. Apply copper strip at the bottom part of the core and terminate the magnetic wire on pin 1.
Core Tape	Add 2 layers of tape, Item [5], around the core to fix the 2 cores into the bobbin.
Pins	Pull out or cut terminal pin no. 2, 3, 4, 5, 7, 8, and pin 10.
Finish	Dip the transformer assembly in 2:1 varnish and thinner solution.

8.6 Inductor Winding I//ustrations

Winding Directions

Bobbin is oriented on winder jig such that terminal pin $1-10$ is in the left side. The winding direction is clockwise.

Winding 1

Prepare the magnetic wire Item [3] for winding. Start at pin 6 and wind 91 turns in 8 layers.

Insulation

Add 1 layer of tape, Item [4] for every 2 layers of winding 1

Winding 1

Finish at pin 9.

Insulation

Add 2 layers of tape, Item [4] for insulation

Core Termination

Prepare a copper strip with a soldered magnetic wire, Item [3], at the middle as shown in the picture. Apply copper strip at the bottom part of the core and terminate the magnetic wire on pin 1.

Core Tape

Add 2 Layers of tape Item [5] around the core to fix the 2 cores into the bobbin.

PINS

Pull out or cut terminal pin no. 2, 3, 4, 5, 7, 8, and pin 10.

Finish

Dip the transformer assembly in 2:1 varnish and thinner solution.

9 Design Spreadsheet

1	ACDC_Flyback_PF_ LYTSwitch- 6_020318; Rev.1.2; Copyright Power Integrations 2018	INPUT	INFO	OUTPUT	UNITS	Switched Valley-Fill Single Stage PFC (SVF S^2PFC)
2	Application Variables					
3	VACMIN	180		180	V	Minimum Input AC Voltage
4	VACNOM	230		230	V	Nominal AC Voltage (For universal designs low line nominal voltage is displayed)
5	VACMAX	265		265	V	Maximum Input AC Voltage
6	VACRANGE			HIGH LINE		Input Voltage Range
7	FL			50	Hz	Line Frequency
8	CIN	22.0000		22.0000	$\mu \mathrm{F}$	Minimum Input Capacitance
9	V_CIN			450	V	Input Capacitance Recommended Voltage Rating
10	VO	36.00		36.00	V	Output Voltage
11	IO	0.80		0.80	A	Output Current
12	PO			28.80	W	Total Output Power
13	N	86.00		86.00		Estimated Efficiency
14	Z			0.50		Loss Allocation Factor
15	Parametric Calculations Basis					
16	ILIMcalcBASIS	Nom		Nom		ILIM Calculations Basis - NOM,MAX or MIN only
17	PARcalcBASIS	VACNOM		VACNOM		Calculated Results Based on Selected VAC VACNOM,VACMAX,VACMIN or Worst Case only
18	Primary Controller Section					
19	DEVICE_MODE	Standard		Standard		Device Current Limit Mode
20	DEVNAME	LYT6067C		LYT6067C		PI Device Name
21	RDSON			1.82	ohms	Device RDSON at 100degC
22	ILIMITMIN			1.348	A	Minimum Current Limit
23	ILIMITTYP			1.450	A	Typical Current Limit
24	ILIMITMAX			1.552	A	Maximum Current Limit
25	BVDSS			650	V	Drain-Source Breakdown Voltage
26	VDS			2.00	V	On state Drain to Source Voltage
27	VDRAIN			524.77	V	Peak Drain to Source Voltage during Fet turn off
28	Worst Case Electrical Parameters					
29	Boost Converter					
30	IBOOSTRMS			219.55	mA	Boost RMS current
31	IBOOSTMAX			722.71	mA	Boost PEAK current
32	IBOOSTAVG			112.60	mA	Boost AVG current
33	IINRMS			133.09	mA	Input RMS current
34	PF_est			0.9889		Estimated Power Factor
35	Flyback Converter					
36	FSMIN	49800		49800	Hz	Minimum Switching Frequency in a Line Period
37	FSMAX			102564.55	Hz	Maximum Switching Frequency in a Line Period
38	KPmin			1.0602		Minimum KP in a Line Period for VAC specified by PARcalcBASIS
39	IFETRMS			331.48	mA	Fet RMS current
40	IFETMAX			1453.95	mA	Fet PEAK current
41	IPRIRMS			0.2766	A	Primary Winding RMS current
42	IPRIMAX			1.3101	A	Primary Winding PEAK current
43	IPRIAVG			0.0072	A	Primary Winding AVG current
44	IPRIMIN			721.71	mA	Primary Winding Minimum current
45	ISECRMS			1.16	A	Secondary RMS current
46	ISECMAX			2.99	A	Secondary PEAK current
47	Boost Choke Construction Parameters					
48	RATIO_LBST_LFB	0.9300		0.9300		Boost Inductance and Flyback Primary Inductance Ratio
49	LBOOSTMIN			643.30	$\mu \mathrm{H}$	Minimum Boost Inductance
50	LBOOSTNOM			677.16	$\mu \mathrm{H}$	Nominal Boost Inductance
51	LBOOSTMAX			711.02	$\mu \mathrm{H}$	Maximum Boost Inductance

52	LBOOSTTOL	5.00	5.00	\%	Boost Inductance Tolerance
53	Boost Core and Bobbin Selection				
54	CR_TYPE_BOOST	EE13	EE13		Boost Core
55	CR_PN_BOOST		$\begin{gathered} \hline \text { PC40EE13- } \\ \text { Z } \end{gathered}$		Boost Core Code
56	AE_BOOST		17.10	mm ${ }^{2}$	Boost Core Cross Sectional Area
57	LE_BOOST		30.20	mm	Boost Core Magnetic Path Length
58	AL_BOOST		1130.00	$\begin{gathered} \mathrm{nH} / \text { turns } \\ \hline \end{gathered}$	Boost Core Ungapped Core Effective Inductance
59	VE_BOOST		517.00	mm3	Boost Core Volume
60	BOBBINID_BOOST		548		Bobbin
61	AW_BOOST		22.20	mm ${ }^{2}$	Window Area of Bobbin
62	BW_BOOST		7.40	mm	Bobbin Width
63	MARGIN_BOOST		0.00	mm	Safety Margin Width
64	BOBFILLFACTOR_Boo st		41.77	\%	Boost Bobbin Fill Factor
65	Boost Winding Details				
66	NBOOST	92.00	92.00		Boost Choke Turns
67	BP_BOOST		3337.11	Gauss	Boost Peak Flux Density
68	ALG_BOOST		80.00	$\begin{gathered} \mathrm{nH} / \text { turns } \\ \hline \end{gathered}$	Boost Core Ungapped Core Effective Inductance
69	LG_BOOST		0.25	mm	Boost Core Gap Length
70	L_BOOST	4.00	4.00		Number of Boost Layers
71	AWG_BOOST		30.00		Boost Winding Wire AWG
72	$\begin{aligned} & \text { OD_BOOST_INSULAT } \\ & \text { ED } \end{aligned}$		0.30	mm	Boost Winding Wire Output Diameter with Insulation
73	OD_BOOST_BARE		0.26	mm	Boost Winding Wire Output Diameter without Insulation
74	CMA_BOOST		402.49	Circular Mils/A	Boost Winding Wire CMA
75	Flyback Transformer Construction Parameters				
76	VOR		80	V	Secondary Voltage Reflected in the Primary Winding
77	LP_MIN		691.72	$\mu \mathrm{H}$	Minimum Flyback Inductance
78	LP_NOM		728.13	$\mu \mathrm{H}$	Nominal Flyback Inductance
79	LP_MAX		764.54	$\mu \mathrm{H}$	Maximum Flyback Inductance
80	LP_TOL	5.00	5.00	\%	Flyback Inductance Tolerance
81	Flyback Core and Bobbin Selection				
82	CR_TYPE	PQ20/20	PQ20/20		Flyback Core
83	CR_PN		$\begin{gathered} \mathrm{PQ} 20 / 20- \\ 3 \mathrm{~F} 3 \end{gathered}$		Flyback Core Code
84	AE		62.60	mm^{2}	Flyback Core Cross Sectional Area
85	LE		45.70	mm	Flyback Core Magnetic Path Length
86	AL		2650.00	$\begin{gathered} \mathrm{nH} / \text { turns } \\ 2 \end{gathered}$	Flyback Core Ungapped Core Effective Inductance
87	VE		2850.00	mm3	Flyback Core Volume
88	BOBBINID		P-2036		Flyback Bobbin
89	BB_ORIENTATION		H		Flyback Bobbin Orientation H -Horizontal and V Vertical
90	AW		36.00	mm^{2}	Flyback Window Area of Bobbin
91	BW	7.00	7.00	mm	Flyback Bobbin Width
92	MARGIN		0.00	mm	Safety Margin Width
93	Flyback Winding Details				
94	NP		49.00		Primary Turns
95	BP		3959.29	Gauss	Flyback Peak Flux Density
96	BM		3868.27	Gauss	Flyback Maximum Flux Density
97	BAC		1554.99	Gauss	Flyback AC Flux Density
98	ALG		303.26	$\underset{2}{\mathrm{nH} / \text { turns }}$	Flyback Core Ungapped Core Effective Inductance
99	LG		0.23	mm	Flyback Core Gap Length
100	L		2.00		Number of Flyback Layers
101	AWG		30.00		Primary Winding Wire AWG

DER-740 29 W 36 V High PF Flyback LYTSwitch-6 with 3-in-1 and DALI Dimming
30-Jul-18

102	OD		0.30	mm	Primary Winding Wire Output Diameter with Insulation
103	DIA		0.26	mm	Primary Winding Wire Output Diameter without Insulation
104	CMA		323.32	Circular Mils/A	Primary Winding Wire CMA
105	NB		8.00		Bias Turns
106	L_BIAS		1.00		Number of Flyback Bias Winding Layers
107	AWGpBias		36.00		Bias Wire AWG
108	NS	22	22		Secondary Turns
109	AWGS		26.00		Secondary Winding Wire AWG
110	ODS		0.41	mm	Secondary Winding Wire Output Diameter with Insulation
111	DIAS		0.71	mm	Secondary Winding Wire Output Diameter without Insulation
112	CMAS		215.03	Circular Mils/A	Secondary Winding Wire CMA
113	Primary Components Selection				
114	Line Undervoltage				
115	BROWN_IN_REQUIRE D	88.00	88.00	V	Required AC RMS line voltage brown-in threshold
116	RLS		2.21	MOhm	Two Resistors of this Value in Series to the V-pin
117	BROWN_IN_ACTUAL		88.53	V	Actual AC RMS brown-in threshold
118	Line Overvoltage				
119	OVERVOLTAGE_LINE		369.26	V	Actual AC RMS line over-voltage threshold
120	Bias Voltage				
121	VBIAS		12.0	V	Rectified Bias Voltage
122	VF_BIASDIODE		0.70	V	Bias Winding Diode Forward Drop
123	VRRM_BIASDIODE		73.19	V	Bias diode reverse voltage
124	CBIAS		22.0	$\mu \mathrm{F}$	Bias winding rectification capacitor
125	CBPP		0.47	$\mu \mathrm{F}$	BPP pin capacitor
126	Bulk Capacitor Zener Clamp				
127	Use_Clamp	Yes	Yes		Bulk Capacitor Clamp Needed? Yes, No or N/A
128	VZ1_V		200.00	V	Zener 1 Voltage Rating (In Series with Zener 2)
129	PZ1_W		0.80	W	Zener 1 Minimum Power Rating
130	VZ2_V		200.00	V	Zener 2 Voltage Rating
131	PZ2_W		0.80	W	Zener 2 Minimum Power Rating
132	RZ		4700.00	ohms	Resistor in series with Zener 1 and Zener 2
133	Secondary Components Selection				
134	Feedback Components				
135	RFB_UPPER		102.00	kOhm	Upper feedback 1\% resistor
136	RFB_LOWER		3.70	kOhm	Lower feedback 1\% resistor
137	CFB_LOWER		330.0	pF	Lower feedback resistor decoupling at least 5Vrating capacitor
138	CBPS		2.2	$\mu \mathrm{F}$	BPS pin capacitor
139	Secondary Auxiliary Section - For VO > 24V ONLY				
140	Sec Aux Diode				
141	VAUX	10.00	10.00	V	Rectified auxiliary voltage
142	VF_AUX		0.70	V	Auxiliary winding diode forward drop
143	VRRM_AUXDIODE		65.54	V	Auxiliary diode reverse voltage
144	CAUX		22.00	$\mu \mathrm{F}$	Auxiliary winding rectification capacitor
145	NAUX_SEC		7.00		Secondary Aux Turns
146	L_AUX		1.00		Number of Flyback Aux Winding Layers
147	AWGSAUX		38		Secondary Aux Winding AWG
148	Output Parameters				
149	VOUT_ACTUAL		36.00	V	Actual Output Voltage
150	IOUT_ACTUAL		0.80	A	Actual Output Current
151	ISECRMS		1.16	A	Secondary RMS current for output
152	Output Components				
153	VF		0.70	V	Output diode forward drop
154	VRRM		204.26	V	Output diode reverse voltage
155	COUT		178.49	$\mu \mathrm{F}$	Output Capacitor - Capacitance

156	COUT_VOpercentRip			2.50	$\%$	Output Capacitor Ripple \% of VOUT
157	ICOUTrms			0.85	A	Output Capacitor Estimated Ripple Current
158	ESRmax			300.58	mohms	Output Capacitor Maximum Recommended ESR
$\mathbf{1 5 9}$	Errors, Warnings, Information				Although the design has passed the user should validate functionality on the bench. Please check the variables listed.	
160	Information			OVERVOLT AGE_LINE		Design variables whose values exceed electrical/datasheet specifications.
161	Design Warnings			The list of design variables which result in an infeasible design.		
162	Design Errors					

Notes: Row 161 - Actual Line Overvoltage protection is triggered below the absolute maximum V_{DS} rating of LYTSwitch-6 IC.

10 Performance Data

All measurements were performed at room temperature.

10.1 Output Current Regulation

Set-up: Load:
Ambient Temperature:
Soak Time:

Open frame unit.
36 V 800 mA LED load.
$25^{\circ} \mathrm{C}$.
60 seconds.

Figure 14 - Output Current Regulation vs. Input Line Voltage

10.2 System Efficiency

Set-up: Open frame unit.
Load:
Ambient Temperature:
36 V 800 mA LED load.
$25^{\circ} \mathrm{C}$.
Soak Time:
60 seconds.

Figure 15 - Efficiency vs. Input Line Voltage.

10.3 Power Factor

Set-up: Open frame unit.
Load:
Ambient Temperature:
36 V 800 mA LED load.
$25^{\circ} \mathrm{C}$.
Soak Time:
60 seconds.

Figure 16 - Power Factor vs. Input Line Voltage.

10.4 \%ATHD

Set-up:

Load:
Ambient Temperature:
Soak Time:

Open frame unit.
36 V 800 mA LED load.
$25^{\circ} \mathrm{C}$.
60 seconds.

Figure 17 - \%ATHD vs. Input Line Voltage.

10.5 Individual Harmonics Content at Ful/ Load

Set-up:
Load:
VIN:
Ambient Temperature: Soak Time:

Open frame unit.
36 V 800 mA LED load.
230 V 60 Hz .
$25^{\circ} \mathrm{C}$.
60 seconds.

Figure 18 - Full Load Input Current Harmonics at 230 VAC 60 Hz.

10.6 No-Load Input Power

Set-up: Open frame unit.
Load:
Ambient Temperature:
Open load.
$25^{\circ} \mathrm{C}$.

Soak Time:

60 seconds.

Figure 19 - No-Load Input Power vs. Input Line Voltage.

10.7 CV/CC Curve

Set-up: Open frame unit.
Load: E-Load in CR mode.
Ambient Temperature: $25^{\circ} \mathrm{C}$.

Figure 20 - CV/CC Curve.

10.8 Dimming Performance; 3-in-1 Dimming

Set-up:
Load:
Ambient Temperature:

Open Frame Unit.
36V 800mA LED Load.
$25^{\circ} \mathrm{C}$.
10.8.1 Variable Supply Dimming

Figure 21 - Dimming Performance vs. Variable Supply (0-10V)
10.8.2 Variable Resistor Dimming

Figure 22 - Dimming Performance vs. Variable Resistor.

Figure 23 - Dimming Performance vs. Variable PWM Duty Cycle.

11 Test Data

11.1 Test Data at Ful/ Load

Input		Input Measurement					LED Load Measurement			$\begin{aligned} & \text { Efficiency } \\ & \text { (\%) } \end{aligned}$
$\begin{gathered} \text { VAC } \\ \left(\mathbf{V}_{\text {RMS }}\right) \end{gathered}$	Freq (Hz)	$\begin{gathered} \mathbf{V}_{\text {IN }} \\ \left(\mathbf{V}_{\text {RMS }}\right) \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{IN}} \\ \left(\mathrm{~mA}_{\mathrm{RMS}}\right) \end{gathered}$	$\begin{aligned} & \hline \mathbf{P}_{\text {IN }} \\ & (\mathrm{W}) \\ & \hline \end{aligned}$	PF	\%ATHD	$\begin{gathered} \mathbf{V}_{\text {OUT }} \\ \left(\mathbf{V}_{\mathrm{DC}}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{I}_{\text {OUT }} \\ \left(\mathrm{mA}_{\mathrm{DC}}\right) \end{gathered}$	$\begin{aligned} & \hline \text { Pout } \\ & \text { (W) } \end{aligned}$	
180	50	179.76	195.69	33.30	0.947	21.27	36.02	805.7	29.02	87.15
200	50	199.81	176.14	33.34	0.947	16.86	36.00	806.1	29.03	87.07
220	50	219.84	162.26	33.42	0.937	17.80	36.00	806.4	29.02	86.85
230	50	229.86	156.38	33.46	0.931	18.75	35.98	806.3	29.01	86.70
240	50	239.88	151.16	33.52	0.924	19.81	35.96	806.4	29.00	86.52
265	50	264.89	140.11	33.68	0.907	22.43	35.95	806.4	28.99	86.08

11.2 Test Data at No-Load

Input				
$\mathbf{V A C}$ $\left(\mathbf{V}_{\text {RMS }}\right)$	Freq $(\mathbf{H z})$	$\mathbf{V}_{\text {IN }}$ $\left(\mathbf{V}_{\text {RMS }}\right)$	$\mathbf{I}_{\text {IN }}$ $(\mathbf{m} \mathbf{A R M S}$	$\mathbf{P}_{\text {IN }}$ $(\mathbf{m W})$
180	50	179.85	18.73	64.14
200	50	199.87	19.13	75.30
220	50	219.88	19.45	80.22
230	50	229.90	19.60	83.40
240	50	239.91	19.73	93.84

11.3 Individual Harmonic Content at 230 VAC 60 Hz and Full Load

\mathbf{V}	Freq	$\mathbf{I}(\mathbf{m A})$	\mathbf{P}	PF	\%THD
230	50	155.15	33.308	0.934	18.855
nth Order	$\mathbf{m A}$ Content	\% Content	Limit <25 $\mathbf{~ W}$	Limit $\mathbf{> 2 5} \mathbf{~ W}$	Remarks
1	151.68				
2	0.03	0.02%		2	pass
3	24.89	16.41%	113.247	28.02	pass
5	7.57	4.991%	63.285	10	pass
7	7.53	4.964%	33.308	7	pass
9	4.59	3.026%	16.654	5	pass
11	2.66	1.754%	11.658	3	pass
13	2.49	1.642%	9.864	3	pass
15	2.58	1.701%	8.549	3	pass
17	2.29	1.51%	7.543	3	pass
19	2.36	1.556%	6.749	3	pass
21	1.65	1.088%	6.106	3	pass
23	1.99	1.312%	5.575	3	pass
25	0.96	0.633%	5.129	3	pass
27	2.49	1.642%	4.749	3	pass
29	0.98	0.646%	4.422	3	pass
31	1.71	1.127%	4.137	3	pass
33	1.88	1.239%	3.886	3	pass
35	1.04	0.686%	3.664	3	pass
37	0.89	0.587%	3.466	3	pass
39	1.28	0.844%	3.288	3	pass
41	1.11	0.732%	3.128	3	pass

12 Thermal Performance

12.1 Thermal Measurements at Ambient Room Temperature

Figure 24 - Test Set-up Picture - Open Frame.
Unit in open frame was placed inside the acrylic enclosure to prevent airflow that might affect the thermal measurements. Temperature was measured using T-type thermocouple.

Equipment used:

1. KEYSIGHT 6812B AC Power Source/Analyzer
2. Chroma 63110A DC Electronic Load Mainframe
3. FLIR E60 Thermal Camera
4. Yokogawa WT310E Digital Power Meter

Ref Des	Description	Temperature Reading (${ }^{\circ} \mathbf{C}$)
U4	LYTSwitch-6 IC	112
D10	Output Diode	100
T1	PFC Inductor	74.8
T2	DCD Transformer Primary	80.9
D1	PFC Diode	75.3
D17	PFC Diode	64.2
BR1	Bridge Diode	48.8
AMBIENT		29.5

Figure 25 - LYTSwitch-6 IC (U4).

Figure 27 - PQ2020 Flyback Transformer (T1).

Figure 26 - Output Diode (D10).

Figure 28 - EE13 PFC Inductor (T2).

Figure 29 - PFC Diode (D1).

Figure 31 - Bridge Diode (BR1).

Figure 30 - PFC Diode (D17).
12.2 Thermal Performance at Ambient Room Temperature with Unit Inside Casing

Figure 32 - Test Set-up Picture - Cased Unit.
Cased unit was placed inside the enclosure to prevent airflow that may affect the thermal measurements. Ambient temperature measured at room temperature. Temperature was measured using T-type thermocouple. Soak time at full load is more than 1 hour.

Equipment used:

1. KEYSIGHT 6812B AC Power Source/Analyzer
2. Chroma 6314A DC Electronic Load Mainframe and Chroma 63110A DC Electronic Load
3. Yokogawa Data Logger
4. Yokogawa WT310E Digital Power Meter

Ref Des	Description	Temperature Reading (${ }^{\circ} \mathbf{C}$)
U4	LYTSwitch-6 IC	114.2
D10	Output Diode	93.4
T1	PFC Inductor	77.1
T2	DCD Transformer Primary	79.5
D1	PFC Diode	75.1
D17	PFC Diode	56.3
BR1	Bridge Diode	51.1
AMBIENT		25.7

Figure 33 - Component Temperature at Ambient Room Temperature - Cased Unit.
12.3 Thermal Performance at High Ambient Temperature

Figure 34 - Test Set-up Picture Thermal at $50^{\circ} \mathrm{C}$ Ambient - Open Frame.
Open frame unit was placed inside the enclosure to prevent airflow that may affect the thermal measurements. Ambient temperature inside the enclosure is set at $50{ }^{\circ} \mathrm{C}$. Temperature was measured using T-type thermocouple. Soak time at full load is more than 1 hour.

Equipment used:

1. KEYSIGHT 6812B AC Power Source/Analyzer
2. Chroma 6314A DC Electronic Load Mainframe and Chroma 63110A DC Electronic Load
3. Yokogawa Data Logger
4. Yokogawa WT310E Digital Power Meter
5. SPX Tenney TUJR Thermal Chamber

Ref Des	Description	Temperature Reading (${ }^{\circ} \mathbf{C}$)
U4	LYTSwitch-6 IC	125.3
D10	Output Diode	105.7
T1	PFC Inductor	89.1
T2	DCDC Transformer Primary	90.7
D1	PFC Diode	88.9
D17	PFC Diode	72.0
BR1	Bridge Diode	68.6
AMBIENT		50.2

Figure 35 - Component Temperature at $50^{\circ} \mathrm{C}$ Ambient - Open Frame.

13 Waveforms

Waveforms were taken at room temperature ($25^{\circ} \mathrm{C}$).

13.1 Input Voltage and Input Current at Ful/ Load

Figure 36 - 180 VAC 50 Hz, Full Load. Upper: $\mathrm{I}_{\mathrm{IN}}, 400 \mathrm{~mA} / \mathrm{div}$. Lower: $\mathrm{V}_{\text {IN }}, 200 \mathrm{~V} /$ div., $10 \mathrm{~ms} /$ div.

Figure 38 - 230 VAC 50 Hz , Full Load. Upper: $\mathrm{I}_{\mathrm{IN}}, 400 \mathrm{~mA} /$ div. Lower: $\mathrm{V}_{\text {IN }}, 200 \mathrm{~V} /$ div., $10 \mathrm{~ms} /$ div.

Figure 37 - 200 VAC 50 Hz , Full Load. Upper: $\mathrm{I}_{\mathrm{IN}}, 400 \mathrm{~mA} / \mathrm{div}$. Lower: $\mathrm{V}_{\mathrm{IN}}, 200 \mathrm{~V} /$ div., $10 \mathrm{~ms} /$ div.

Figure 39 - 265 VAC 50 Hz , Full Load. Upper: $\mathrm{I}_{\mathrm{IN},} 400 \mathrm{~mA} /$ div.
Lower: $\mathrm{V}_{\mathrm{IN},} 200 \mathrm{~V} /$ div., $10 \mathrm{~ms} /$ div.

13.2 Start-up Profile at Full Load (DALI Disabled)

Figure 40 - 180 VAC 50 Hz, Full Load Start-up. Upper: $\mathrm{I}_{\text {out }}, 400 \mathrm{~mA} /$ div. Lower: $\mathrm{V}_{\mathrm{IN}}, 200 \mathrm{~V} / \mathrm{div}^{2}, 400 \mathrm{~ms} /$ div. Turn On Time: 770 ms .

Figure 42 - 230 VAC 50 Hz, Full Load Start-up. Upper: $\mathrm{I}_{\text {out }}, 400 \mathrm{~mA} /$ div. Lower: $\mathrm{V}_{\text {IN }}, 200 \mathrm{~V} /$ div., $400 \mathrm{~ms} / \mathrm{div}$. Turn On Time: 770 ms .

Figure 41 - 200 VAC 50 Hz, Full Load Start-up. Upper: $\mathrm{I}_{\text {out, }} 400 \mathrm{~mA} / \mathrm{div}$. Lower: $\mathrm{V}_{\mathrm{IN}}, 200 \mathrm{~V} /$ div., $400 \mathrm{~ms} /$ div. Turn On Time: 770 ms .

Figure 43 - 265 VAC 50 Hz, Full Load Start-up. Upper: $\mathrm{I}_{\text {out }}, 400 \mathrm{~mA} /$ div. Lower: $\mathrm{V}_{\mathrm{IN}}, 200 \mathrm{~V} /$ div., $400 \mathrm{~ms} /$ div. Turn On Time: 770 ms .

13.3 Start-up Profile Ful/ Load (DALI Enable)

Figure 44 - 180 VAC 50 Hz, Full Load Start-up. Upper: $\mathrm{I}_{\text {out }}, 400 \mathrm{~mA} /$ div. Lower: $\mathrm{V}_{\text {IN }}, 200 \mathrm{~V} / \mathrm{div}^{2}, 400 \mathrm{~ms}$ / div. Turn On Time: 820 ms .

Figure 46 - 230 VAC 50 Hz, Full Load Start-up. Upper: $\mathrm{I}_{\text {out }}, 400 \mathrm{~mA} /$ div.
Lower: $\mathrm{V}_{\mathrm{IN}}, 200 \mathrm{~V} / \mathrm{div}$., $400 \mathrm{~ms} / \mathrm{div}$. Turn On Time: 820 ms .

Figure 45 - 200 VAC 50 Hz, Full Load Start-up. Upper: $\mathrm{I}_{\text {out }}, 400 \mathrm{~mA}$ / div. Lower: $\mathrm{V}_{\mathrm{IN}}, 200 \mathrm{~V} / \mathrm{div}^{2}, 400 \mathrm{~ms} / \mathrm{div}$. Turn On Time: 820 ms .

Figure 47 - 265 VAC 50 Hz, Full Load Start-up. Upper: $\mathrm{I}_{\text {out }}, 400 \mathrm{~mA} /$ div. Lower: $\mathrm{V}_{\text {IN }}, 200 \mathrm{~V} / \mathrm{div}$., $400 \mathrm{~ms} / \mathrm{div}$. Turn On Time: 820 ms .

13.4 Turn-Off Profile Full Load

Figure 48 - 180 VAC 50 Hz, Full Load, Output Fall. Upper: $\mathrm{I}_{\text {out }}, 400 \mathrm{~mA} /$ div. Lower: $\mathrm{V}_{\mathrm{IN}}, 200 \mathrm{~V} / \mathrm{div}^{2}$., 100 ms / div. Turn Off Time: 26 ms .

Figure 50 - 230 VAC 50 Hz, Full Load, Output Fall. Upper: $\mathrm{I}_{\text {out }} 400 \mathrm{~mA} /$ div.
Lower: $\mathrm{V}_{\text {IN }}, 200 \mathrm{~V} /$ div., $100 \mathrm{~ms} /$ div. Turn Off Time: 47 ms .

Figure 49 - 200 VAC 50 Hz, Full Load, Output Fall. Upper: $\mathrm{I}_{\text {out }}, 400 \mathrm{~mA}$ / div. Lower: $\mathrm{V}_{\text {IN }}, 200 \mathrm{~V} /$ div., 100 ms / div. Turn Off Time: 36 ms .

Figure 51 - 265 VAC 50 Hz, Full Load, Output Fall. Upper: $\mathrm{I}_{\text {out }} 400 \mathrm{~mA} /$ div.
Lower: $\mathrm{V}_{\text {IN }}, 200 \mathrm{~V} /$ div., $100 \mathrm{~ms} /$ div.
Turn Off Time: 60 ms .

13.5 LYTSwitch-6 Drain Voltage and Current Waveforms at Normal Operation

Figure 52 - 180 VAC 50 Hz, Full Load Normal. Upper: $\mathrm{I}_{\text {DRain }} 1 \mathrm{~A} /$ div. Lower: $\mathrm{V}_{\text {Drain, }} 200 \mathrm{~V} /$ div., $^{20 \mathrm{~ms} / \mathrm{div} \text {. }}$

Figure 54 - 200 VAC 50 Hz, Full Load Normal.
Upper: $\mathrm{I}_{\text {DRain }} 1 \mathrm{~A} /$ div.
Lower: VDRAIN, $200 \mathrm{~V} /$ div., $20 \mathrm{~ms} /$ div.

Figure 53 - 180 VAC 50 Hz, Full Load Normal. Upper: $\mathrm{I}_{\text {DRain }} 1 \mathrm{~A} /$ div. Lower: V ${ }_{\text {DRain, }} 200 \mathrm{~V} /$ div., $10 \mu \mathrm{~s} / \mathrm{div}$.

Figure 55 - 200 VAC 50 Hz, Full Load Normal. Upper: $\mathrm{I}_{\text {DRAIN }} 1 \mathrm{~A} /$ div. Lower: V ${ }_{\text {DRAIN }} 200 \mathrm{~V} /$ div., $10 \mu \mathrm{~s} / \mathrm{div}$.

Figure 56 - 230 VAC 50 Hz, Full Load Normal. Upper: $\mathrm{I}_{\text {DRain }} 1 \mathrm{~A} /$ div. Lower: $\mathrm{V}_{\text {dRain }} 200 \mathrm{~V} / \mathrm{div}$., $20 \mathrm{~ms} /$ div.

Figure 58 - 265 VAC 50 Hz, Full Load Normal. Upper: $\mathrm{I}_{\text {DRain }} 1 \mathrm{~A} /$ div.
Lower: $\mathrm{V}_{\text {DRain, }} 200 \mathrm{~V} /$ div., $^{20 \mathrm{~ms} / \mathrm{div} .}$

Figure 57 - 230 VAC 50 Hz, Full Load Normal. Upper: $\mathrm{I}_{\text {DRain }} 1$ A / div. Lower: $\mathrm{V}_{\text {DRAIN }} 200 \mathrm{~V} / \mathrm{div} ., 10 \mu \mathrm{~s} / \mathrm{div}$.

Figure 59 - 265 VAC 50 Hz, Full Load Normal. Upper: $\mathrm{I}_{\text {DRain }} 1 \mathrm{~A} /$ div. Lower: V ${ }_{\text {DRain, }} 200 \mathrm{~V} /$ div., $10 \mu \mathrm{~s} / \mathrm{div}$.

13.6 LYTSwitch-6 Drain Voltage and Current at Full Load Start-up

Figure 60 - 180 VAC 50 Hz, Full Load Start-up. Upper: $\mathrm{I}_{\text {DRain }} 1 \mathrm{~A} /$ div. Lower: $\mathrm{V}_{\text {DRAIN }} 200 \mathrm{~V} / \mathrm{div}^{\prime}, 400 \mathrm{~ms} / \mathrm{div}$.

Figure 62 - 200 VAC 50 Hz, Full Load Start-up. Upper: $\mathrm{I}_{\text {DRain, }} 1$ A / div. Lower: $\mathrm{V}_{\text {DRAIN }}, 200 \mathrm{~V} /$ div., 400 ms / div.

Figure 61 - 180 VAC 50 Hz, Full Load Start-up. Upper: $\mathrm{I}_{\text {DRain, }} 1$ A / div. Lower: $\mathrm{V}_{\text {DRain }} 200 \mathrm{~V} /$ div., $20 \mu \mathrm{~s} /$ div.

Figure 63 - 200 VAC 50 Hz, Full Load Start-up. Upper: $\mathrm{I}_{\text {DRain, }} 1$ A / div. Lower: V ${ }_{\text {DRain, }} 200 \mathrm{~V} /$ div., $20 \mu \mathrm{~s} / \mathrm{div}$.

Figure 64 - 230 VAC 50 Hz, Full Load Start-up. Upper: $\mathrm{I}_{\text {DRain }} 1 \mathrm{~A} /$ div. Lower: $\mathrm{V}_{\text {dRain }} 100 \mathrm{~V} / \mathrm{div} ., 400 \mathrm{~ms} / \operatorname{div}$.

Figure 66 - 265 VAC 50 Hz, Full Load Start-up. Upper: $\mathrm{I}_{\text {DRAIN, }} 1 \mathrm{~A} /$ div.
Lower: $V_{\text {DRAIN }}, 100 \mathrm{~V} /$ div., $400 \mathrm{~ms} /$ div.

Figure 65 - 230 VAC 50 Hz, Full Load Start-up. Upper: $\mathrm{I}_{\text {DRain }} 1 \mathrm{~A} /$ div. Lower: $\mathrm{V}_{\text {DRain }} 100 \mathrm{~V} /$ div., $20 \mu \mathrm{~s} /$ div.

Figure 67 - 265 VAC 50 Hz, Full Load Start-up. Upper: $\mathrm{I}_{\text {DRain }} 1 \mathrm{~A} /$ div. Lower: $\mathrm{V}_{\text {DRAIN, }} 100 \mathrm{~V} /$ div., $20 \mu \mathrm{~s} / \mathrm{div}$.

13.7 LYTSwitch-6 Drain Voltage and Current during Output Short-Circuit

Figure 68 - 180 VAC 50 Hz, Output Shorted. Upper: $\mathrm{I}_{\text {DRAIN, }} 1 \mathrm{~A} /$ div. Lower: V ${ }_{\text {dRain, }} 200 \mathrm{~V} /$ div., $1 \mathrm{~s} /$ div. $\mathrm{P}_{\text {IN }}$ Average: 176 mW .

Figure 70 - 200 VAC 50 Hz, Output Shorted. Upper: $\mathrm{I}_{\text {DRain, }} 1$ A / div. Lower: $\mathrm{V}_{\text {DRain, }} 200 \mathrm{~V} /$ div., $1 \mathrm{~s} /$ div. $\mathrm{P}_{\text {IN }}$ Average: 191 mW .

Figure 69 - 180 VAC 50 Hz, Output Shorted.
Upper: $\mathrm{I}_{\text {DRAIN }} 1 \mathrm{~A} /$ div.
Lower: $\mathrm{V}_{\text {DRain, }} 200 \mathrm{~V} /$ div., $500 \mathrm{~ns} /$ div.

Figure 71 - 200 VAC 50 Hz, Output Shorted.
Upper: $\mathrm{I}_{\text {DRain, }} 1$ A / div.
Lower: $\mathrm{V}_{\text {Drain, }} 200 \mathrm{~V} /$ div., $500 \mathrm{~ns} /$ div.

Figure 72 - 230 VAC 50 Hz, Output Shorted.
Upper: $\mathrm{I}_{\text {DRaIN }} 1 \mathrm{~A} /$ div.
Lower: V ${ }_{\text {DRAIN, }} 200 \mathrm{~V} /$ div., $1 \mathrm{~s} /$ div. $P_{\text {IN }}$ Average: 230 mW .

Figure 74 - 265 VAC 50 Hz, Output Shorted Upper: $\mathrm{I}_{\text {DRaIN }} 1 \mathrm{~A} /$ div.
Lower: $\mathrm{V}_{\text {DRAIN, }} 200 \mathrm{~V} /$ div., $1 \mathrm{~s} / \mathrm{div}$. $P_{\text {IN }}$ Average: 243 mW .

Figure 73 - 230 VAC 50 Hz, Output Shorted. Upper: $\mathrm{I}_{\text {DRain }} 1 \mathrm{~A} /$ div. Lower: V ${ }_{\text {DRAIN }} 200 \mathrm{~V} /$ div., $500 \mathrm{~ns} /$ div.

Figure 75 - 265 VAC 50 Hz, Output Shorted. Upper: $\mathrm{I}_{\text {DRAIN }} 1 \mathrm{~A} /$ div. Lower: $\mathrm{V}_{\text {DRAIN, }} 200 \mathrm{~V} /$ div., $500 \mathrm{~ns} / \mathrm{div}$.

13.8 PFC Diode Voltage and Current at Normal Operation

Figure 76 - 180 VAC 50 Hz, 580 mA LED Load. Upper: $400 \mathrm{~mA} /$ div. Lower: $100 \mathrm{~V} /$ div. Horizontal: $4 \mathrm{~ms} /$ div.

Figure 78 - 230 VAC $50 \mathrm{~Hz}, 580 \mathrm{~mA}$ LED Load.
Upper: 400 mA / div. Lower: $100 \mathrm{~V} /$ div. Horizontal: $4 \mathrm{~ms} /$ div.

Figure 77 - 200 VAC 50 Hz, 580 mA LED Load.
Upper: $400 \mathrm{~mA} / \mathrm{div}$.
Lower: $100 \mathrm{~V} /$ div.
Horizontal: $4 \mathrm{~ms} /$ div.

Figure 79 - 265 VAC 50 Hz, 580 mA LED Load.
Upper: $400 \mathrm{~mA} / \mathrm{div}$. Lower: $100 \mathrm{~V} /$ div. Horizontal: $4 \mathrm{~ms} /$ div.

13.9 PFC Diode Voltage and Current at Start-up Full Load

Figure $\mathbf{8 0}$ - 180 VAC $50 \mathrm{~Hz}, 800 \mathrm{~mA}$ LED Load. Upper: $400 \mathrm{~mA} / \mathrm{div}$. Lower: $100 \mathrm{~V} /$ div. Horizontal: $20 \mathrm{~ms} / \operatorname{div}$.

Figure 82 - 230 VAC $50 \mathrm{~Hz}, 800 \mathrm{~mA}$ LED Load. Upper: $400 \mathrm{~mA} / \mathrm{div}$. Lower: $100 \mathrm{~V} /$ div. Horizontal: $20 \mathrm{~ms} / \mathrm{div}$.

Figure 81 - 200 VAC $50 \mathrm{~Hz}, 800 \mathrm{~mA}$ LED Load. Upper: 400 mA / div. Lower: $100 \mathrm{~V} /$ div. Horizontal: $20 \mathrm{~ms} / \operatorname{div}$.

Figure 83 - 265 VAC 50 Hz, 800 mA LED Load. Upper: $400 \mathrm{~mA} / \mathrm{div}$. Lower: $100 \mathrm{~V} /$ div. Horizontal: $20 \mathrm{~ms} / \operatorname{div}$.

13.10 Output Current Ripple

13.10.1 Equipment Used

1. Rohde \& Schwarz RTO1004 Oscilloscope
2. Rohde \& Schwarz RT-ZC20B Current Probe
3. 36V LED Load
13.10.2 Ripple Ratio and Flicker \% Measurement

$V_{\text {IN }}$	$\mathrm{I}_{\text {OUT(MAX) }}$	$\mathrm{I}_{\text {OUT(MIN })}$	$\mathrm{I}_{\text {MEAN }}$	Ripple Ratio	\% Flicker
(VAC)	(mA)	(mA)	(mA)	($\mathrm{I}_{\text {RP }}{ }^{-p} / \mathrm{I}_{\text {MEAN }}$)	$100 \times\left(\mathrm{I}_{\text {RP }}{ }^{-p} / \mathrm{I}_{\text {OUT(MAX) }}+\mathrm{I}_{\text {OUT(MIN) }}\right)$
180	826.34	786.81	802.87	0.05	2.45
200	830.29	782.86	805.35	0.06	2.94
230	830.29	782.86	803.37	0.06	2.94
265	830.29	782.86	803.44	0.06	2.94

Figure 84 - 180 VAC 60 Hz, 800 mA LED Load. 20 MHz Bandwidth.
I Ripple Current: $39.526 \mathrm{~mA}_{\text {PK-Рк }}$.

Figure 86 - 230 VAC 50 Hz, 800 mA LED Load. 20 MHz Bandwidth.
$\mathrm{I}_{\text {Out, }} 100 \mathrm{~mA} / \operatorname{div} ., 500 \mu \mathrm{~s} / \operatorname{div}$.
Ripple Current: $47.431 \mathrm{~mA}_{\mathrm{PK} \text {-PK }}$.

Figure 85 - 200 VAC $60 \mathrm{~Hz}, 800 \mathrm{~mA}$ LED Load. 20 MHz Bandwidth.
I
Ripple Current: 47.431 mA $\mathrm{PKK}_{\text {-PK }}$.

Figure 87 - 265 VAC $50 \mathrm{~Hz}, 800 \mathrm{~mA}$ LED Load. 20 MHz Bandwidth.
$\mathrm{I}_{\text {Out, }} 100 \mathrm{~mA} /$ div., $500 \mu \mathrm{~s} /$ div.
Ripple Current: $47.431 \mathrm{~mA}_{\mathrm{PK} \text {-РK }}$.

14 Conducted EMI

14.1 Test Set-up

14.1.1 Equipment and Load Used

1. Rohde and Schwarz ENV216 two line V-network
2. Rohde and Schwarz ESRP EMI test receiver
3. Hioki 3332 power hitester
4. Chroma Measurement Test Fixture model A662003
5. 36V LED Load
6. HOSSONI TDGC2 VARIAC set at 230 VAC 60 Hz

Figure 88 - Conducted EMI Test Set-up.

14.2 EMI Test Result

14.2.1 Non Earthed Conducted EMI

Figure 89 - Conducted EMI QP Scan at Full Load, Non Earthed, 230 VAC 60 Hz and EN55015 B Limits.

Trace/Detector	Frequency	Level dB $\mu \mathrm{V}$	DeltaLimit
2 Average	23.2175 MHz	45.18 N	-4.82 dB
1 Quasi Peak	150.0000 kHz	60.07 N	-5.93 dB
1 Quasi Peak	784.5000 kHz	$49.36 \mathrm{L1}$	-6.64 dB
2 Average	771.0000 kHz	$\mathbf{3 8 . 3 5} \mathrm{L1}$	-7.65 dB
2 Average	150.0000 kHz	$47.64 \mathrm{L1}$	-8.36 dB
1 Quasi Peak	23.2535 MHz	51.42 N	-8.58 dB

Figure 90 - Conducted EMI Data at 230 VAC 60 Hz, Full Load Non Earthed.

14.2.2 Earthed Conducted EMI

Figure 91 - Conducted EMI QP Scan at Full Load, Earthed, 230 VAC 60 Hz and EN55015 B Limits.

Trace/Detector	Frequency	Level dBuv	DeltaLimit
1 Quasi Peak	784.5000 kHz	$53.48 \mathrm{L1}$	-2.52 dB
2 Average	777.7500 kHz	42.87 N	-3.13 dB
2 Average	186.0000 kHz	$47.39 \mathrm{L1}$	-6.82 dB
2 Average	19.3745 MHz	42.73 L1	-7.27 dB
2 Average	15.7543 MHz	$42.42 \mathrm{L1}$	-7.58 dB
1 Quasi Peak	150.0000 kHz	$58.03 \mathrm{L1}$	$-7.97 \mathrm{~dB}$
1 Quasi Peak	19.3318 MHz	48.78 L1	-11.22 dB
1 Quasi Peak	15.7813 MHz	$48.63 \mathrm{L1}$	-11.37 dB

Figure 92 - Conducted EMI Data at 230 VAC 60 Hz, Full Load Earthed.

15 Appendix

DALI Interface Circuit and Microcontroller

Figure 93 - DALI Board Top View.

Figure 94 - DALI Board Bottom View.

In any dimming system, the LED drivers and controllers must be able to speak the same language. For digital dimming systems, this language is an open standard such as the Digital Addressable Lighting Interface (DALI) protocol. DALI is a two-way digital protocol which consist a set of commands to and from LED drivers or ballasts within a defined data structures and specified electrical parameters.

Following the DALI protocol, the DALI bus carries the data signals and a DALI interface circuit provides communication between a microcontroller and DALI bus. In this case the microcontroller is PIC16F18326 (U16). The interface circuit is isolated with the microcontroller part via two optocouplers (U12 and U13). The optocouplers provide isolation and avoid the risk of sharing common ground. For data receive, the DALI bus output signal drives the optocoupler U12 via Q9 to transfer the data to the microcontroller. For data transmit, the microcontroller drives the optocoupler U13 directly to get into the DALI bus modulated via Q8.

The data that were received or transmitted from the microcontroller is now used to control the LED output current (i.e LED brightness). The microcontroller generates a PWM output signal (pin 5), and the brightness of the LED can be changed upon the duty of the PWM signal.

The 5 V regulator circuits that supplies the microcontroller consists of U11, C40 and C41. Capacitor C39 is a decoupling capacitor of the microcontroller. The reset pin RA3 is pulled-up to 5 V via R64.

Use "DER-740_DALI_CG_PIC16F18326.hex" to program the microcontroller via J5 header.

15.1 Pin Functions

Pin Number	Description
$\mathbf{1}$	VDD Supply.
$\mathbf{4}$	Reset pin. Requires pull-up to VDD.
$\mathbf{5}$	PWM signal output. Provides PWM pulse for DALI dimming.
$\mathbf{6}$	Configured as DALI TX signal. Transmit Signal.
$\mathbf{1 1}$	Configured as DALI RX signal. Receive Signal.
$\mathbf{1 2}$	Used for programming.
$\mathbf{1 3}$	Used for programming.
$\mathbf{1 4}$	Ground.

15.2 Schematic

Figure 95 - Schematic Diagram.

15.3 PCB Layout

Figure 96 - Top.

Figure 97 - Bottom.

15.4 Board Level Test for DALI Daughter Board

Please follow below procedures to test the DALI daughter board.
15.4.1 Lab Equipment to be used

DC Power Supply (up to $10 \mathrm{~V}, 100 \mathrm{~mA}$)
Digital Oscilloscope
15.4.2 Wiring Diagram for the Test Set-up

Figure 98 - Wiring Diagram for Testing the DALI Daughter Board.

15.4.3 Procedures

1. Construct the wiring diagram on Figure 1. Connect the positive terminal of DC power supply to one terminal of switch SW1. Connect the other terminal of switch SW1 to V_AUX (pin 7 of connector J4). Connect the negative terminal of the DC power supply to GND (pin 8 of connector J4).
2. Set the switch SW1 to "open" position.
3. Turn ON the DC power supply. Set the current limit to 100 mA , and set the output voltage to 10 V .
4. Turn ON the oscilloscope. Set the horizontal scale to $10 \mathrm{~ms} /$ div.
5. Connect a voltage probe to channel $1(\mathrm{CH} 1)$. Set the vertical scale to $1 \mathrm{~V} / \mathrm{div}$. Connect the positive terminal of the voltage probe to VDD (pin 2 of connector J5) and connect its negative terminal to GND (pin 8 of connector J4).
6. Connect a voltage probe to channel 2 (CH2). Set the vertical scale to $5 \mathrm{~V} / \mathrm{div}$. Connect the positive terminal of the voltage probe to PWM (pin 5 of connector J4) and connect its negative terminal to GND (pin 8 of connector J4).
7. Set the switch SW1 to "close"' position.
8. Measure the RMS voltage of the waveform on channel 1 (CH1) of the oscilloscope. The measured RMS voltage should be in the range of $4.75 \mathrm{~V}-5.25 \mathrm{~V}$.
9. Measure the duty cycle of the waveform on channel $2(\mathrm{CH} 2)$ of the oscilloscope. The measured duty cycle should be in the range of $97 \%-100 \%$.
10. Measure the RMS voltage of the waveform on channel 2 (CH2) of the oscilloscope. The measured voltage should be in the range of $9.5 \mathrm{~V}-10.5 \mathrm{~V}$.
11. Any measurement outside the range specified above indicates that there could be something wrong with the board.

15.5 DALI Dimming Set-up

Before testing the DALI dimming, make sure to check the following:

1. The DALI Daughter Board should be connected to the main board.
2. The female jumpers (Sullins PN: SPCO2SYAN) should be disconnected from connectors J4 and J5.
3. Refer to the figure below for the proper wiring diagram.

Figure 99 - Wiring Diagram for Testing the DALI Dimming Response.

15.6 Bill of Materials

15.6.1 DALI Circuit (PIC16F18326)

Item	Qty	$\begin{aligned} & \hline \text { Ref } \\ & \text { Des } \end{aligned}$	Description	Mfg Part Number	Mfg
1	1	BR2	600 V , 0.5 A, Bridge Rectifier, SMD, MBS-1, 4-SOIC	MB6S-TP	Micro Commercial
2	1	C39	100 nF, 50 V, Ceramic, X7R, 0805	CC0805KRX7R9BB104	Yageo
3	1	C40	1 uF, $\pm 10 \%$, 50 V, Ceramic, X7R, AEC-Q200, Automotive, Boardflex Sensitive, 0805 (2012 Metric), $-55^{\circ} \mathrm{C} \sim 125^{\circ} \mathrm{C}$	CGA4J3X7R1H105K125AE	TDK
4	1	C41	$4.7 \mu \mathrm{~F} \pm 10 \%$, $25 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}, 0805$ (2012 Metric), $-55^{\circ} \mathrm{C} \sim 125^{\circ} \mathrm{C}$	TMK212AB7475KG-T	Taiyo Yuden
5	1	L4	$560 \mathrm{nH}, 230 \mathrm{mADC}, 1.9 \mathrm{ohm}$ max, $\mathrm{Q}=23$ @ $50 \mathrm{MHz}, \mathrm{Fr}=$ 320 MHz , unshielded,ceramic, wirewound, $-40^{\circ} \mathrm{C} \sim$ $125^{\circ} \mathrm{C}$, Wirewound, 0805 , SMD	AISC-0805-R56G-T	Abracon
6	1	Q7	$60 \mathrm{~V}, 115 \mathrm{~mA}$, SOT23-3	2N7002-7-F	Diodes, Inc.
7	1	Q8	NPN, Small Signal BJT, $450 \mathrm{~V}, 0.5 \mathrm{~A}, 150 \mathrm{MA}$,SOT-23	FMMT459TA	Diodes, Inc.
8	1	Q9	NPN, Small Signal BJT, $450 \mathrm{~V}, 0.5 \mathrm{~A}, 150 \mathrm{MA}$, SOT-23	FMMT459TA	Diodes, Inc.
9	1	Q10	MOSFET, N-CH, 20V, SOT23	PMV16XNR	NXP
10	1	R50	RES, $47 \Omega, 5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6GEYJ470V	Panasonic
11	1	R51	RES, $10 \mathrm{k} \Omega, 1 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6ENF1002V	Panasonic
12	1	R52	RES, $820 \Omega, 5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6GEYJ821V	Panasonic
13	1	R53	RES, $10 \mathrm{k} \Omega, 1 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6ENF1002V	Panasonic
14	1	R54	RES, $330 \Omega, 5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6GEYJ331V	Panasonic
15	1	R55	RES, $1.00 \mathrm{k} \Omega, 1 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6ENF1001V	Panasonic
16	1	R56	RES, $120 \Omega, 5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6GEYJ121V	Panasonic
17	1	R57	RES, $100 \mathrm{k} \Omega, 5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6GEYJ104V	Panasonic
18	1	R64	RES, $10 \mathrm{k} \Omega, 5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6GEYJ103V	Panasonic
19	1	R66	RES, $240 \Omega, 5 \%, 1 / 10$ W, Thick Film, 0603	ERJ-3GEYJ241V	Panasonic
20	1	R67	RES, $3 \mathrm{k} \Omega, 5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6GEYJ302V	Panasonic
21	1	U11	IC, Linear Voltage Regulator, Positive, Fixed, 1 Output, $5 \mathrm{~V}, 0.1 \mathrm{~A}$, SOT-223, SOT-223-3, TO-261-4, TO-261AA	NCV4264-2ST50T3G	ON Semi
22	1	U12	Optoisolator, Transistor Output, $3750 \mathrm{Vrms}, 1$ Channel,- $-55^{\circ} \mathrm{C}$ ~ $110^{\circ} \mathrm{C}$, 4-SOP (2.54mm)	LTV-356T	Lite-On
23	1	U13	Optoisolator, Transistor with Base Output, 4170 Vrms, $-40^{\circ} \mathrm{C}$ ~ $100^{\circ} \mathrm{C}, 1$ Channel, 6-SMD	MOC8204SR2M	ON Semi
24	1	U16	IC, PIC, PIC®, XLPTM, 16F Microcontroller IC, 8 -Bit, 32 MHz , 28 KB (16K x 14), FLASH, 14 -SOIC	PIC16F18326-I/SL	Microchip
25	1	VR7	DIODE ZENER 4.7 V 500 MW SOD123	MMSZ5230B-7-F	Diodes, Inc.

15.6.2 Mechanicals

Item	Qty	Ref Des	Description	Mfg Part Number	Mfg
21	1	$\mathrm{J4}$	8 Position (1×8) header, 0.1 pitch, Vertical	$22-28-4080$	Molex
22	1	$\mathrm{J5}$	6 Position (1×6) header, 0.1 pitch, R/A Tin	$22-05-2061$	Molex

Figure 100 - Dimming Performance vs DALI Command Level.

16 Revision History

Date	Author	Revision	Description and Changes	Reviewed
28 -Jun-18	JB	1.0	Initial Release.	Apps

For the latest updates, visit our website: www.power.com

Reference Designs are technical proposals concerning how to use Power Integrations' gate drivers in particular applications and/or with certain power modules. These proposals are "as is" and are not subject to any qualification process. The suitability, implementation and qualification are the sole responsibility of the end user. The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may base on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information and recommendations contained herein. No responsibility is accepted for the accuracy or sufficiency of any of the statements, technical information, recommendations or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

Patent Information

The products and applications illustrated herein (including transformer construction and drcuits' external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at WWW. DOWER.COM. Power Integrations grants its customers a license under œertain patent rights as set forth at http://www.power.com/ip.htm.

The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, LYTSwitch, InnoSwtich, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS, HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Fiterfuse, Fuxdink, StadאFT, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2015 Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS
5245 Hellyer Avenue San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax: +1-408-414-9765
e-mail: usasales@power.com

GERMANY

(IGBT Driver Sales)
HellwegForum 1
59469 Ense, Germany
Tel: +49-2938-64-39990
Email: igbt-
driver.sales@power.com

KOREA

RM 602, 6FL
Korea City Air Terminal B/D, 159-6
Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea
Phone: +82-2-2016-6610
Fax: +82-2-2016-6630
e-mail: koreasales@power.com

CHINA (SHANGHAI)
Rm 2410, Charity Plaza, No. 88,
North Caoxi Road, Shanghai, PRC 200030 Phone: +86-21-6354-6323 Fax: +86-21-6354-6325 e-mail: chinasales@power.com INDIA
\#1, $14^{\text {th }}$ Main Road
Vasanthanagar
Bangalore-560052
India
Phone: +91-80-4113-8020
Fax: +91-80-4113-8023 e-mail: indiasales@power.com

SINGAPORE

51 Newton Road, \#19-01/05 Goldhill Plaza Singapore, 308900
Phone: +65-6358-2160
Fax: +65-6358-2015
e-mail:
singaporesales@power.com

CHINA (SHENZHEN)
17/F, Hivac Building, No. 2, Keji Nan 8th Road, Nanshan Distric, Shenzhen, China, 518057
Phone: +86-755-8672-8689
Fax: +86-755-8672-8690
e-mail: chinasales@power.com

ITALY
Via Milanese 20, $3^{\text {rd }}$. F.
20099 Sesto San Giovanni (MI)
Italy
Phone: +39-024-550-8701
Fax: +39-028-928-6009
e-mail: eurosales@power.com

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu District
Taipei 11493, Taiwan R.O.C.
Phone: +886-2-2659-4570
Fax: +886-2-2659-4550
e-mail: taiwansales@power.com

GERMANY

(AC-DC/LED Sales)
Lindwurmstrasse 114
80337, Munich
Germany
Phone: +49-895-527-39110
Fax: +49-895-527-39200
e-mail: eurosales@power.com

JAPAN

Kosei Dai-3 Building
2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033
Japan
Phone: +81-45-471-1021
Fax: +81-45-471-3717
e-mail: japansales@power.com

UK

Cambridge Semiconductor, a Power Integrations company Westbrook Centre, Block 5, 2nd Floor
Milton Road
Cambridge CB4 1YG
Phone: +44 (0) 1223-446483
e-mail: eurosales@power.com

