

Design Example Report

Title	29 W High Power Factor Isolated Flyback Using LYTSwitch [™] -6 LYT6067C with 3-in-1 and DALI Dimming	
Specification 180 VAC – 265 VAC Input; 36 V, 800 mA Output		
Application LED Lighting		
Author Applications Engineering Department		
Document Number	DER-740	
Date	July 30, 2018	
Revision	1.0	

Summary and Features

- Accurate constant current regulation
- Industry first AC/DC controller with isolated, safety rated feedback without optocoupler
- High power factor, >0.9 at 180 VAC to 265 VAC
- Ultrafast transient response
- Highly energy efficient, >86%
- Integrated protection and reliability features
 - Output short-circuit protection
 - Line and output OVP
 - Thermal foldback and over-temperature shutdown with hysteretic automatic power recovery
- CCM + Quasi-Resonant switching for precision CC/CV operation without need for loop compensation
- Meets IEC 2.5 kV ring wave, 1 kV differential surge
- Meets EN55015 conducted EMI

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuit's external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at https://www.power.com/company/intellectual-property-licensing/.

Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.power.com

Table	of Contents	
1 Int	roduction	4
2 Po	wer Supply Specification	6
	hematic	
4 Cir	cuit Description	8
4.1	Input Circuit Description	8
4.2	Primary Circuit	8
4.3	LYTSwitch-6 Secondary-Side Control	9
4.4	PFC Circuit Operation	9
4.5	3-in-1 Dimming Circuit	.10
4.5	5.1 3-in-1 Dimming Set-up	.12
5 PC	B Layout	
6 Bil	l of Materials	.14
6.1	Electrical	.14
6.2	Mechanicals and Miscellaneous	.15
6.3	Female Shorting Jumper for Connectors J4 and J5	.15
7 Fly	back Transformer (T1) Specification	
7.1	Electrical Diagram	
7.2	Electrical Specifications	
7.3	Material List	.16
7.4	Transformer Build Diagram	.17
7.5	Transformer Construction	
7.6	Transformer Winding Illustrations	.18
8 PF	C Inductor (T2) Specifications	
8.1	Electrical Diagram	
8.2	Electrical Specifications	
8.3	Material List	
8.4	Inductor Build Diagram	.25
8.5	Inductor Construction	
8.6	Inductor Winding Illustrations	
9 De	sign Spreadsheet.	
	Performance Data	
10.1	Output Current Regulation	
10.2	System Efficiency	
10.3	Power Factor	
10.4	%ATHD	
10.5	Individual Harmonics Content at Full Load	
10.6	No-Load Input Power	
10.7	CV/CC Curve	
10.8	Dimming Performance: 3-in-1 Dimming	
	.8.1 Variable Supply Dimming	
-	.8.2 Variable Resistor Dimming	
	.8.3 Variable Duty PWM Dimming	
-	Test Data	

11.1 Test Data at Full Load	42
11.2 Test Data at No-Load	42
11.3 Individual Harmonic Content at 230 VAC 60 Hz and Full Load	43
12 Thermal Performance	
12.1 Thermal Measurements at Ambient Room Temperature	
12.2 Thermal Performance at Ambient Room Temperature with Unit Inside Casing	
12.3 Thermal Performance at High Ambient Temperature	
13 Waveforms	
13.1 Input Voltage and Input Current at Full Load	51
13.2 Start-up Profile at Full Load (DALI Disabled)	
13.3 Start-up Profile Full Load (DALI Enable)	
13.4 Turn-Off Profile Full Load	
13.5 LYTSwitch-6 Drain Voltage and Current Waveforms at Normal Operation	55
13.6 LYTSwitch-6 Drain Voltage and Current at Full Load Start-up	57
13.7 LYTSwitch-6 Drain Voltage and Current during Output Short-Circuit	59
13.8 PFC Diode Voltage and Current at Normal Operation	
13.9 PFC Diode Voltage and Current at Start-up Full Load	62
13.10 Output Current Ripple	
13.10.1 Equipment Used	63
13.10.2 Ripple Ratio and Flicker % Measurement	63
14 Conducted EMI	65
14.1 Test Set-up	65
14.1.1 Equipment and Load Used	65
14.2 EMI Test Result	
14.2.1 Non Earthed Conducted EMI	66
14.2.2 Earthed Conducted EMI	67
15 Appendix	
15.1 Pin Functions	
15.2 Schematic	
15.3 PCB Layout	
15.4 Board Level Test for DALI Daughter Board	
15.4.1 Lab Equipment to be used	
15.4.2 Wiring Diagram for the Test Set-up	
15.4.3 Procedures	
15.5 DALI Dimming Set-up	
15.6 Bill of Materials	74
15.6.1 DALI Circuit (PIC16F18326)	
15.6.2 Mechanicals	
15.7 Dimming Performance with DALI Command	
16 Revision History	76

Important Note: Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

1 Introduction

This engineering report describes an isolated flyback LED driver compatible with both 3in-1 dimming and DALI dimming. It is designed to drive a nominal LED voltage string of 36 V at 800 mA from an input voltage range of 180 VAC to 265 VAC. The LED driver utilizes the LYT6067C from the LYTSwitch-6 family of devices.

DER-740 is a high-line input flyback converter design added with a switched valley-fill PFC circuit. Through the PFC circuit, the design meets the high power factor requirement in LED lighting application while reducing loss by direct energy transfer. The key design goals were high efficiency, high power factor across the input voltage range, and both 3-in-1 dimmable and DALI dimmable from 0% to 100%.

This document contains the power supply specification, schematic diagram, bill of materials, transformer documentation, printed circuit board layout, and performance data.

Figure 1 – Populated Circuit Board.

Figure 2 – Populated Circuit Board, Top View.

Figure 3 – Populated Circuit Board, Bottom View.

2 **Power Supply Specification**

The table below represents the minimum acceptable performance of the design. Actual performance is listed in the results section.

Description	Symbol	Min	Тур	Max	Units	Comment
Input Voltage Frequency	V _{IN} f _{LINE}	180	230 50	265	Vac/Hz	2 Wire – No P.E.
Output Output Voltage Output Current Total Output Power	V _{оит} І _{оит}	30	36 800		V mA	CC Threshold: 0.8 A
Continuous Output Power	Ρουτ		29		W	
Efficiency Full Load Average Efficiency	η		86 >86		% %	At 230 VAC / 50 Hz. 25 °C Ambient Temperature. Meets DOE Level VI.
Environmental Conducted EMI Safety			CISPR 15B / Isola		в	
Ring Wave (100 kHz) Differential Mode (L1-L2)			2.5 1		kV kV	
Power Factor			0.9			Measured at 180 VAC / 50 Hz and 265 VAC / 50 Hz.
Ambient Temperature	Т _{амв}			40	٥C	Free Air Convection, Sea Level. At 230 VAC Input.

3 Schematic

4 **Circuit Description**

The LYTSwitch-6 device (LYT6067C) combines a 650 V power MOSFET, sense elements, a safety-rated feedback mechanism, along with both primary-side and secondary-side controllers in one device. Since LYTSwitch-6 ICs use an integrated communication link, FluxLink[™], accurate control of the secondary-side by the primary-side is possible and close component proximity is utilized. The LYTSwitch-6 IC is designed to deliver a 29 W flyback power supply with a switched valley-fill PFC providing a high power factor for 800 mA constant current output at a nominal voltage of 36 V throughout the input range of 180 VAC to 265 VAC.

4.1 *Input Circuit Description*

Fuse F1 isolates the circuit and provides protection from component failures. Varistor RV1 acts as a voltage clamp in case of voltage spikes from transient line surge. Bridge rectifier BR1 rectifies the AC line voltage and provide a full wave rectified DC across the input capacitors C2 and C3. Capacitor C1, L2, C2, L3, and C3 forms a 2-stage LC EMI filter to suppress differential and common mode noise caused by the PFC and flyback switching action.

The bulk capacitor (C4) provides input line ripple voltage filtering for a stable flyback DC supply voltage and helps reduce EMI noise. It also stores excess energy generated by the PFC during the power switch turn off time.

Rectifier diode (D16) delivers the charging current to C4 from the input rectified voltage. During FET off time, D16 blocks current from PFC supply so that flyback DC supply is isolated.

4.2 *Primary Circuit*

One end of transformer (T2) primary is connected to the positive output terminal of the bulk capacitor (C4) while the other side is connected to the drain of the integrated 650 V power MOSFET inside the LYTSwitch-6 IC (U4).

A low cost RCD snubber clamp formed by D8, R46, R17, and C9 limits the peak Drain voltage spike of U4 at the instant turn-off of the MOSFET. The clamp helps dissipate the energy stored in the leakage reactance of transformer T2.

The VOLTAGE MONITOR (V) pin of the LYTSwitch-6 IC is connected to the positive of the bulk capacitor (C4) to provide input voltage information. The voltage across the bulk capacitor (C4) is sensed and converted into current through V pin resistors R4 and R45 to provide detection of overvoltage. The I_{OV-} determines the input overvoltage threshold. The IC is kick-started by an internal high-voltage current source that charges the BPP pin capacitor C11 when AC is first applied. Primary-side will listen for secondary request signals for around 82 ms. After initial power-up, primary-side assumes control first and requires a handshake to pass the control to the secondary-side. During normal operation

the primary-side block is powered from an auxiliary winding on the transformer. The output of this is configured as a flyback winding which is rectified and filtered using diode D7 and capacitor C10. Resistor R18 limits the current being supplied to the BPP pin of the LYTSwitch-6 (U4).

The thermal shutdown circuitry senses the primary MOSFET die temperature. The threshold (T_{SD}) is typically set to 142 °C with 70 °C hysteresis $T_{SD(H)}$. When the die temperature rises above this threshold the power MOSFET is disabled and remains disabled until the die temperature falls by $T_{SD(H)}$ at which point it is re-enabled. A large hysteresis of 70 °C is provided to prevent over-heating of the PCB due to continuous fault condition.

4.3 *LYTSwitch-6 Secondary-Side Control*

The secondary side control of the LYTSwitch-6 IC provides output voltage, output current sensing and drive a MOSFET providing synchronous rectification. The secondary of the transformer is rectified by D10 and filtered by the output capacitors C16 and C18. An optional RC snubber (R48 and C14) can be added across the output diode to reduce the voltage stress across it. The secondary side of the IC is powered from an auxiliary winding FL3 and FL4.

During constant voltage mode operation, output voltage regulation is achieved through sensing the output voltage via divider resistors R29 and R30. The voltage across R30 is fed into the FEEDBACK (FB) pin with an internal reference voltage threshold of 1.265 V. Filter capacitor C19 is added across R30 to eliminate unwanted noise that might trigger the OVP function or increase the output ripple voltage.

During constant current operation, the output current is set by the sense resistors R43 and R24 across the IS pin and the GND pin. The internal reference threshold for the IS pin is 35.8 mV. Diode D13 in parallel with the current sense resistor serves as protection for IS pin during output short-circuit conditions.

The thermal foldback is activated when the secondary controller die temperature reaches 124 °C, the output power is reduced by reducing the constant current reference threshold.

4.4 *PFC Circuit Operation*

Without the added PFC circuit, the power factor of the flyback power supply is normally around 0.5 to 0.6 at full load condition. Input from the bridge rectifier (BR1) will just directly feed the bulk capacitor (C4) that charges and recharges till the next voltage peak fed to it. The input charging pulse current must be high enough to sustain the load until the next peak. This means that the charging pulse current is around 5-10 times higher than the average current with a high phase angle difference from the voltage waveform; hence, the expected PF from this standard configuration is low and THD is high.

The added PFC circuit is called "Switched Valley-Fill Single Stage PFC" (SVF S²PFC). Composed of an inductor (T1) and diodes (D1 and D17) connected directly to the DRAIN (D) pin of the LYTSwitch-6 IC. Through this, the LYTSwitch-6 IC flyback switching action is able to draw a high frequency pulse current from the full wave rectified input. This will reduce the rms input current and the phase angle difference from the input line voltage will be lower; hence, power factor will increase and will improve THD.

The PFC inductor T1 operates in DCM mode. At turn ON time, current delivered by the rectified input is stored in the PFC inductor which is then delivered via direct energy transfer to the flyback transformer T2. Excess energy from the PFC inductor that is not delivered to the load is being stored to the bulk capacitor. During no-load and light load conditions, the secondary requires less energy from the primary; therefore, more excess energy from the PFC inductor is stored on the bulk capacitor causing the voltage to rise gradually which will be higher than that of the peak input. For this a Zener-resistor clamp (VR1, VR2, R47) was added in parallel with the bulk capacitor to limit the rise in voltage. The expected voltage stress across the bulk capacitor C4 will be higher than the peak input voltage. The Zener voltage is set at 400 V; when the bulk voltage goes beyond this, the Zener diodes conduct and bleed current from the bulk capacitor through resistor R47. This prevents the bulk capacitor voltage to rise above 450 V. The power dissipation of this Zener-resistor clamp should be considered at the worst-case creeping of the bulk voltage - happens usually at light load condition. Diodes D1 and D17 are connected in series to withstand voltage stress caused by the resonance ringing during the FET turn off. The variability of the PFC inductor peak current will be compensated by the LYTSwitch-6 IC primary and secondary-side control maintaining the voltage regulation at all conditions.

4.5 *3-in-1 Dimming Circuit*

The 3-in-1 Dimming circuit enables utilizing just two terminals for three possible types of dimming input signals. Dimming is done by sensing the output current, amplifying the signal, comparing it with a variable reference and injecting current into the FB pin.

Output current is sensed through IS pin resistors R43 and R24. The output current passes through these resistors and the resulting voltage signal is then passed through the non-inverting amplifier circuit R15, R16, R63, U14A, and C27. The gain is set by R16 and R63 to 262 or about 9.4 V maximum. The output of the op-amp (pin 1) connects to the positive input (pin 5) through R62. The signal going to the negative input (pin 6) comes from either of three possible inputs: variable DC supply (0-10V), variable resistance (0-100k Ω), or variable duty PWM signal (0-100%, 300-3kHz).

The basic principle of the circuitry is that the output at pin 1 of U14A will always try to match the voltage at pin 6 of U14B which is set by the dimming input. Since U14A is configured as a non-inverting Op-Amp and its input voltage signal is directly proportional to the output current, an increase in the voltage at pin 6 of U14B will result to an increase in the output current. When the dimming input is a variable DC supply, the

voltage at pin 6 of U14B will just be the set voltage of the DC supply. When the dimming input is a variable duty PWM signal, the averaging circuit composed of R20 and C26 converts the signal into DC before feeding to the op-amp input. A constant current source composed of R64, R66, U8, and Q10 is used to convert the variable resistance input into the desired variable DC signal. U8 clamps the voltage at R66, therefore setting the emitter current constant. The emitter current of Q10 is roughly equal to its collector current (around 100μ A) which is connected to the variable resistance input which in turn produces the 0-10V needed at pin 6 of U14B. VR3 and D18 are placed for protection in case the user have interchanged the dimming input causing inverted polarity or in case the user forgot to remove the jumpers of connectors J4 and J5 and engaged the DALI dimming. The dimming circuit can also be controlled via DALI dimming instead of 3-in-1 dimming by disconnecting the jumpers of J4 and J5.

At start-up, the op-amp output is initially low which causes an unwanted spike in output current. To counter this effect, a blanking circuit Q11, R65, and C38 is added which initially pulls the inverting input (pin 6) down and in turn results to op-amp output high.

The op-amp output (pin 7) is connected to the FB pin through D9 and R14. Depending on the op-amp output, current is injected into the FB pin. The feedback voltage will go up as current is injected. This will normally bring the output voltage down in CV mode. However, since the LED load is a constant voltage, it can't bring the voltage down. Instead, the output current goes down as a consequence.

The current injection loop has to be slow enough in order not to trigger feedback overvoltage protection when doing a step load from 100% to 0%. This is done by increasing the value of R14.

A low-input offset operational amplifier is also recommended to reduce unit-to-unit variability. It is also important to place the dimming circuit close to the IS pin and FB pin to prevent noise from disturbing the loop.

4.5.1 3-in-1 Dimming Set-up

Before testing the 3-in-1 dimming, make sure to check the following:

- 1. The DALI Board should **not** be connected to the main board.
- 2. The female jumpers (Sullins PN: SPC02SYAN) should be inserted to connectors J4 and J5.
- 3. Refer to the figures below for the proper wiring diagram.

1. Variable DC Supply

Figure 5 – Dimming Set-up for Variable DC supply dimming input.

2. Variable PWM Duty Cycle

Figure 6 – Dimming Set-up for Variable PWM Duty Cycle dimming input.

3. Variable Resistor

Figure 7 – Dimming Set-up for Variable Resistor dimming input.

5 PCB Layout

Figure 8 – Main Board Top Side.

Figure 9 – Main Board Bottom Side.

6 Bill of Materials

6.1 *Electrical*

Item	Qty	Ref Des	Description	Mfg. Part Number	Mfg.
1	1	BR1	Bridge Rectifier, 1000 V, 4 A, 4-ESIP, D3K, -55°C ~ 150°C (TJ), Vf = 1 V @ 7.5 A	UD4KB100-BP	Micro Commercial
2	1		0.1 μF, ±20%, Film Capacitor,X2 Safety Rated, 310 VAC, 630 VDC, Polypropylene (PP), Metallized Radial	BFC233920104	Vishay
3	1	C2	330 nF, 450 V, METALPOLYPRO	ECW-F2W334JAQ	Panasonic
4	1	C3	330 nF, 450 V, METALPOLYPRO	ECW-F2W334JAQ	Panasonic
5	1	C4	22 μF, ±20%, 450 V, Electrolytic, -25°C ~ 105°C, 8000 Hrs @ 105°C, (16 x 31.5)	UPW2W220MHD	Nichicon
6	1		470 pF, ±10%, 500V, X7R, Ceramic Capacitor, -55°C ~ 125°C, Surface Mount, MLCC 1206	CC1206KKX7RBBB471	Yageo
7	1	C10	22 μF, 35 V, Electrolytic, Gen. Purpose, (5 x 11)	UVR1V220MDD6TP	Nichicon
8	1	C11	470 nF, 50 V, Ceramic, X7R, 0805	GRM21BR71H474KA88L	Murata
9	1	C12	3.3 nF, Ceramic, Y1	440LD33-R	Vishay
10	1	C13	2.2 μF, 25 V, Ceramic, X7R, 1206	TMK316B7225KL-T	Taiyo Yuden
11	1	C14	220 pF, 630 V, Ceramic, NP0, 1206	C3216C0G2J221J	TDK
12	1	C15	22 μF, 35 V, Electrolytic, Gen. Purpose, (5 x 11)	UVR1V220MDD6TP	Nichicon
13	1		470 μF, 50 V, Electrolytic, Gen. Purpose, (10 x 20)	EKMG500ELL471MJ20S	United Chemi- Con
14	1	C18	470 μF, 50 V, Electrolytic, Gen. Purpose, (10 x 20)	EKMG500ELL471MJ20S	United Chemi- Con
15	1	C19	330 pF 50 V, Ceramic, X7R, 0603	CC0603KRX7R9BB331	Yageo
16	1		2.2 μF, 25 V, Ceramic, X7R, 0805	C2012X7R1E225M	TDK
17	1	C27	1 uF,±10% ,50 V, Ceramic, X7R, AEC-Q200, Automotive, Boardflex Sensitive, 0805 (2012 Metric),-55°C ~ 125°C	CGA4J3X7R1H105K125AE	TDK
18	1	C28	1 μF 16 V, Ceramic, X7R, 0603	C1608X7R1C105M	TDK
19	1	C37	1 uF, ±20%, 16 V, Ceramic, X7R, Boardflex Sensitive, Soft Termination, - 55°C ~ 125°C, 0603 (1608 Metric),	C0603X105M4RAC7867	Kemet
20	1	C38	1 uF, \pm 10% ,50 V, Ceramic, X7R, AEC-Q200, Automotive, Boardflex Sensitive, 0805 (2012 Metric),-55°C ~ 125°C	CGA4J3X7R1H105K125AE	TDK
21	1	D1	600 V, 2 A, Super Fast, 35 ns, DO-214AC, SMA	ES2J-LTP	Micro Commercial
22	1	D7	250 V, 0.2 A, Fast Switching, 50 ns, SOD-123	BAV21WS-7-F	Diodes, Inc.
23	1	D8	600 V, 1 A, Rectifier, Glass Passivated, POWERDI123	DFLR1600-7	Diodes, Inc.
24	1	D9	75 V, 0.15 A, Switching,SOD-323	BAV16WS-7-F	Diodes, Inc.
25	1	D10	400 V, 2 A, Super Fast, 35 ns, DO-214A, SMB	ES2G-13-F	Diodes, Inc.
26	1	D11	400 V, 1A, DIODE SUP FAST 1A PWRDI 123	DFLU1400-7	Diodes, Inc.
27	1	D13	200 V, 1 A, MINI2	DA22F2100L	Panasonic
28	1	D16	600 V, 1 A, Standard Recovery, SMA	S1J-13-F	Diodes, Inc.
29	1		600 V, 2 A, Super Fast, 35 ns, DO-214AC, SMA	ES2J-LTP	Micro Commercial
30	1	D18	100 V, 0.2 A, Fast Switching, 50 ns, SOD-323	BAV19WS-7-F	Diodes, Inc.
31	1		2 A, 250V, Slow, Long Time Lag,RST	RST 2	Belfuse
32	1		18.7 mH, 0.22 A, Common Mode Choke RL-4400-1-18.7		Renco
33	1		1000 μH, 1.20 ohm, Isat: 0.880 A, Irms: 0.490 A RL-5480-4-1000		Renco
34	1		PNP, Small Signal BJT, 40 V, 0.2 A, SOT-23	MMBT3906LT1G	On Semi
35	1		60 V, 115 mA, SOT23-3	2N7002-7-F	Diodes, Inc.
36	1		RES, 2.2 MΩ, 5%, 1/4 W, Carbon Film	CFR-25JB-2M2	Yageo
37	1				Panasonic
38	1		RES, 1 kΩ, 1%, 1/16 W, Thick Film, 0603	ERJ-3EKF1001V	Panasonic
39	1		RES, 1.00 k Ω , 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF1001V	Panasonic
40	1		RES, 510 k Ω , 5%, 1/4 W, Thick Film, 1206	ERJ-8GEYJ514V	Panasonic

41	1	R18	RES, 10 kΩ, 5%, 1/4 W, Thick Film, 1206	ERJ-8GEYJ103V	Panasonic
42	1	R19	RES, 1 kΩ, 1%, 1/16 W, Thick Film, 0603	ERJ-3EKF1001V	Panasonic
43	1	R20	RES, 20 kΩ, 1%, 1/16 W, Thick Film, 0603	ERJ-3EKF2002V	Panasonic
44	1	R22	RES, 47 Ω, 5%, 1/4 W, Thick Film, 1206	ERJ-8GEYJ470V	Panasonic
45	1	R24	RES, 0.39 Ω 1/4W, 1%,Thick Film, 1206	ERJ-8RQFR39V	Panasonic
46	1	R29	RES, 102 kΩ, 1%, 1/4 W, Metal Film	MFR-25FBF-102K	Yageo
47	1	R30	RES, 3.57 kΩ, 1%, 1/16 W, Thick Film, 0603	ERJ-3EKF3571V	Panasonic
48	1	R34	RES, 1 kΩ, 1%, 1/16 W, Thick Film, 0603	ERJ-3EKF1001V	Panasonic
49	1	R43	RES, SMD, 0.05 Ω, 1%, ½ W, 1206, ±100ppm/°C, -55°C ~ 155°C	CSR1206FT50L0	Stackpole
50	1	R45	RES, 2.2 MΩ, 5%, 1/4 W, Thick Film, 1206	ERJ-8GEYJ225V	Panasonic
51	1	R46	RES, 20 Ω, 5%, 1/4 W, Thick Film, 1206	ERJ-8GEYJ200V	Panasonic
52	1	R47	RES, 4.7 kΩ, 5%, 1/4 W, Thick Film, 1206	ERJ-8GEYJ472V	Panasonic
53	1	R48	RES, 100 Ω, 5%, 1/2 W, Thick Film, 1210	ERJ-14YJ101U	Panasonic
54	1	R62	RES, 1 kΩ, 1%, 1/4 W, Metal Film	MFR-25FBF-1K00	Yageo
55	1	R63	RES, 261 kΩ, 1%, 1/16 W, Thick Film, 0603	ERJ-3EKF2613V	Panasonic
56	1	R64	RES, 9.1 kΩ, 5%, 1/8 W, Thick Film, 0805 ERJ-6GEYJ912V		Panasonic
57	1	R65	RES, 10 kΩ, 5%, 1/10 W, Thick Film, 0603 ERJ-3G		Panasonic
58	1	R66	RES, 6.34 kΩ, 1%, 1/16 W, Thick Film, 0603	ERJ-3EKF6341V	Panasonic
59	1	RV1	275 VAC, 23 J, 7 mm, RADIAL	V275LA4P	Littlefuse
60	1	T1	Bobbin, EE13, Vertical, 10 pins	P-1302-2	Pin Shine
61	1	T2	Bobbin, PQ20/20, Vertical, 14 pins	CPV-PQ20/20-1S14PZ	Ferroxcube
62	1	U14	IC, DUAL Op Amp, General Purpose, 2.7 MHz, Rail to Rail, 8-SOIC (0.154", 3.90 mm Width), 8-SO	TSX712IDT	ST Micro
63	1	U4	LYT6067C, LYTSwitch Integrated Circuit, InSOP24D	LYT6067C	Power Integrations
64	1	U8	1.24 V Shunt Regulator IC, 1%, -40 to 85 C, SOT23-3	LMV431AIMF	National Semi
65	1		DIODE, ZENER, 200 V, 800 MW, DO219AB	BZD27C200P-E3-08	Vishay
66	1		DIODE, ZENER, 200 V, 800 MW, DO219AB	BZD27C200P-E3-08	Vishay
67	1		15 V, 5%, 500 mW, SOD-123	BZT52C15-7-F	ON Semi
-	-			-	

6.2 *Mechanicals and Miscellaneous*

Item	Qty	Ref Des	Description	Mfg. Part Number	Mfg.
68	1	J1	CONN TERM BLOCK 5.08MM 3POS, Screw - Leaf Spring, Wire Guard	ED120/3DS	On Shore Tech
69	1	J2	2 Position (1 x 2) header, 5 mm (0.196) pitch, Vertical, Screw - Rising Cage Clamp		
70	1	J3	CONN TERM BLOCK, 2 POS, 5mm, PCB	ED500/2DS	On Shore Tech
71	1	J4	2 Position (1 x 2) header, 0.1 pitch, Vertical	22-03-2021	Molex
72	1	J5	2 Position (1 x 2) header, 0.1 pitch, Vertical	22-03-2021	Molex
73	1	J7-CON	8 Position (1 x 8) header, 0.1 pitch, Vertical	22-28-4080	Molex
74	1	JP1	Wire Jumper, Insulated, #24 AWG, 0.8 in	C2003A-12-02	Gen Cable
75	1	JP2	Wire Jumper, Insulated, #24 AWG, 0.4 in	C2003A-12-02	Gen Cable
76	1	JP3	Wire Jumper, Insulated, #24 AWG, 0.8 in	C2003A-12-02	Gen Cable
77	1	JP4	Wire Jumper, Insulated, #24 AWG, 0.8 in	C2003A-12-02	Gen Cable

6.3 *Female Shorting Jumper for Connectors J4 and J5*

Qty	Description	Mfg Part Number	Mfg
2	CONN JUMPER SHORTING GOLD FLASH, FEM, 2POS .100 POLAR	SPC02SYAN	Sullins Connector

7 Flyback Transformer (T1) Specification

7.1 *Electrical Diagram*

Figure 10 – Transformer Electrical Diagram.

7.2 *Electrical Specifications*

Parameter Condition		Spec.
Nominal Primary Inductance	Measured at 1 V_{PK-PK} , 100 kHz switching frequency, between pin 3 and pin 2 with all other windings open.	730 μH
Tolerance	Tolerance of Primary Inductance.	±5%
Leakage Inductance	Measured across primary winding with all other windings shorted	<5 μH

7.3 *Material List*

Item	Description	
[1]	Core: PQ2020 PC95 or Equivalent.	
[2]	Bobbin, PQ2020, Vertical, 5 Pins.	
[3]	Magnet Wire: #25 AWG.	
[4]	Magnet Wire: #32 AWG.	
[5]	TIW: # 29 AWG.	
[6]	TIW: # 31 AWG.	
[7]	Polyester Tape: 12 mm.	
[8]	Polyester Tape: 12 mm.	

7.4 Transformer Build Diagram

Figure 11 – Transformer Build Diagram.

7.5 Transformer Construction

Winding Directions	Bobbin is oriented on winder jig such that terminal pin 1-6 is on the right side. The winding direction is clockwise.
Winding 1	Use magnetic wire Item [3]. Start at pin 3 and wind 24 turns in 1 layer. Do not terminate winding, leave the winding floating.
Insulation	Apply 1 layer of polyester tape, Item [7] for insulation
Winding 2Use 5-filar magnetic wire on Item [4]. Start at pin (5) and wind 7 turns. End pin (4).	
Insulation	Apply 1 layer of polyester tape, Item [7] for insulation.
Winding 3	Start on the other side of the bobbin. Use a triple insulated wire on Item [5]. Starting with a fly lead (FL1), wind 11 turns evenly in 1 layer. Do not terminate winding yet.
Insulation	Apply 1 layer of polyester tape, Item [7] for insulation.
Winding 4	Start on the side of FL1. Use a trifilar triple insulated wire, Item [6]. Start as a fly lead (FL4), wind 7 turns evenly in 1 layer and finish as a fly lead (FL3).
Insulation Apply 1 layers of polyester tape, Item [7] for insulation.	
Winding 5	Continuing from winding 3, wind 11 turns and finish with a fly lead (FL2).
Insulation	Apply 1 layers of polyester tape, Item [7] for insulation.
Winding 6	Continuing from W1, wind 25 turns evenly and finish at pin (2).
Insulation	Apply 2 layers of polyester tape, Item [7] for insulation.
Core Grinding Grind the center leg of the ferrite core to meet the nominal specification of 730 μ H.	
Assemble Core	Use Item [8] to fix the 2 cores into the bobbin. Cut the terminal of the clip on the left side of the bobbin, looking at the bottom side facing the fly leads of the secondary winding.
Pins	Cut any excess pins of the bobbin (pins without wire terminations).
Finish	Dip the transformer in a 2:1 varnish and thinner solution.

7.6 Transformer Winding Illu	ISTRATIONS
Winding Directions Bobbin is oriented on winder jig such that terminal pin 1-6 is on the right side. The winding direction is clockwise.	Pin 1
Winding 1 Use magnetic wire Item [3]. Start at pin 3 and wind 24 turns in 1 layer. Do not terminate winding, leave the winding floating.	Pin 3
Insulation Apply 1 layer of polyester tape, Item [7] for insulation	

Winding 3

Start on the other side of the bobbin. Use a triple insulated wire on Item [5]. Starting with a fly lead (FL1), wind 11 turns evenly in 1 layer. Do not terminate winding yet.

Insulation

Apply 1 layer of polyester tape, Item [7] for insulation.

Winding 4

Insulation

insulation.

Start on the side of FL1. Use a trifilar triple insulated wire, Item [6]. Start as a fly lead (FL4), wind 7 turns evenly in 1 layer and finish as a fly lead (FL3).

Apply 1 layer of polyester tape, Item [7] for

P

Page 21 of 77

30-Jul-18

Core Termination

Use two PC44 PQ2020 cores, Item [1]. Grind the center leg of the ferrite core to meet the nominal inductance specification of 730 μ H.

Core Fixing

Use Item [8] to fix the 2 cores into the bobbin. Cut the terminal of the clip on the left side of the bobbin, looking at the bottom side facing the fly leads of the secondary winding.

Pins

Cut any excess pins of the bobbin (pins without wire terminations).

Varnishing

Dip the transformer in a 2:1 varnish and thinner solution

8 **PFC Inductor (T2) Specifications**

8.1 *Electrical Diagram*

Figure 12 – Inductor Electrical Diagram.

8.2 *Electrical Specifications*

Parameter	Condition	Spec.
Nominal Primary Inductance	Measured at 1 V_{PK-PK} , 100 kHz switching frequency, between pin 9 and pin 6.	680 μH
Tolerance	Tolerance of Primary Inductance.	±5%

8.3 *Material List*

Item	Description
[1]	Core: EE13.
[2]	Bobbin: Bobbin, EE13, Vertical, 10 pins.
[3]	Magnet Wire: #26 AWG.
[4]	Transformer tape: 6.5 mm.
[5]	Transformer tape: 4 mm.

Figure 13 – Inductor Build Diagram.

	construction			
Winding Directions	Bobbin is oriented on winder jig such that terminal pin $1 - 10$ is in the left side. The winding direction is clockwise.			
Winding 1	Prepare the magnetic wire Item [3] for winding. Start at pin 6 and wind 91 turns in 8 layers.			
Insulation	Add 1 layer of tape, Item [4] for every 2 layers of winding 1.			
Winding 1	Finish the winding on pin 9.			
Insulation	Add 2 layers of tape, Item [4] for insulation.			
Core Grinding	Grind the center leg of the ferrite core evenly until it meets the nominal inductance of $680 \ \mu$ H. Inductance is measured across pin 9 and pin 6.			
Assemble Core	Assemble the 2 cores on the bobbin.			
Core Termination Prepare a copper strip with a soldered magnetic wire, Item [3], at the middle as shown in the picture. Apply copper strip at the bottom part of the core and terminate the magnetic wire on pin 1.				
Core Tape	Add 2 layers of tape, Item [5], around the core to fix the 2 cores into the bobbin.			
Pins	Pull out or cut terminal pin no. 2, 3, 4, 5, 7, 8, and pin 10.			
Finish	Dip the transformer assembly in 2:1 varnish and thinner solution.			

8.5 *Inductor Construction*

8.6 *Inductor Winding Illustrations*

Winding Directions

Bobbin is oriented on winder jig such that terminal pin 1 - 10 is in the left side. The winding direction is clockwise.

Winding 1

Prepare the magnetic wire Item [3] for winding. Start at pin 6 and wind 91 turns in 8 layers.

Insulation

Add 1 layer of tape, Item [4] for every 2 layers of winding 1

Winding 1

Finish at pin 9.

Insulation

Add 2 layers of tape, Item [4] for insulation

Core Termination

Prepare a copper strip with a soldered magnetic wire, Item [3], at the middle as shown in the picture. Apply copper strip at the bottom part of the core and terminate the magnetic wire on pin 1.

Core Tape

Add 2 Layers of tape Item [5] around the core to fix the 2 cores into the bobbin.

PINS

Pull out or cut terminal pin no. 2, 3, 4, 5, 7, 8, and pin 10.

Finish

Dip the transformer assembly in 2:1 varnish and thinner solution.

Power Integrations

www.power.com

Tel: +1 408 414 9200 Fax: +1 408 414 9201

9 **Design Spreadsheet**

1	ACDC_Flyback_PF_ LYTSwitch- 6_020318; Rev.1.2; Copyright Power Integrations 2018 Application Variables	INPUT	INFO	ουτρυτ	UNITS	Switched Valley-Fill Single Stage PFC (SVF S^2PFC)
3	VACMIN	180		180	V	Minimum Input AC Voltage
	VACMIN	100		100		Nominal AC Voltage (For universal designs low
4	VACNOM	230		230	V	line nominal voltage is displayed)
5	VACMAX	265		265	V	Maximum Input AC Voltage
6	VACRANGE			HIGH LINE		Input Voltage Range
7	FL	22.0000		50	Hz	Line Frequency
8	CIN	22.0000		22.0000	μF	Minimum Input Capacitance
9 10	V_CIN VO	26.00		450	V V	Input Capacitance Recommended Voltage Rating
10	IO	36.00 0.80		36.00 0.80	A	Output Voltage Output Current
11	PO	0.80		28.80	A W	Total Output Power
12	N	86.00		86.00	VV	Estimated Efficiency
15	Z	00.00		0.50		Loss Allocation Factor
15	Parametric Calculation	ons Basis		0.50		
16	ILIMcalcBASIS	Nom		Nom		ILIM Calculations Basis - NOM, MAX or MIN only
_						Calculated Results Based on Selected VAC -
17	PARcalcBASIS	VACNOM		VACNOM		VACNOM, VACMAX, VACMIN or Worst Case only
18	Primary Controller Se		1			
19	DEVICE_MODE	Standard		Standard		Device Current Limit Mode
20	DEVNAME	LYT6067C		LYT6067C		PI Device Name
21	RDSON			1.82	ohms	Device RDSON at 100degC
22	ILIMITMIN ILIMITTYP			1.348	A	Minimum Current Limit
23 24	ILIMITIYP			1.450 1.552	A	Typical Current Limit Maximum Current Limit
24	BVDSS			650	A V	Drain-Source Breakdown Voltage
25	VDS			2.00	V	On state Drain to Source Voltage
20	VDS			524.77	V	Peak Drain to Source Voltage during Fet turn off
27	Worst Case Electrical	Darameters		JZ7.77	v	Teak Drain to Source Voltage during ret tarn on
29	Boost Converter	T di di licter 5				
30	IBOOSTRMS			219.55	mA	Boost RMS current
31	IBOOSTMAX			722.71	mA	Boost PEAK current
32	IBOOSTAVG			112.60	mA	Boost AVG current
33	IINRMS			133.09	mA	Input RMS current
34	PF_est			0.9889		Estimated Power Factor
35	Flyback Converter					
36	FSMIN	49800		49800	Hz	Minimum Switching Frequency in a Line Period
37	FSMAX			102564.55	Hz	Maximum Switching Frequency in a Line Period
38	KPmin			1.0602		Minimum KP in a Line Period for VAC specified by PARcalcBASIS
39	IFETRMS			331.48	mA	Fet RMS current
40	IFETMAX			1453.95	mA	Fet PEAK current
41	IPRIRMS			0.2766	Α	Primary Winding RMS current
42	IPRIMAX			1.3101	Α	Primary Winding PEAK current
43	IPRIAVG			0.0072	Α	Primary Winding AVG current
44	IPRIMIN			721.71	mA	Primary Winding Minimum current
45	ISECRMS			1.16	A	Secondary RMS current
46	ISECMAX			2.99	Α	Secondary PEAK current
47	Boost Choke Constru	ction Parame	eters			
48	RATIO_LBST_LFB	0.9300		0.9300		Boost Inductance and Flyback Primary Inductance Ratio
49	LBOOSTMIN			643.30	μH	Minimum Boost Inductance
50	LBOOSTNOM			677.16	μH	Nominal Boost Inductance
51	LBOOSTMAX			711.02	μH	Maximum Boost Inductance

	-				
52	LBOOSTTOL	5.00	5.00	%	Boost Inductance Tolerance
53	Boost Core and Bobb	in Selection			
54	CR_TYPE_BOOST	EE13	EE13		Boost Core
55	CR_PN_BOOST		PC40EE13- Z		Boost Core Code
56	AE_BOOST		17.10	mm²	Boost Core Cross Sectional Area
57	LE_BOOST		30.20	mm	Boost Core Magnetic Path Length
58	AL_BOOST		1130.00	nH/turns	Boost Core Ungapped Core Effective Inductance
59	VE_BOOST		517.00	mm3	Boost Core Volume
60	BOBBINID_BOOST		548	111115	Bobbin
61	AW_BOOST		22.20	mm²	Window Area of Bobbin
62	BW_BOOST		7.40		Bobbin Width
63	MARGIN_BOOST		0.00	mm	Safety Margin Width
03	BOBFILLFACTOR_BOO		0.00	mm	
64	st		41.77	%	Boost Bobbin Fill Factor
65	Boost Winding Detai				
66	NBOOST	92.00	92.00		Boost Choke Turns
67	BP_BOOST		3337.11	Gauss	Boost Peak Flux Density
68	ALG_BOOST		80.00	nH/turns 2	Boost Core Ungapped Core Effective Inductance
69	LG_BOOST		0.25	mm	Boost Core Gap Length
70	L_BOOST	4.00	4.00		Number of Boost Layers
71	AWG_BOOST		30.00		Boost Winding Wire AWG
72	OD_BOOST_INSULAT ED		0.30	mm	Boost Winding Wire Output Diameter with Insulation
73	OD_BOOST_BARE		0.26	mm	Boost Winding Wire Output Diameter without Insulation
74	CMA_BOOST		402.49	Circular Mils/A	Boost Winding Wire CMA
75	Flyback Transformer	Construction I	Parameters		
76	VOR		80	v	Secondary Voltage Reflected in the Primary Winding
77	LP_MIN		691.72	μH	Minimum Flyback Inductance
78	LP_NOM		728.13	μH	Nominal Flyback Inductance
79	LP_MAX		764.54	μH	Maximum Flyback Inductance
80	LP_TOL	5.00	5.00	%	Flyback Inductance Tolerance
81	Flyback Core and Bo	bbin Selection			
82	CR_TYPE	PQ20/20	PQ20/20		Flyback Core
83	CR_PN		PQ20/20- 3F3		Flyback Core Code
84	AE		62.60	mm²	Flyback Core Cross Sectional Area
85	LE		45.70	mm	Flyback Core Magnetic Path Length
86	AL		2650.00	nH/turns 2	Flyback Core Ungapped Core Effective Inductance
87	VE		2850.00	mm3	Flyback Core Volume
88	BOBBINID		P-2036		Flyback Bobbin
89	BB_ORIENTATION		Н		Flyback Bobbin Orientation H -Horizontal and V - Vertical
90	AW		36.00	mm²	Flyback Window Area of Bobbin
91	BW	7.00	7.00	mm	Flyback Window Area of Dobbin
92	MARGIN	7.00	0.00	mm	Safety Margin Width
92 93	Flyback Winding Det	ails	0.00		
93 94	NP		49.00		Primary Turns
94	BP	<u> </u>	3959.29	Gauss	Flyback Peak Flux Density
95	BM	<u> </u>	3868.27	Gauss	Flyback Maximum Flux Density
96 97	BAC	├	1554.99		Flyback AC Flux Density
9/	DAL	<u>├</u>	1004.99	Gauss	Flyback AC Flux Density Flyback Core Ungapped Core Effective
98	ALG		303.26	nH/turns 2	Inductance
99	LG		0.23	mm	Flyback Core Gap Length
100	L		2.00		Number of Flyback Layers
101	AWG		30.00		Primary Winding Wire AWG

102 00 0.0 0.3.0 nm Primary Winding Wire Output Diameter with Diameter with Diameter with output Diameter with Diameter with output Diameter with Diameter Without Diameter Without Diameter Without Diameter Without Di							
103Dia1040.2011multationInsulation104CMA323.32 $MigA$ Primary Winding Wire CMA105NB8.00Nas Turns106LEBAS1.00Number of Ptyback Bias Winding Layers107AWGpBias36.00Bias Wire AWG108NS2222Secondary Winding Wire CMA109AWGS26.00Secondary Winding Wire Output Diameter with Insulation111DIAS0.71mmSecondary Winding Wire Output Diameter without Insulation112CMAS215.03Circular MitsJASecondary Winding Wire Output Diameter without Insulation112CMAS215.03Circular MitsJASecondary Winding Wire CMA113Primary Components SelectionMitsJASecondary Winding Wire CMA114Line UndervoltageMitsJASecondary Winding Wire CMA115BROWN, IN, ACTUAL88.0088.00V116RLS2.21MOhmTwo Resistors of this Value in Series to the V-pin to the Value AC RMS line voltage brown-in threshold118Line Overvoltage120VActual AC RMS line over-voltage threshold120VEROVITAGE, LINE369.26VActual AC RMS line over-voltage threshold121VBLAS12.0VRectified Bias Voltage122VERAS22.0VActual AC RMS line over-voltage threshold121VERAS22.0VRectified Bias Voltage122VERAS <td< td=""><td>102</td><td>OD</td><td></td><td></td><td>0.30</td><td>mm</td><td></td></td<>	102	OD			0.30	mm	
104 CMA 323.32 Circular MilyA Primary Winding Wire CMA 105 NB 8.00 Bits Turns Bits Turns 107 AWGpBas 36.00 Bits Wire AWG 108 NS 22 22 109 AWGS 22.60.0 Secondary Winding Wire AWG 110 OOS 0.41 mm Secondary Winding Wire AWG 111 DIAS 0.71 mm Secondary Winding Wire Output Diameter with Insulation 111 DIAS 0.71 mm Secondary Winding Wire Output Diameter with Insulation 112 CMAS 215.03 Circular MilyA Secondary Winding Wire CMA 113 Primary Components Selection 7 mm Secondary Winding Wire CMA 114 Une Undervoltage 7 4.215.03 7 Actual AC RMS Ine voltage brown-in threshold 115 BROWN_IN_REQURE Do 369.25 V Actual AC RMS Ine voltage brown-in threshold 116 Rt Dorevroltage 7 10 N Bits Winding Diode forward Drop 11	103	DIA			0.26	mm	Primary Winding Wire Output Diameter without
105 NB 8.00 Bits Turns 106 L.BLAS 1.00 Number of Pyback Bias Winding Layers 107 AWGpBias 36.00 Bias Wire AWG 108 NK S 22 22 109 AWGS 22.6.00 Secondary Winding Wire AWG 110 ODS 0.41 mm Secondary Winding Wire AWG 111 DIAS 0.71 mm Secondary Winding Wire Output Diameter with Insulation 111 DIAS 0.71 mm Secondary Winding Wire Output Diameter with Insulation 112 CMAS 215.03 Circular Secondary Winding Wire CMA 113 Primary Components Selection Secondary Winding Wire CMA Secondary Winding Wire CMA 114 BROWN_IN_REQUIRE 88.00 V Actual AC RMS line voltage brown-in threshold 115 BROWN_IN_RATURE 88.00 V Actual AC RMS line voltage brown-in threshold 116 Rtb Overvoltage 0 V Actual AC RMS line voltage brown-in threshold 117 BROWIN_IN_ACTUAL 88.53	104	СМА			323.32		Primary Winding Wire CMA
106 LEBAS 1.00 Number of Flyback Bias Winding Layers 107 AWKGDBias 26.00 Bias Wire AWG 108 NKS 22 22 Secondary Winding Wire Output Diameter with Insulation 110 ODS 0.41 mm Secondary Winding Wire Output Diameter with Insulation 111 DIAS 0.71 mm Secondary Winding Wire Output Diameter with Insulation 111 DIAS 0.71 mm Secondary Winding Wire Output Diameter with Insulation 111 DIAS 0.71 mm Secondary Winding Wire Output Diameter with Insulation 111 DIAS 0.71 mm Secondary Winding Wire Output Diameter with Insulation 111 DIAS 0.71 mm Secondary Winding Wire Output Diameter with Insulation 112 CMAS 215.03 Circular Secondary Winding Wire Output Diameter with Insulation 113 DIAe 88.00 88.00 V Actual AC RMS line voltage brown-in threshold 116 Indervoltage 369.26 V Actual AC RMS line voltage threshold	105	NB			8.00		Bias Turns
107 AWGpBias 36.00 Bas Wire AWG 108 NS 22 22 22 109 AWGS 26.00 Secondary Winding Wire Output Diameter with Insulation 111 DIAS 0.71 mm Secondary Winding Wire Output Diameter with Insulation 111 DIAS 0.71 mm Secondary Winding Wire Output Diameter without Insulation 112 CMAS 215.03 Circular Secondary Winding Wire Output Diameter without Insulation 113 Primary Components Selection Mills/A Secondary Winding Wire Output Diameter without Insulation 114 Line Undervoltage 88.00 88.00 V Required AC RMS ine voltage brown-in threshold 116 RLS 2.21 MOhm Two Resistors of this Value in Series to the V-pin 118 RGWW IN, ACTUAL 68.53 V Actual AC RMS brown-in threshold 119 OVERVOLTAGE LINE 369.26 V Actual AC RMS brown-in threshold 120 Bias Voltage 12.0 V Actual AC RMS brown-in threshold 121 VBIAS 12.0 V Actual AC RMS brown-in threshold 122 VF, BIASDIODE 73.19 V Bias Voltage 123 VF, BIASDIODE 73.4 Bi		L_BIAS					
108 NS 22 22 Secondary Yurns 109 AWGS 26.00 Secondary Winding Wire Output Diameter with Insulation 110 ODS 0.41 mm Secondary Winding Wire Output Diameter with Insulation 111 DIAS 0.71 mm Secondary Winding Wire Output Diameter with Insulation 111 DIAS 215.03 Circular Mils/A Secondary Winding Wire CMA 113 Primary Components Selection Secondary Winding Wire Output Diameter with Insulation Secondary Winding Wire Output Diameter with Insulation 113 Brite Undervoltage Secondary Winding Wire CMA Secondary Winding Wire CMA 114 BROWN_IN_ACUIAL 88.53 V Actual AC RMS line voltage brown-in threshold 115 BROWN_IN_ACUIAL 88.53 V Actual AC RMS line over-voltage threshold 120 Bias Voltage 20.0 V Restrifted Bias Voltage 121 WBAS Voltage 21.0 V Restrifted Bias Voltage 122 VF BIASDIODE 0.47 µE Bias Winding restriftacion capacitor 122							
109 AWGS 26.00 Secondary Winding Wire Output Diameter with Insulation 111 DIAS 0.71 mm 112 CMAS 215.03 Circular Mils/A 113 Primary Components Selection Secondary Winding Wire Output Diameter without Insulation 113 Primary Components Selection Secondary Winding Wire CMA 114 Line Undervoltage Secondary Winding Wire CMA 115 BROWN IN REQUIRE 88.00 88.00 V 116 RLS 2.21 Mohm Two Resistors of this Value in Series to the V-pin Actual AC RMS brown-in threshold 118 Une Overvoltage			22				
110 ODS 0.41 mm Secondary Winding Wre Output Diameter with Insulation 111 DIAS 0.71 mm Secondary Winding Wre Output Diameter without Insulation 112 CMAS 215.03 Circular Mits/A Secondary Winding Wre Output Diameter without Insulation 113 Primary Components Selecton 11.0 Circular Mits/A Secondary Winding Wre CMA 114 Line Undervoltage 11.0 Secondary Winding Wre CMA 115 BROWN, IN, RCTUAL 88.00 88.00 V Required AC RMS Ine voltage brown-in threshold 116 RLS 88.00 2.21 MOhm Two Resistors of this Value in Series to the V-pin Actual AC RMS Ine over-voltage threshold 117 BROWN, IN, ACTUAL 369.26 V Actual AC RMS Ine over-voltage threshold 118 Line Overvoltage 369.26 V Actual AC RMS Ine over-voltage threshold 118 Dire Overvoltage 369.26 V Actual AC RMS Ine over-voltage threshold 128 Value Overvoltage 369.26 V Actual AC RMS Ine overvoltage threshold 128 Value Overvoltage 12.0 V Bestification Capacitor 129 Value N 0.070 V Bis diode reveres voltage 124 CBPS		-					
111 DLAS 0.71 mm Secondary Winding Wire Output Diameter Without Insulation 112 CMAS 215.03 Circular Milks/A Secondary Winding Wire CMA 113 Primary Components Selection Excondary Winding Wire CMA Secondary Winding Wire CMA 114 Line Undervoltage Excondary Winding Wire CMA Secondary Winding Wire CMA 115 RROWN, IM_SEQUIRE D 88.00 88.00 V Required AC RMS line voltage brown-in threshold 116 RLS 2.21 MOhm Two Resistors of this Value in Series to the V-pin 117 DROWN, IM_ACTUAL 88.53 V Actual AC RMS brown-in threshold 118 Line Overvoltage 9 VIII ASIAS V Actual AC RMS line over-voltage threshold 120 WERN Exposition 7.319 V Restified Bias Voltage V 121 VBLS 2.0 µF Bias Winding Dickfication capacitor Exposition capacitor 122 VF. BLASDIODE 7.319 V Basition capacitor NRN 123 NRRM, BIASDIODE 7.319						mm	Secondary Winding Wire Output Diameter with
112 CMAS 215.03 Circular Mils/A Secondary Winding Wire CMA 113 Primary Components Selection Inte Undervoltage Required AC RMS line voltage brown-in threshold 116 RLS 2.21 MOhm Two Resistors of this Value in Series to the V-pin 117 BROWN_IN_ACTUAL 88.53 V Actual AC RMS line voltage brown-in threshold 118 Line Overvoltage 369.26 V Actual AC RMS line over-voltage threshold 118 DivervoltAGE LINE 369.26 V Actual AC RMS line over-voltage threshold 120 Bias Voltage 0.70 V Bias Winding police Forward Drop 121 VBIAS 0.73 V Bias Winding police Forward Drop 121 VBIAS 2.2.0 µF Bias Winding police Forward Drop 123 VRRM_BIASDIODE 73.19 V Bias winding restlication capacitor 123 VRRM_BIASDIODE 73.19 V Bias winding restlication capacitor 124 CBIAS 22.00 V Zener 1 Voltage Rating (In Series with Zener 2) 128 VZI_V 0.80 W Zener 1 Voltage Rating (In	111	DIAS			0.71	mm	Secondary Winding Wire Output Diameter
113 Primary Components Selection 114 Line Undervoltage 115 BROWN_IN_REQUIRE 88.00 88.00 V Required AC RMS line voltage brown-in threshold 116 RLS 2.21 MOhm Two Resistors of this Value in Series to the V-pin 117 BROWN_IN_ACTUAL 88.53 V Actual AC RMS brown-in threshold 118 Line Overvoltage	112	CMAS			215.03		
111 Line Underworkage 115 BROWN_IN_REQUIRE BROWN_IN_ACTUAL 88.00 V Required AC RMS line voltage brown-in threshold 116 RLS 2.21 MOhm Two Resistors of this Value in Series to the V-pin 117 BROWN_IN_ACTUAL 88.53 V Actual AC RMS brown-in threshold 119 OVERVOLTAGE LINE 359.26 V Actual AC RMS line over-voltage threshold 120 Bias Voltage 12.0 V Restified Bias Voltage 12.0 121 VBIAS 12.0 V Bias Winding Diode Forward Drop 122 VF, BIASDIODE 0.70 V Bias Winding Diode Forward Drop 122 VF, BIASDIODE 0.71 µF Bias winding restification capacitor 124 CBIAS 2.2.0 µF Bias winding restification capacitor 125 CBRP 0.47 µF Bias Winding Diode Forward Drop 127 Use Clamp Yes Yes Bulk Capacitor Clamp Needed? Yes, No on N/A 126 Bulk Capacitor Zener Clamp Perin Votage Rating (In Series wit	113	Primary Components	Selection				
BROWN_IN_REQUIRE BROWN_IN_ACTUAL 88.00 V Required AC RMS line voltage brown-in threshold 116 RLS 2.21 MOhm Two Resistors of this Value in Series to the V-pin 117 BROWN_IN_ACTUAL 88.53 V Actual AC RMS brown-in threshold 118 Line Overvoltage							
113 D 05.00 08.00 V Require Voltage Jown-In threshold 116 RLS 2.21 MOhm Two Resistors of this Value in Series to the V-pin 117 BROWN_IN_ACTUAL 88.53 V Actual AC RMS brown-in threshold 118 Line Overvoltage 90 VEXPOLTAGE LINE 369.26 V Actual AC RMS brown-in threshold 120 Bias Voltage 0.70 V Rectified Bias Voltage 121 121 VBLAS 0.70 V Bias winding Diode Forward Drop 138 122 VF BIASDIODE 0.71 µF Bias winding rectification capacitor 125 123 VRRM_BIASDIODE 73.19 V Bias dolt reverse voltage 126 124 CBIAS 22.0 µF Bias winding rectification capacitor 127 124 CBIAS 22.0 µF Bias winding Conterverse voltage 127 125 CBP 0.47 µF BPP pin capacitor 128 125 CBP 0.47 <td< td=""><td></td><td></td><td>00.00</td><td></td><td>00.00</td><td></td><td></td></td<>			00.00		00.00		
116 RLS 2.21 MOhm Two Resistors of this Value in Series to the V-pin 117 BROWN_IN_ACTUAL 88.53 V Actual AC RMS brown-in threshold 118 Line Overvoltage 369.26 V Actual AC RMS brown-in threshold 120 Bias Voltage 369.26 V Actual AC RMS line over-voltage threshold 121 VBAS 12.0 V Rectified Bias Voltage 122 VF_BIASDIODE 0.70 V Bias diode reverse voltage 123 VRRM BIASDIODE 73.19 V Bias diode reverse voltage 124 CBIAS 22.0 μF Bias winding proteine compactor 125 CBPP 0.47 μF Bias winding proteine compactor 128 VZI, V 200.00 V Zener 1 Voltage Rating (In Series with Zener 2) 129 P21_W 0.80 W Zener 1 Voltage Rating (In Series with Zener 2) 130 VZ2_V 200.00 V Zener 1 Voltage Rating (In Series with Zener 2) 131 P22_W 0.80 W <td>115</td> <td>_</td> <td>88.00</td> <td></td> <td>88.00</td> <td>V</td> <td>Required AC KIMS line voltage brown-in threshold</td>	115	_	88.00		88.00	V	Required AC KIMS line voltage brown-in threshold
117 BROWN, IN_ACTUAL 88.53 V Actual AC RMS brown-in threshold 118 Line Overworkage 369.26 V Actual AC RMS line over-voltage threshold 120 Bias Voltage 73.19 V Betriffed Bias Voltage 121 VBAS 12.0 V Bias Winding Diode Forward Drop 123 VRM_BIASDIODE 73.19 V Bias Winding Diode Forward Drop 124 CBAS 22.0 µF Bias winding rectification capacitor 125 CBPP 0.47 µF BPP pin capacitor 126 Bulk Capacitor Zamer Clamp Yes Yes Secondary Component Selection 137 VZ_V 0.80 W Zener 1 Minimum Power Rating 130 VZ2_V 0.80 W Zener 2 Voltage Rating 131 PZ2_W 0.80 W Zener 1 Minimum Power Rating 132 RZ 4700.00 NW Zener 1 Voltage Rating 132 RZ 4700.00 NM Zener 1 Minimum Power Rating 132 RZ 2.0 0.80 W Zener 1 Voltage Rating </td <td>116</td> <td></td> <td></td> <td></td> <td>2.21</td> <td>MOhm</td> <td>Two Resistors of this Value in Series to the V-pin</td>	116				2.21	MOhm	Two Resistors of this Value in Series to the V-pin
118Line Overwoltage119OVERVOLTAGE_LINE369.26VActual AC RMS line over-voltage threshold120Bias Voltage12.0VRectified Bias Voltage121VBJAS12.0VBias Winding Diode Forward Drop122VF BIASDIODE0.70VBias Winding Diode Forward Drop123VRRM BIASDIODE73.19VBias diode reverse voltage124CBJAS22.0µFBias diode reverse voltage125CBPP0.47µFBias diode reverse voltage126Bulk Capacitor Zener ClampV2.V200.00V127Use ClampYesYesBulk Capacitor Clamp Needed? Yes, No or N/A128VZ1_V200.00VZener 1 Winium Power Rating130VZ2_V0.80WZener 2 Voltage Rating (In Series with Zener 2)129P21_W0.80WZener 2 Voltage Rating131P22_W0.80WZener 2 Minimum Power Rating132RZ102.00kOhmUpper feedback 1% resistor133Secondary Components Selection33.0 ρ FLower feedback 1% resistor135RFB_LOWER33.00 ρ FLower feedback 1% resistor136RFB_LOWER330.0 ρ FLower feedback 1% resistor137CFB_LOWER330.0 ρ FInternet redeback 1% resistor138CBPS2.2.2µFBPS pin capacitor139Secondary Auxiliary Section - For VO > 24V ONLY <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
119 OVERVOLTAGE_LINE 369.26 V Actual AC RMS line over-voltage threshold 120 Bias Voltage						· ·	
120Bias Voltage121VBIAS12.0VRectified Bias Voltage122VF, BIASDIODE0.70VBias Winding Diode Forward Drop123VRM, BIASDIODE73.19VBias winding rectification capacitor124CBIAS22.0 μ FBias winding rectification capacitor125CBPP0.47 μ FBias winding rectification capacitor126Bulk Capacitor Zener Clamp ν FBulk Capacitor Clamp Needed? Yes, No or N/A127Use_ClampYesYesBulk Capacitor Clamp Needed? Yes, No or N/A128V21_V200.00VZener 1 Voltage Rating (In Series with Zener 2)130V22_V200.00VZener 2 Voltage Rating131PZ2_W0.80WZener 2 Vinimum Power Rating133Secondary Components Selection330.0VZener 2 Minimum Power Rating134Feedback Components330.0pFLower feedback 1% resistor135RFB_LOWER330.0pFLower feedback 1% resistor138CBPS2.2 μ FBPS pin capacitor139Secondary Auxiliary Section - For VO > 24V ONLYAuxiliary winding diode forward drop141VAUX10.0010.00VRectified auxiliary voltage142VF_AUX0.70VAuxiliary winding Layers143VRM_AUXDIODE65.54VAuxiliary winding Layers144CAUX1.00Number of Flyback Aux Winding Layers145					369.26	V	Actual AC RMS line over-voltage threshold
121VBIAS12.0VRectified Bias Voltage122VF, BIASDIODE0.70VBias Winding Diode Forward Drop123VRM_BIASDIODE73.19VBias diode reverse voltage124CBIAS22.0 μ FBias winding rectification capacitor125CBPP0.47 μ FBip capacitor Clamp Needed? Yes, No or N/A126Bulk Capacitor Zener ClampVesBulk Capacitor Clamp Needed? Yes, No or N/A127Use_ClampYesYesBulk Capacitor Clamp Needed? Yes, No or N/A128VZL_V200.00VZener 1 Winimum Power Rating130VZ2_V0.80WZener 2 Voltage Rating (In Series with Zener 2)131PZ2_W0.80WZener 2 Voltage Rating132RZ4700.00ohmsResistor in series with Zener 1 and Zener 2133Secondary Components SelectionFeedback Components134Feedback Components3.70KOhm135RFB_LOWER3.70pF136RFB_LOWER2.2 μ F137CFB_LOWER2.2 μ F138CBPS2.2 μ F140Secondary Auxiliary Section - For VO > 24V ONLY141VAUX10.0010.00V143VRM_AUXDIODE65.54V144CAUX2.00 μ F145Nutli Sec7.00Secondary Aux Winding Auxiliary winding diode forward drop143VRM_AUXDIODE65.54V <t< td=""><td></td><td></td><td></td><td>1</td><td>505120</td><td></td><td>Neturi Ne ra lo line over voltage an conola</td></t<>				1	505120		Neturi Ne ra lo line over voltage an conola
122 VF_BIASDIODE 0.70 V Bias Winding Diode Forward Drop 123 VRRM_BIASDIODE 73.19 V Bias winding rectification capacitor 124 CBIAS 22.0 µF Bias winding rectification capacitor 125 CBPP 0.47 µF Bias winding rectification capacitor 126 Bulk Capacitor Zener Clamp 0.47 µF Bias Winding Diode Forward Drop 127 Use_Clamp Yes Yes Bulk Capacitor Clamp Needed? Yes, No or N/A 128 VZ1 V 0.80 W Zener 1 Voltage Rating (In Series with Zener 2) 129 PZ1 W 0.80 W Zener 1 Voltage Rating 130 V22 V 200.00 V Zener 2 Voltage Rating 131 PZ2 W 0.80 W Zener 2 Voltage Rating 131 PZ2 W 0.80 W Zener 2 Voltage Rating 132 RZ 4700.00 ohms Resistor in series with Zener 1 and Zener 2 133 Secondary Components Selection Selection Westor <					12.0	V	Rectified Bias Voltage
123VRM_BIASDIODE73.19VBias diode reverse voltage124CBIAS22.0 μ FBias winding rectification capacitor125CBPP0.47 μ FBPP pin capacitor126Bulk Capacitor Zener Clamp 0.47 μ FBulk Capacitor Clamp Needed? Yes, No or N/A127Use_ClampYesYesBulk Capacitor Clamp Needed? Yes, No or N/A128V21_V200.00VZener 1 Voltage Rating (In Series with Zener 2)129P21_W0.80WZener 2 Voltage Rating130V22_V0.80WZener 2 Voltage Rating131P22_W0.80WZener 2 Voltage Rating132RZ4700.00ohmsResistor in series with Zener 1 and Zener 2133Secondary Components Selection102.00kOhmUpper feedback 1% resistor134Feedback Components3.70kOhmLower feedback 1% resistor135RFB_LOWER3.70kOhmLower feedback 1% resistor136RFB_LOWER2.2 μ FBPS pin capacitor137CFB_LOWER2.2 μ FBPS pin capacitor138CBPS0.70VAuxiliary winding idode forward drop141VAUX10.0010.00VAuxiliary winding idode forward drop143VF_AUX0.70VAuxiliary winding rectification capacitor144CAUX22.00 μ FAuxiliary winding idode forward drop145VAUX0.70V </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
124CBIAS22.0 μ FBias winding rectification capacitor125CBPP0.47 μ FBias winding rectification capacitor126Bulk Capacitor Zener ClampvesYesPres127Use_ClampYesYesBulk Capacitor Clamp Needed? Yes, No or N/A128VZ1_V200.00VZener 1 Voltage Rating (In Series with Zener 2)129PZ1_W0.80WZener 1 Wnimum Power Rating130VZ2_V200.00VZener 2 Voltage Rating131PZ2_W0.80WZener 2 Minimum Power Rating132RZ4700.00ohmsResistor in series with Zener 1 and Zener 2133Secondary Components Selection4700.00ohmsResistor in series with Zener 1 and Zener 2134Feedback Components102.00kOhmUpper feedback 1% resistor135RFB_LOWER3.70kOhmLower feedback 1% resistor136RFB_LOWER330.0pFLower feedback resistor decoupling at least 5V-rating capacitor138CBPS2.2 μ FBPS pin capacitor139Secondary Auxiliary Section - For VO > 24V ONLYLower feedback resistor drop141VAUX10.0010.00VAcuiliary winding cide forward drop142VF_AUX0.70VAuxiliary winding cide forward drop143VRM10.00LOWSecondary Auxiliary Gloge reverse voltage144CAUX2.20.0 μ FAuxiliary winding cidefication c		VRRM BIASDIODE					
125CBPP0.47 μ FBPP pin capacitor126Bulk Capacitor Zener ClampYesYesBulk Capacitor Clamp Needed? Yes, No or N/A127Use, ClampYesYesSubk Capacitor Clamp Needed? Yes, No or N/A128VZ1_V200.00VZener 1 Voltage Rating (In Series with Zener 2)129PZ1_W0.80WZener 1 Voltage Rating130VZ2_V200.00VZener 2 Voltage Rating131PZ2_W0.80WZener 2 Voltage Rating133Secondary Components SelectionResistor in series with Zener 1 and Zener 2134Feedback Components102.00kOhmUpper feedback 1% resistor135RFB_UPPER102.00kOhmLower feedback 1% resistor136RFB_LOWER3.70kOhmLower feedback 1% resistor137CFB_LOWER2.2 μ FBPS pin capacitor138CBPS2.2 μ FBPS pin capacitor139Secondary Auxiliary Section - For VO > 24V ONLYEvent Secondary Auxiliary voltage141VAUX10.0010.00VAuxiliary winding diode forward drop143VF AUX0.70VAuxiliary winding rectification capacitor144CAUX10.0010.00Number of Flyback Aux Winding Layers144CAUX38Secondary Aux Winding Carent144Output Parameters100Number of Flyback Aux Winding Layers147NAUX_SEC7.00Secondary Aux Winding MGG <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>						-	
126 Bulk Capacitor Zener Clamp Yes Yes Yes Bulk Capacitor Clamp Needed? Yes, No or N/A 128 V21_V 200.00 V Zener 1 Voltage Rating (In Series with Zener 2) 129 P21_W 0.80 W Zener 1 Minimum Power Rating 130 V22_V 200.00 V Zener 1 Voltage Rating 131 P22_W 0.80 W Zener 2 Voltage Rating 132 RZ 0.80 W Zener 2 Voltage Rating 133 Secondary Components Selection 4700.00 ohms Resistor in series with Zener 1 and Zener 2 133 RFB_UPPER 102.00 kOhm Upper feedback 1% resistor 136 RFB_LOWER 3.70 kOhm Lower feedback 1% resistor 138 CBPS 2.2 μF BPS pin capacitor 138 CBPS 2.2 μF BPS pin capacitor 138 CBPS 2.2 μF BPS pin capacitor 139 Secondary Auxiliary Section - For VO > 24V ONLY 4uxiliary winding diode forward drop							
127 Use_Clamp Yes Yes Bulk Capacitor Clamp Needed? Yes, No or N/A 128 V21_V 0.80 V Zener 1 Voltage Rating (In Series with Zener 2) 129 P21_W 0.80 W Zener 1 Voltage Rating 130 V22_V 0.80 W Zener 2 Voltage Rating 131 P22_W 0.80 W Zener 2 Voltage Rating 132 RZ 4700.00 ohms Resistor in series with Zener 1 and Zener 2 133 Secondary Components Selection 4700.00 ohms Resistor in series with Zener 1 and Zener 2 134 Feedback Components 102.00 kOhm Upper feedback 1% resistor 135 RFB_LOWER 3.70 kOhm Lower feedback resistor decoupling at least 5V-rating capacitor 136 RPS_LOWER 2.2 μF BPS pin capacitor 137 CFB_LOWER 2.2 μF BPS pin capacitor 138 Secondary Auxiliary Section - For VO > 24V ONLY 40.00 V Auxiliary winding diode forward drop 141 VAUX <t< td=""><td></td><td></td><td>Clamn</td><td></td><td>0.17</td><td>pi</td><td></td></t<>			Clamn		0.17	pi	
128VZ1_V200.00VZener 1 Voltage Rating (In Series with Zener 2)129PZ1_W0.80WZener 1 Voltage Rating (In Series with Zener 2)130VZ2_V200.00VZener 2 Voltage Rating131PZ2_W0.80WZener 2 Voltage Rating132RZ4700.00ohmsResistor in series with Zener 1 and Zener 2133Secondary Components Selection134Feedback Components135RFB_UPPER102.00kOhmUpper feedback 1% resistor136RFB_LOWER3.70KOhmLower feedback resistor decoupling at least 5V- rating capacitor137CFB_LOWER2.2 μ FBPS pin capacitor138CBPS2.2 μ FBPS pin capacitor139Secondary Auxiliary Section - For VO > 24V ONLY141VAUX10.0010.00VAuxiliary violtage142VF_AUX0.70VAuxiliary winding diode forward drop143VARM_AUXDIODE65.54VAuxiliary winding rectification capacitor144CAUX22.00 μ FAuxiliary winding rectification capacitor145NAUX_SEC7.00Secondary Aux Winding Layers144CAUX38Secondary Aux Winding Layers145NAUX_SEC7.00Secondary Aux Winding Layers146L_AUX38.00V147AWGSAUX38150IOUT_ACTUAL0.80<		Use Clamp			Yes	[Bulk Canacitor Clamp Needed? Yes, No. or N/A
129 PZ1_W 0.80 W Zener 1 Minimum Power Rating 130 VZ2_V 200.00 V Zener 2 Voltage Rating 131 PZ2_W 0.80 W Zener 2 Minimum Power Rating 132 RZ 4700.00 ohms Resistor in series with Zener 1 and Zener 2 133 Secondary Components Selection Resistor in series with Zener 1 and Zener 2 134 Feedback Components Resistor Intervention 135 RFB_UPPER 102.00 kOhm Upper feedback 1% resistor 136 RFB_LOWER 3.70 kOhm Lower feedback 1% resistor 137 CFB_LOWER 330.0 pF Lower feedback resistor decoupling at least 5V-rating capacitor 138 CBPS 2.2 μF BPS pin capacitor 139 Secondary Auxiliary Section - For VO > 24V ONLY Lower feedback resistor decoupling at least 5V-rating capacitor 140 Sec Aux Diode 22.00 μF BPS pin capacitor 141 VAUX 10.00 100.00 V Auxiliary winding dode forward drop 143 VRM_AUXDIODE 65.54 V <t< td=""><td></td><td></td><td>105</td><td></td><td></td><td>V</td><td></td></t<>			105			V	
130 VZ2_V 200.00 V Zener 2 Voltage Rating 131 PZ2_W 0.80 W Zener 2 Minimum Power Rating 132 RZ 4700.00 ohms Resistor in series with Zener 1 and Zener 2 133 Secondary Components Selection Resistor in series with Zener 1 and Zener 2 134 Feedback Components Normal Secondary Components 135 RFB_UPPER 102.00 kOhm Upper feedback 1% resistor 136 RFB_LOWER 3.70 kOhm Lower feedback 1% resistor 137 CFB_LOWER 330.0 pF Lower feedback resistor decoupling at least 5V-rating capacitor 138 CBPS 2.2 μF BPS pin capacitor 140 Sec Aux Diode 141 VAUX 10.00 10.00 V Acutiliary voltage 142 VF_AUX 0.70 V Auxiliary dinding rectification capacitor 143 VRRM_AUXDIODE 65.54 V Auxiliary winding diode forward drop						-	
131 PZ2_W 0.80 W Zener 2 Minimum Power Rating 132 RZ 4700.00 ohms Resistor in series with Zener 1 and Zener 2 133 Secondary Components Selection Resistor in series with Zener 1 and Zener 2 134 Feedback Components Feedback Components 135 RFB_UPPER 102.00 kOhm Upper feedback 1% resistor 136 RFB_LOWER 37.0 kOhm Lower feedback 1% resistor 137 CFB_LOWER 330.0 pF Lower feedback resistor decoupling at least 5V-rating capacitor 138 CBPS 2.2 μF BPS pin capacitor 139 Secondary Auxiliary Section - For V > 24V ONLY 10.00 V Rectified auxiliary voltage 141 VAUX 10.00 10.00 V Auxiliary winding diode forward drop 143 VRRM_AUXDIODE 65.54 V Auxiliary diode reverse voltage 144 CAUX 22.00 µF Auxiliary diode reverse voltage 144 CAUX 38 Secondary Aux Winding Layers <							
132 RZ 4700.00 ohms Resistor in series with Zener 1 and Zener 2 133 Secondary Components Selection							
133Secondary Components Selection134Feedback Components135RFB_UPPER102.00kOhmUpper feedback 1% resistor136RFB_LOWER3.70kOhmLower feedback 1% resistor137CFB_LOWER330.0 pF Lower feedback resistor decoupling at least 5V-rating capacitor138CBPS2.2 μ FBPS pin capacitor139Secondary Auxiliary Section - For VO > 24V ONLYBPS pin capacitor140Sec Aux Diode10.0010.00V141VAUX10.0010.00V143VRRM_AUXDIODE65.54V144CAUX22.00 μ F145NAUX_SEC7.00Secondary Aux Winding Layers146L_AUX1.00Number of Flyback Aux Winding Layers147AWGSAUX38Secondary Aux Winding AWG148Output Parameters38.00V149VOUT_ACTUAL36.00V150IOUT_ACTUAL0.80A151ISECRMS1.16A152VF0.70V153VF0.70154VRM0.70V154VRM0.70							
134Feedback Components135RFB_UPPER102.00kOhmUpper feedback 1% resistor136RFB_LOWER3.70kOhmLower feedback 1% resistor137CFB_LOWER330.0 pF Lower feedback resistor decoupling at least 5V-rating capacitor138CBPS2.2 μF BPS pin capacitor139Secondary Auxiliary Section - For VO > 24V ONLYUser feedback resistor decoupling at least 5V-rating capacitor140Sec Aux Diode0.70V141VAUX10.0010.00V142VF_AUX0.70V143VRRM_AUXDIODE65.54V144CAUX22.00 μF 145NAUX_SEC7.00Secondary Aux Turns146L_AUX1.00Number of Flyback Aux Winding Layers147AWGSAUX38Secondary Aux Winding AWG148Output Parameters1.16A149VOUT_ACTUAL0.80A150IOUT_ACTUAL0.70V151ISECRMS1.16A152Output Components1.16154VRM0.70V153VF0.70V154VRRM0.70V			nts Selection		17 00.00	onns	Resistor in series with zerier 1 dru zerier z
135RFB_UPPER102.00kOhmUpper feedback 1% resistor136RFB_LOWER 3.70 kOhmLower feedback 1% resistor137CFB_LOWER 330.0 pF Lower feedback resistor decoupling at least 5V-rating capacitor138CBPS 2.2 μ FBPS pin capacitor139Secondary Auxiliary Section - For VO > 24V ONLYBPS pin capacitor140Sec Aux Diode 0.70 VRectified auxiliary voltage141VAUX10.0010.00VRectified auxiliary woltage142VF_AUX 0.70 VAuxiliary winding diode forward drop143VRRM_AUXDIODE65.54VAuxiliary diode reverse voltage144CAUX22.00 μ FAuxiliary winding rectification capacitor145NAUX_SEC7.00Secondary Aux Turns146L_AUX1.00Number of Flyback Aux Winding Layers147AWGSAUX38Secondary Aux Uinding AWG148Output Parameters1.16A150IOUT_ACTUAL0.80A151ISECRMS1.16A152Output Components1.16154VRM0.70V154VRM204.26154VOutput diode forward drop							
136RFB_LOWER3.70kOhmLower feedback 1% resistor137CFB_LOWER330.0 pF Lower feedback resistor decoupling at least 5V-rating capacitor138CBPS2.2 μF BPS pin capacitor139Secondary Auxiliary Section - For VO > 24V ONLYBPS pin capacitor140Sec Aux Diode10.00VRectified auxiliary voltage141VAUX10.0010.00VAuxiliary winding diode forward drop143VRRM_AUXDIODE65.54VAuxiliary diode reverse voltage144CAUX22.00 μF Auxiliary diode reverse voltage145NAUX_SEC7.00Secondary Aux Winding Layers146L_AUX10.00Number of Flyback Aux Winding Layers147AWGSAUX38Secondary Aux Winding AWG148Output Parameters1.16A Secondary RMS current150IOUT_ACTUAL0.80AActual Output Voltage151ISECMS1.16A Secondary RMS current for output152Output Components1.20VOutput diode forward drop153VF0.70VOutput diode forward drop154VRM204.26VOutput diode forward drop					102.00	kOhm	Upper feedback 1% resistor
137CFB_LOWER330.0pFLower feedback resistor decoupling at least 5V-rating capacitor138CBPS2.2µFBPS pin capacitor139Secondary Auxiliary Section - For VO > 24V ONLY140Sec Aux Diode141VAUX10.0010.00VRectified auxiliary voltage142VF_AUX0.70VAuxiliary winding diode forward drop143VRRM_AUXDIODE65.54VAuxiliary diode reverse voltage144CAUX22.00µFAuxiliary winding rectification capacitor145NAUX_SEC7.00Secondary Aux Turns146L_AUX10.00Number of Flyback Aux Winding Layers147AWGSAUX38Secondary Aux Winding AWG148Output Parameters0.80A149VOUT_ACTUAL0.80A150IOUT_ACTUAL0.80A151ISECRMS1.16A152Output Components1.16153VF0.70V154VRM204.26							
138CBPS2.2 μ FBPS pin capacitor139Secondary Auxiliary Section - For VO > 24V ONLY140Sec Aux Diode141VAUX10.0010.00VRectified auxiliary voltage142VF_AUX0.70VAuxiliary winding diode forward drop143VRRM_AUXDIODE65.54VAuxiliary winding rectification capacitor144CAUX22.00 μ FAuxiliary winding rectification capacitor145NAUX_SEC7.00Secondary Aux Turns146L_AUX10.00Number of Flyback Aux Winding Layers147AWGSAUX38Secondary Aux Winding AWG148Output Parameters94.00N149VOUT_ACTUAL0.80A151ISECRMS11.16A152Output Components11.16153VF0.70V154VRM0.70V155VR0.70V							Lower feedback resistor decoupling at least 5V-
139Secondary Auxiliary Section - For VO > 24V ONLY140Sec Aux Diode141VAUX10.0010.00VRectified auxiliary voltage142VF_AUX0.70VAuxiliary winding diode forward drop143VRRM_AUXDIODE65.54VAuxiliary winding rectification capacitor144CAUX22.00 μ FAuxiliary winding rectification capacitor145NAUX_SEC7.00Secondary Aux Turns146L_AUX1.00Number of Flyback Aux Winding Layers147AWGSAUX38Secondary Aux Winding AWG148Output Parameters36.00V149VOUT_ACTUAL0.80A150IOUT_ACTUAL0.80A151ISECRMS1.16A152Output Components1.16153VF0.70V154VRM204.26V154VRM204.26V	138	CBPS			2.2	uЕ	
140Sec Aux Diode141VAUX10.0010.00VRectified auxiliary voltage142VF_AUX0.70VAuxiliary winding diode forward drop143VRM_AUXDIODE65.54VAuxiliary winding rectification capacitor144CAUX22.00µFAuxiliary winding rectification capacitor145NAUX_SEC7.00Secondary Aux Turns146L_AUX1.00Number of Flyback Aux Winding Layers147AWGSAUX38Secondary Aux Winding AWG148Output Parameters1.00V150IOUT_ACTUAL36.00V151ISECRMS1.16A152Output Components1.16153VF0.70V154VRM204.26154VRRM204.26			Section - For \	VO > 24V		ЦЦ	
141VAUX10.0010.00VRectified auxiliary voltage142VF_AUX0.70VAuxiliary winding diode forward drop143VRRM_AUXDIODE65.54VAuxiliary diode reverse voltage144CAUX22.00μFAuxiliary winding rectification capacitor145NAUX_SEC7.00Secondary Aux Turns146L_AUX1.00Number of Flyback Aux Winding Layers147AWGSAUX38Secondary Aux Winding AWG148Output Parameters36.00V149VOUT_ACTUAL0.80A150IOUT_ACTUAL0.80A151ISECRMS1.16A152Output Components0.70V153VF0.70VOutput diode forward drop154VRRM204.26VOutput diode reverse voltage					51121		
142VF_AUX0.70VAuxiliary winding diode forward drop143VRRM_AUXDIODE65.54VAuxiliary diode reverse voltage144CAUX22.00μFAuxiliary winding rectification capacitor145NAUX_SEC7.00Secondary Aux Turns146L_AUX1.00Number of Flyback Aux Winding Layers147AWGSAUX38Secondary Aux Winding AWG148Output Parameters36.00V149VOUT_ACTUAL36.00V150IOUT_ACTUAL0.80A151ISECRMS1.16A152Output Components0.70V153VF0.70VOutput diode forward drop154VRRM204.26VOutput diode reverse voltage			10.00	-	10.00	V	Rectified auxiliary voltage
143VRRM_AUXDIODE65.54VAuxiliary diode reverse voltage144CAUX22.00μFAuxiliary winding rectification capacitor145NAUX_SEC7.00Secondary Aux Turns146L_AUX1.00Number of Flyback Aux Winding Layers147AWGSAUX38Secondary Aux Winding AWG148Output Parameters149VOUT_ACTUAL36.00V150IOUT_ACTUAL0.80A151ISECRMS1.16A152Output Components153VF0.70VOutput diode forward drop154VRRM204.26VOutput diode reverse voltage			10.00			-	
144CAUX22.00μFAuxiliary winding rectification capacitor145NAUX_SEC7.00Secondary Aux Turns146L_AUX1.00Number of Flyback Aux Winding Layers147AWGSAUX38Secondary Aux Winding AWG148Output Parameters38Secondary Aux Winding AWG149VOUT_ACTUAL36.00VActual Output Voltage150IOUT_ACTUAL0.80AActual Output Current151ISECRMS1.16ASecondary RMS current for output152Output Components0.70VOutput diode forward drop153VF0.70VOutput diode reverse voltage							
145NAUX_SEC7.00Secondary Aux Turns146L_AUX1.00Number of Flyback Aux Winding Layers147AWGSAUX38Secondary Aux Winding AWG148Output Parameters149VOUT_ACTUAL36.00V150IOUT_ACTUAL0.80A151ISECRMS1.16A152Output Components153VF0.70V154VRM204.26V							
146L_AUX1.00Number of Flyback Aux Winding Layers147AWGSAUX38Secondary Aux Winding AWG148Output Parameters149VOUT_ACTUAL36.00V150IOUT_ACTUAL0.80A151ISECRMS1.16A152Output Components153VF0.70V154VRRM204.26V						μ	
147 AWGSAUX 38 Secondary Aux Winding AWG 148 Output Parameters 149 VOUT_ACTUAL 36.00 V Actual Output Voltage 150 IOUT_ACTUAL 0.80 A Actual Output Current 151 ISECRMS 1.16 A Secondary RMS current for output 152 Output Components 0.70 V Output diode forward drop 153 VF 0.70 V Output diode reverse voltage 154 VRRM 204.26 V Output diode reverse voltage							
148 Output Parameters 149 VOUT_ACTUAL 36.00 V Actual Output Voltage 150 IOUT_ACTUAL 0.80 A Actual Output Current 151 ISECRMS 1.16 A Secondary RMS current for output 152 Output Components 0.70 V Output diode forward drop 153 VF 0.70 V Output diode reverse voltage							
149 VOUT_ACTUAL 36.00 V Actual Output Voltage 150 IOUT_ACTUAL 0.80 A Actual Output Current 151 ISECRMS 1.16 A Secondary RMS current for output 152 Output Components 0.70 V Output diode forward drop 153 VF 0.70 V Output diode reverse voltage					30	1	
150 IOUT_ACTUAL 0.80 A Actual Output Current 151 ISECRMS 1.16 A Secondary RMS current for output 152 Output Components 0.70 V Output diode forward drop 153 VF 0.70 V Output diode reverse voltage 154 VRRM 204.26 V Output diode reverse voltage					26.00	M	Actual Output Valtage
151 ISECRMS 1.16 A Secondary RMS current for output 152 Output Components 0.70 V Output diode forward drop 153 VF 0.70 V Output diode forward drop 154 VRRM 204.26 V Output diode reverse voltage							
152 Output Components 153 VF 0.70 V Output diode forward drop 154 VRRM 204.26 V Output diode reverse voltage							
153 VF 0.70 V Output diode forward drop 154 VRRM 204.26 V Output diode reverse voltage					1.10	A	
154 VRRM 204.26 V Output diode reverse voltage					0.70	N	Output diada famurad dest
135 COUT 178.49 μF Output Capacitor - Capacitance							
	155				1/8.49	μr	Output Capacitor - Capacitance

156	COUT_VOpercentRip			2.50	%	Output Capacitor Ripple % of VOUT
157	ICOUTrms			0.85	A	Output Capacitor Estimated Ripple Current
158	ESRmax			300.58	mohms	Output Capacitor Maximum Recommended ESR
159	59 Errors, Warnings, Information					
160	Information					Although the design has passed the user should validate functionality on the bench. Please check the variables listed.
161	Design Warnings			OVERVOLT AGE_LINE		Design variables whose values exceed electrical/datasheet specifications.
162	Design Errors					The list of design variables which result in an infeasible design.

Notes: Row 161 – Actual Line Overvoltage protection is triggered below the absolute maximum V_{DS} rating of LYTSwitch-6 IC.

10 **Performance Data**

All measurements were performed at room temperature.

10.1 *Output Current Regulation*

Set-up:	Open frame unit.
Load:	36 V 800 mA LED load.
Ambient Temperature:	25 °C.
Soak Time:	60 seconds.

Page 32 of 77

Figure 15 – Efficiency vs. Input Line Voltage.

Figure 17 – %ATHD vs. Input Line Voltage.

10.5 Individual Harmonics Content at Full Load

Set-up:	Open frame unit.
Load:	Open load.
Ambient Temperature:	25 °C.
Soak Time:	60 seconds.

Figure 19 – No-Load Input Power vs. Input Line Voltage.

Dimming Performance: 3-in-1 Dimming 10.8

Set-up: Open Frame Unit. Load: 36V 800mA LED Load. **Ambient Temperature:** 25 °C.

10.8.1 Variable Supply Dimming

Figure 21 – Dimming Performance vs. Variable Supply (0-10V)

40

30

60

70

80

90

100

50

Dimming Resistance $(k\Omega)$

Figure 22 – Dimming Performance vs. Variable Resistor.

Output Current (mA)

0

0

10

20

Figure 23 – Dimming Performance vs. Variable PWM Duty Cycle.

11 Test Data

11.1 Test Data at Full Load

Inp	ut		Input Measurement					ad Measui	rement	Efficiency
VAC (V _{RMS})	Freq (Hz)	V _{IN} (V _{RMS})	I _{IN} (mA _{RMS})	P _{IN} (W)	PF	%ATHD	V _{OUT} (V _{DC})	I _{OUT} (mA _{DC})	Р _{оит} (W)	(%)
180	50	179.76	195.69	33.30	0.947	21.27	36.02	805.7	29.02	87.15
200	50	199.81	176.14	33.34	0.947	16.86	36.00	806.1	29.03	87.07
220	50	219.84	162.26	33.42	0.937	17.80	36.00	806.4	29.02	86.85
230	50	229.86	156.38	33.46	0.931	18.75	35.98	806.3	29.01	86.70
240	50	239.88	151.16	33.52	0.924	19.81	35.96	806.4	29.00	86.52
265	50	264.89	140.11	33.68	0.907	22.43	35.95	806.4	28.99	86.08

11.2 Test Data at No-Load

Input					
VAC (V _{RMS})	Freq (Hz)	V _{IN} (V _{RMS})	I _{IN} (mA _{RMS})	P _{IN} (mW)	
180	50	179.85	18.73	64.14	
200	50	199.87	19.13	75.30	
220	50	219.88	19.45	80.22	
230	50	229.90	19.60	83.40	
240	50	239.91	19.73	93.84	

30-Jul-18 DER-740 29 W 36 V High PF Flyback LYTSwitch-6 with 3-in-1 and DALI Dimming

V	Freq	I (mA)	Р	PF	%THD
230	50	155.15	33.308	0.934	18.855
nth Order	mA Content	% Content	Limit <25 W	Limit >25 W	Remarks
1	151.68				
2	0.03	0.02%		2	pass
3	24.89	16.41%	113.247	28.02	pass
5	7.57	4.991%	63.285	10	pass
7	7.53	4.964%	33.308	7	pass
9	4.59	3.026%	16.654	5	pass
11	2.66	1.754%	11.658	3	pass
13	2.49	1.642%	9.864	3	pass
15	2.58	1.701%	8.549	3	pass
17	2.29	1.51%	7.543	3	pass
19	2.36	1.556%	6.749	3	pass
21	1.65	1.088%	6.106	3	pass
23	1.99	1.312%	5.575	3	pass
25	0.96	0.633%	5.129	3	pass
27	2.49	1.642%	4.749	3	pass
29	0.98	0.646%	4.422	3	pass
31	1.71	1.127%	4.137	3	pass
33	1.88	1.239%	3.886	3	pass
35	1.04	0.686%	3.664	3	pass
37	0.89	0.587%	3.466	3	pass
39	1.28	0.844%	3.288	3	pass
41	1.11	0.732%	3.128	3	pass

11.3 Individual Harmonic Content at 230 VAC 60 Hz and Full Load

12 Thermal Performance

12.1 Thermal Measurements at Ambient Room Temperature

Figure 24 – Test Set-up Picture - Open Frame.

Unit in open frame was placed inside the acrylic enclosure to prevent airflow that might affect the thermal measurements. Temperature was measured using T-type thermocouple.

Equipment used:

- 1. KEYSIGHT 6812B AC Power Source/Analyzer
- 2. Chroma 63110A DC Electronic Load Mainframe
- 3. FLIR E60 Thermal Camera
- 4. Yokogawa WT310E Digital Power Meter

Ref Des	Description	Temperature Reading (°C)		
U4	LYTSwitch-6 IC	112		
D10	Output Diode	100		
T1	PFC Inductor	74.8		
T2	DCDC Transformer Primary	80.9		
D1	PFC Diode	75.3		
D17	PFC Diode	64.2		
BR1	Bridge Diode	48.8		
AMBIENT		29.5		

Figure 25 – LYTSwitch-6 IC (U4).

Figure 26 – Output Diode (D10).

Figure 27 – PQ2020 Flyback Transformer (T1).

Figure 28 – EE13 PFC Inductor (T2).

Figure 29 – PFC Diode (D1).

Figure 30 – PFC Diode (D17).

Figure 31 – Bridge Diode (BR1).

12.2 *Thermal Performance at Ambient Room Temperature with Unit Inside Casing*

Figure 32 – Test Set-up Picture – Cased Unit.

Cased unit was placed inside the enclosure to prevent airflow that may affect the thermal measurements. Ambient temperature measured at room temperature. Temperature was measured using T-type thermocouple. Soak time at full load is more than 1 hour.

Equipment used:

- 1. KEYSIGHT 6812B AC Power Source/Analyzer
- 2. Chroma 6314A DC Electronic Load Mainframe and Chroma 63110A DC Electronic Load
- 3. Yokogawa Data Logger
- 4. Yokogawa WT310E Digital Power Meter

Ref Des	Description	Temperature Reading (°C)		
U4	LYTSwitch-6 IC	114.2		
D10	Output Diode	93.4		
T1	PFC Inductor	77.1		
T2	DCDC Transformer Primary	79.5		
D1	PFC Diode	75.1		
D17	PFC Diode	56.3		
BR1	Bridge Diode	51.1		
AMBIENT		25.7		

Figure 33 – Component Temperature at Ambient Room Temperature - Cased Unit.

12.3 Thermal Performance at High Ambient Temperature

Figure 34 – Test Set-up Picture Thermal at 50 °C Ambient - Open Frame.

Open frame unit was placed inside the enclosure to prevent airflow that may affect the thermal measurements. Ambient temperature inside the enclosure is set at 50 °C. Temperature was measured using T-type thermocouple. Soak time at full load is more than 1 hour.

Equipment used:

- 1. KEYSIGHT 6812B AC Power Source/Analyzer
- 2. Chroma 6314A DC Electronic Load Mainframe and Chroma 63110A DC Electronic Load
- 3. Yokogawa Data Logger
- 4. Yokogawa WT310E Digital Power Meter
- 5. SPX Tenney TUJR Thermal Chamber

Ref Des	Description	Temperature Reading (°C)
U4	LYTSwitch-6 IC	125.3
D10	Output Diode	105.7
T1	PFC Inductor	89.1
T2	DCDC Transformer Primary	90.7
D1	PFC Diode	88.9
D17	PFC Diode	72.0
BR1	Bridge Diode	68.6
AMBIENT		50.2

Figure 35 – Component Temperature at 50 °C Ambient - Open Frame.

13 Waveforms

Waveforms were taken at room temperature (25 °C).

13.1 Input Voltage and Input Current at Full Load

Figure 37 – 200 VAC 50 Hz, Full Load. Upper: I_{IN} , 400 mA / div. Lower: V_{IN} , 200 V / div., 10 ms / div.

 $\label{eq:Figure 39-265} \begin{array}{l} \mbox{Figure 39-265 VAC 50 Hz, Full Load.} \\ \mbox{Upper: } I_{\rm IN} \mbox{ 400 mA / div.} \\ \mbox{Lower: } V_{\rm IN} \mbox{ 200 V / div., 10 ms / div.} \end{array}$

 $\label{eq:Figure 38-230} \begin{array}{l} \mbox{VAC 50 Hz, Full Load.} \\ \mbox{Upper: } I_{\rm IN} \mbox{ 400 mA / div.} \\ \mbox{Lower: } V_{\rm IN}, \mbox{ 200 V / div., 10 ms / div.} \end{array}$

13.2 Start-up Profile at Full Load (DALI Disabled)

Figure 40 – 180 VAC 50 Hz, Full Load Start-up. Upper: I_{OUT} , 400 mA / div. Lower: V_{IN} , 200 V / div., 400 ms / div. Turn On Time: 770 ms.

Figure 42 – 230 VAC 50 Hz, Full Load Start-up. Upper: I_{OUT} , 400 mA / div. Lower: V_{IN} , 200 V / div., 400 ms / div. Turn On Time: 770 ms.

Figure 41 – 200 VAC 50 Hz, Full Load Start-up. Upper: I_{OUT} , 400 mA / div. Lower: V_{IN} , 200 V / div., 400 ms / div. Turn On Time: 770 ms.

 $\label{eq:Figure 43-265 VAC 50 Hz, Full Load Start-up. \\ Upper: I_{OUT}, 400 mA / div. \\ Lower: V_{IN}, 200 V / div., 400 ms / div. \\ Turn On Time: 770 ms. \\ \end{array}$

13.3 Start-up Profile Full Load (DALI Enable)

Figure 44 – 180 VAC 50 Hz, Full Load Start-up. Upper: I_{OUT} , 400 mA / div. Lower: V_{IN} , 200 V / div., 400 ms / div. Turn On Time: 820 ms.

Figure 46 – 230 VAC 50 Hz, Full Load Start-up. Upper: I_{OUT} , 400 mA / div. Lower: V_{IN} , 200 V / div., 400 ms / div. Turn On Time: 820 ms.

Figure 45 – 200 VAC 50 Hz, Full Load Start-up. Upper: I_{OUT} , 400 mA / div. Lower: V_{IN} , 200 V / div., 400 ms / div. Turn On Time: 820 ms.

 $\label{eq:Figure 47-265 VAC 50 Hz, Full Load Start-up. Upper: I_{OUT}, 400 mA / div. Lower: V_{IN}, 200 V / div., 400 ms / div. Turn On Time: 820 ms. \\$

13.4 Turn-Off Profile Full Load

 $\label{eq:Figure 48-180 VAC 50 Hz, Full Load, Output Fall. Upper: I_{OUT}, 400 mA / div. \\ Lower: V_{IN}, 200 V / div., 100 ms / div. \\ Turn Off Time: 26 ms. \\ \end{tabular}$

 $\label{eq:Figure 50-230 VAC 50 Hz, Full Load, Output Fall. Upper: I_{OUT}, 400 mA / div. \\ Lower: V_{IN}, 200 V / div., 100 ms / div. \\ Turn Off Time: 47 ms. \\ \end{tabular}$

Figure 49 – 200 VAC 50 Hz, Full Load, Output Fall. Upper: I_{OUT} , 400 mA / div. Lower: V_{IN} , 200 V / div., 100 ms / div. Turn Off Time: 36 ms.

 $\label{eq:Figure 51-265 VAC 50 Hz, Full Load, Output Fall. Upper: I_{OUT}, 400 mA / div. \\ Lower: V_{IN}, 200 V / div., 100 ms / div. \\ Turn Off Time: 60 ms. \\ \end{tabular}$

13.5 *LYTSwitch-6 Drain Voltage and Current Waveforms at Normal Operation*

 $\label{eq:Figure 52-180 VAC 50 Hz, Full Load Normal.} \\ Upper: I_{DRAIN}, 1 \text{ A / div.} \\ Lower: V_{DRAIN}, 200 \text{ V / div.}, 20 \text{ ms / div.} \\ \end{aligned}$

Figure 54 – 200 VAC 50 Hz, Full Load Normal. Upper: I_{DRAIN} , 1 A / div. Lower: V_{DRAIN} , 200 V / div., 20 ms / div.

Figure 53 – 180 VAC 50 Hz, Full Load Normal. Upper: I_{DRAIN} , 1 A / div. Lower: V_{DRAIN}, 200 V / div., 10 µs / div.

Figure 55 – 200 VAC 50 Hz, Full Load Normal. Upper: I_{DRAIN} , 1 A / div. Lower: V_{DRAIN} , 200 V / div., 10 μ s / div.

Figure 59 – 265 VAC 50 Hz, Full Load Normal. Upper: I_{DRAIN} , 1 A / div. Lower: V_{DRAIN} , 200 V / div., 10 μ s / div.

13.6 LYTSwitch-6 Drain Voltage and Current at Full Load Start-up

Figure 60 – 180 VAC 50 Hz, Full Load Start-up. Upper: I_{DRAIN}, 1 A / div. Lower: V_{DRAIN}, 200 V / div., 400 ms / div.

 $\label{eq:Figure 62-200} \begin{array}{l} \mbox{VAC 50 Hz, Full Load Start-up.} \\ \mbox{Upper: } I_{DRAIN}, 1 \mbox{ A / div.} \\ \mbox{Lower: } V_{DRAIN}, 200 \mbox{ V / div.}, 400 \mbox{ ms / div.} \end{array}$

Figure 61 – 180 VAC 50 Hz, Full Load Start-up. Upper: I_{DRAIN} , 1 A / div. Lower: V_{DRAIN} , 200 V / div., 20 μ s / div.

 $\begin{array}{l} \textbf{Figure 63-200 VAC 50 Hz, Full Load Start-up.} \\ Upper: I_{DRAIN}, 1 \text{ A / div.} \\ Lower: V_{DRAIN}, 200 \text{ V / div.}, 20 \ \mu\text{s / div.} \end{array}$

13.7 LYTSwitch-6 Drain Voltage and Current during Output Short-Circuit

Figure 68 – 180 VAC 50 Hz, Output Shorted. Upper: I_{DRAIN} , 1 A / div. Lower: V_{DRAIN} , 200 V / div., 1 s / div. P_{IN} Average: 176 mW.

Figure 70 – 200 VAC 50 Hz, Output Shorted. Upper: I_{DRAIN} , 1 A / div. Lower: V_{DRAIN} , 200 V / div., 1 s / div. P_{IN} Average: 191 mW.

Figure 69 – 180 VAC 50 Hz, Output Shorted. Upper: I_{DRAIN} , 1 A / div. Lower: V_{DRAIN} , 200 V / div., 500 ns / div.

 $\label{eq:Figure 71-200 VAC 50 Hz, Output Shorted.} \\ Upper: I_{DRAIN}, 1 \text{ A / div.} \\ Lower: V_{DRAIN}, 200 \text{ V / div.}, 500 \text{ ns / div.} \\ \end{aligned}$

Figure 72 – 230 VAC 50 Hz, Output Shorted. Upper: I_{DRAIN}, 1 A / div. Lower: V_{DRAIN}, 200 V / div., 1 s / div. P_{IN} Average: 230 mW.

Figure 74 – 265 VAC 50 Hz, Output Shorted Upper: I_{DRAIN} , 1 A / div. Lower: V_{DRAIN} , 200 V / div., 1 s / div. P_{IN} Average: 243 mW. $\begin{array}{l} \textbf{Figure 73-} 230 \text{ VAC 50 Hz, Output Shorted.} \\ \text{Upper: } I_{\text{DRAIN}}, 1 \text{ A / div.} \\ \text{Lower: } V_{\text{DRAIN}}, 200 \text{ V / div.}, 500 \text{ ns / div.} \end{array}$

 $\label{eq:Figure 75-265} \begin{array}{l} \mathsf{Figure 75-265} \ \mathsf{VAC} \ \mathsf{50} \ \mathsf{Hz}, \ \mathsf{Output} \ \mathsf{Shorted}. \\ \mathsf{Upper:} \ \mathsf{I}_{\mathsf{DRAIN}}, \ \mathsf{1} \ \mathsf{A} \ / \ \mathsf{div}. \\ \mathsf{Lower:} \ \mathsf{V}_{\mathsf{DRAIN}}, \ \mathsf{200} \ \mathsf{V} \ / \ \mathsf{div}., \ \mathsf{500} \ \mathsf{ns} \ / \ \mathsf{div}. \end{array}$

13.8 *PFC Diode Voltage and Current at Normal Operation*

Figure 76 – 180 VAC 50 Hz, 580 mA LED Load. Upper: 400 mA / div. Lower: 100 V / div. Horizontal: 4 ms / div.

Figure 78 – 230 VAC 50 Hz, 580 mA LED Load. Upper: 400 mA / div. Lower: 100 V / div. Horizontal: 4 ms / div.

Figure 77 – 200 VAC 50 Hz, 580 mA LED Load. Upper: 400 mA / div. Lower: 100 V / div. Horizontal: 4 ms / div.

Figure 79 – 265 VAC 50 Hz, 580 mA LED Load. Upper: 400 mA / div. Lower: 100 V / div. Horizontal: 4 ms / div.

13.9 *PFC Diode Voltage and Current at Start-up Full Load*

Figure 80 – 180 VAC 50 Hz, 800 mA LED Load. Upper: 400 mA / div. Lower: 100 V / div. Horizontal: 20 ms / div.

Figure 82 – 230 VAC 50 Hz, 800 mA LED Load. Upper: 400 mA / div. Lower: 100 V / div. Horizontal: 20 ms / div.

Figure 81 – 200 VAC 50 Hz, 800 mA LED Load. Upper: 400 mA / div. Lower: 100 V / div. Horizontal: 20 ms / div.

Figure 83 – 265 VAC 50 Hz, 800 mA LED Load. Upper: 400 mA / div. Lower: 100 V / div. Horizontal: 20 ms / div.

13.10 Output Current Ripple

- 13.10.1 Equipment Used
 - 1. Rohde & Schwarz RTO1004 Oscilloscope
 - 2. Rohde & Schwarz RT-ZC20B Current Probe
 - 3. 36V LED Load

13.10.2 Ripple Ratio and Flicker % Measurement

V _{IN}	I _{OUT(MAX)}	I _{OUT(MIN)}	I _{MEAN}	Ripple Ratio	% Flicker
(VAC)	(mA)	(mA)	(mA)	$(I_{RP}-P/I_{MEAN})$	100 x $(I_{RP^-P} / I_{OUT(MAX)} + I_{OUT(MIN)})$
180	826.34	786.81	802.87	0.05	2.45
200	830.29	782.86	805.35	0.06	2.94
230	830.29	782.86	803.37	0.06	2.94
265	830.29	782.86	803.44	0.06	2.94

Figure 84 – 180 VAC 60 Hz, 800 mA LED Load. 20 MHz Bandwidth. I_{OUT}, 100 mA / div., 500 μs / div. Ripple Current: 39.526 mA_{PK-PK}.

Diegram 1: Ch3 💽		Outp	ut Current		1Am	Herizontal Resi10 ns / 100 MSav RL: 500 kSa Sd: 500 µs/div Post-4 µs Trigger Norm A: Edge Ch3 Evi: 832.55 mA
20000 1: Ch3 🗶		Outp	ut Current			Ch3Wfm1 Sd: 100 mA/div Pos: 0 div Off: 648 mA Opt: 0C 3M0 Dec: 3a TA: Off BW: 20 MHz
	~~~	$\sim \sim \sim$		~~~	$\sim \sim$	
900 mA 900 mA						
98 mi 98 mi 99 mi 91 mi 71 mi		24 µ			72 µI	<b>60 pa</b> 120 p

Figure 86 – 230 VAC 50 Hz, 800 mA LED Load. 20 MHz Bandwidth.  $I_{OUT}$ , 100 mA / div., 500  $\mu$ s / div. Ripple Current: 47.431 mA_{PK-PK}.



**Figure 85** – 200 VAC 60 Hz, 800 mA LED Load. 20 MHz Bandwidth. I_{OUT}, 100 mA / div., 500 μs / div. Ripple Current: 47.431 mA_{PK-PK}.



 $\begin{array}{l} \mbox{Figure 87} - 265 \mbox{ VAC 50 Hz, 800 mA LED Load.} \\ 20 \mbox{ MHz Bandwidth.} \\ I_{OUT}, 100 \mbox{ mA / div., 500 } \mu \mbox{s / div.} \\ Ripple \mbox{ Current: 47.431 mA}_{\mbox{PK-PK}}. \end{array}$ 



# 14 Conducted EMI

#### 14.1 Test Set-up

- Equipment and Load Used 14.1.1
  - 1. Rohde and Schwarz ENV216 two line V-network
  - 2. Rohde and Schwarz ESRP EMI test receiver
  - 3. Hioki 3332 power hitester
  - 4. Chroma Measurement Test Fixture model A662003
  - 5. 36V LED Load
  - 6. HOSSONI TDGC2 VARIAC set at 230 VAC 60 Hz



DER-740 Unit



LED 36V Panel

Figure 88 — Conducted EMI Test Set-up.



#### 14.2 EMI Test Result

### 14.2.1 Non Earthed Conducted EMI



Figure 89 – Conducted EMI QP Scan at Full Load, Non Earthed, 230 VAC 60 Hz and EN55015 B Limits.

Trace/Detector	Frequency	Level dBµV	DeltaLimit
2 Average	23.2175 MHz	45.18 N	-4.82 dB
1 Quasi Peak	150.0000 kHz	60.07 N	-5.93 dB
1 Quasi Peak	784.5000 kHz	49.36 L1	-6.64 dB
2 Average	771.0000 kHz	38.35 L1	-7.65 dB
2 Average	150.0000 kHz	47.64 L1	-8.36 dB
1 Quasi Peak	23.2535 MHz	51.42 N	-8.58 dB

Figure 90 – Conducted EMI Data at 230 VAC 60 Hz, Full Load Non Earthed.



#### 14.2.2 Earthed Conducted EMI



Figure 91 – Conducted EMI QP Scan at Full Load, Earthed, 230 VAC 60 Hz and EN55015 B Limits.

Trace/Detector	Frequency	Level dBµV	DeltaLimit
1 Quasi Peak	784.5000 kHz	53.48 L1	-2.52 dB
2 Average	777.7500 kHz	42.87 N	-3.13 dB
2 Average	186.0000 kHz	47.39 L1	-6.82 dB
2 Average	19.3745 MHz	42.73 L1	-7.27 dB
2 Average	15.7543 MHz	42.42 L1	-7.58 dB
1 Quasi Peak	150.0000 kHz	58.03 L1	-7.97 dB
1 Quasi Peak	19.3318 MHz	48.78 L1	-11.22 dB
1 Quasi Peak	15.7813 MHz	48.63 L1	-11.37 dB

Figure 92 – Conducted EMI Data at 230 VAC 60 Hz, Full Load Earthed.



# 15 Appendix DALI Interface Circuit and Microcontroller



Figure 93 – DALI Board Top View.

Figure 94 – DALI Board Bottom View.

In any dimming system, the LED drivers and controllers must be able to speak the same language. For digital dimming systems, this language is an open standard such as the Digital Addressable Lighting Interface (DALI) protocol. DALI is a two-way digital protocol which consist a set of commands to and from LED drivers or ballasts within a defined data structures and specified electrical parameters.

BR2

Following the DALI protocol, the DALI bus carries the data signals and a DALI interface circuit provides communication between a microcontroller and DALI bus. In this case the microcontroller is PIC16F18326 (U16). The interface circuit is isolated with the microcontroller part via two optocouplers (U12 and U13). The optocouplers provide isolation and avoid the risk of sharing common ground. For data receive, the DALI bus output signal drives the optocoupler U12 via Q9 to transfer the data to the microcontroller. For data transmit, the microcontroller drives the optocoupler U13 directly to get into the DALI bus modulated via Q8.

The data that were received or transmitted from the microcontroller is now used to control the LED output current (i.e LED brightness). The microcontroller generates a PWM output signal (pin 5), and the brightness of the LED can be changed upon the duty of the PWM signal.

The 5 V regulator circuits that supplies the microcontroller consists of U11, C40 and C41. Capacitor C39 is a decoupling capacitor of the microcontroller. The reset pin RA3 is pulled-up to 5 V via R64.

Use "*DER-740_DALI_CG_PIC16F18326.hex"* to program the microcontroller via J5 header.



#### 15.1 *Pin Functions*

Pin Number	Description
1	VDD Supply.
4	Reset pin. Requires pull-up to VDD.
5	PWM signal output. Provides PWM pulse for DALI dimming.
6	Configured as DALI TX signal. Transmit Signal.
11	Configured as DALI RX signal. Receive Signal.
12	Used for programming.
13	Used for programming.
14	Ground.

### 15.2 *Schematic*



Figure 95 – Schematic Diagram.



# 15.3 **PCB Layout**







Figure 97 – Bottom.



### 15.4 Board Level Test for DALI Daughter Board

Please follow below procedures to test the DALI daughter board.

- 15.4.1 Lab Equipment to be used DC Power Supply (up to 10V, 100mA) Digital Oscilloscope
- 15.4.2 Wiring Diagram for the Test Set-up



Figure 98 – Wiring Diagram for Testing the DALI Daughter Board.



### 15.4.3 Procedures

- 1. Construct the wiring diagram on Figure 1. Connect the positive terminal of DC power supply to one terminal of switch SW1. Connect the other terminal of switch SW1 to V_AUX (pin 7 of connector J4). Connect the negative terminal of the DC power supply to GND (pin 8 of connector J4).
- 2. Set the switch SW1 to "open" position.
- 3. Turn ON the DC power supply. Set the current limit to 100mA, and set the output voltage to 10V.
- 4. Turn ON the oscilloscope. Set the horizontal scale to 10ms/div.
- 5. Connect a voltage probe to channel 1 (CH1). Set the vertical scale to 1V/div. Connect the positive terminal of the voltage probe to VDD (pin 2 of connector J5) and connect its negative terminal to GND (pin 8 of connector J4).
- 6. Connect a voltage probe to channel 2 (CH2). Set the vertical scale to 5V/div. Connect the positive terminal of the voltage probe to PWM (pin 5 of connector J4) and connect its negative terminal to GND (pin 8 of connector J4).
- 7. Set the switch SW1 to "close" position.
- 8. Measure the RMS voltage of the waveform on channel 1 (CH1) of the oscilloscope. The measured RMS voltage should be in the range of 4.75V – 5.25V.
- 9. Measure the duty cycle of the waveform on channel 2 (CH2) of the oscilloscope. The measured duty cycle should be in the range of 97% 100%.
- 10. Measure the RMS voltage of the waveform on channel 2 (CH2) of the oscilloscope. The measured voltage should be in the range of 9.5V – 10.5V.
- 11. Any measurement outside the range specified above indicates that there could be something wrong with the board.



### 15.5 DALI Dimming Set-up

Before testing the DALI dimming, make sure to check the following:

- 1. The DALI Daughter Board **should be** connected to the main board.
- 2. The female jumpers (Sullins PN: SPC02SYAN) **should be disconnected** from connectors J4 and J5.
- 3. Refer to the figure below for the proper wiring diagram.



Figure 99 – Wiring Diagram for Testing the DALI Dimming Response.



### 15.6 Bill of Materials

# 15.6.1 DALI Circuit (PIC16F18326)

Item	Qty	Ref Des	Description	Mfg Part Number	Mfg
1	1	BR2	600 V, 0.5 A, Bridge Rectifier, SMD, MBS-1, 4-SOIC	MB6S-TP	Micro Commercial
2	1	C39	100 nF, 50 V, Ceramic, X7R, 0805 CC0805KRX7R9BB104		Yageo
3	1	C40	1 uF,±10% ,50 V, Ceramic, X7R, AEC-Q200, Automotive, Boardflex Sensitive, 0805 (2012 Metric),-55°C ~ 125°C	CGA4J3X7R1H105K125AE	TDK
4	1	C41	4.7 μF ±10%, 25 V, X7R, 0805 (2012 Metric),-55°C ~ 125°C TMK212AB7475KG-T		Taiyo Yuden
5	1	L4	560 nH, 230 mADC, 1.9 ohm max, Q=23 @ 50MHz, Fr= 320MHz,unshielded,ceramic, wirewound, -40°C ~ 125°C,Wirewound,0805, SMD	Abracon	
6	1	Q7	60 V, 115 mA, SOT23-3	2N7002-7-F	Diodes, Inc.
7	1	Q8	NPN, Small Signal BJT, 450 V, 0.5 A, 150MA ,SOT-23	FMMT459TA	Diodes, Inc.
8	1	Q9	NPN, Small Signal BJT, 450 V, 0.5 A, 150MA ,SOT-23	FMMT459TA	Diodes, Inc.
9	1	Q10	MOSFET, N-CH, 20V, SOT23	PMV16XNR	NXP
10	1	R50	RES, 47 Ω, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ470V	Panasonic
11	1	R51	RES, 10 kΩ, 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF1002V	Panasonic
12	1	R52	RES, 820 Ω, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ821V	Panasonic
13	1	R53	RES, 10 kΩ, 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF1002V	Panasonic
14	1	R54	RES, 330 Ω, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ331V	Panasonic
15	1	R55	RES, 1.00 kΩ, 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF1001V	Panasonic
16	1	R56	RES, 120 Ω, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ121V	Panasonic
17	1	R57	RES, 100 kΩ, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ104V	Panasonic
18	1	R64	RES, 10 kΩ, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ103V	Panasonic
19	1	R66	RES, 240 Ω, 5%, 1/10 W, Thick Film, 0603	ERJ-3GEYJ241V	Panasonic
20	1	R67	RES, 3 kΩ, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ302V	Panasonic
21	1	U11	IC, Linear Voltage Regulator, Positive, Fixed, 1 Output, 5V, 0.1A, SOT-223, SOT-223-3, TO-261-4, TO-261AA	NCV4264-2ST50T3G	ON Semi
22	1	U12	Optoisolator, Transistor Output, 3750Vrms, 1 Channel,-55°C ~ 110°C, 4-SOP (2.54mm)	LTV-356T	Lite-On
23	1	U13	Optoisolator, Transistor with Base Output,4170 Vrms, -40°C ~ 100°C, 1 Channel, 6-SMD	MOC8204SR2M	ON Semi
24	1	U16	IC, PIC, PIC®, XLP [™] , 16F Microcontroller IC, 8-Bit, 32MHz, 28KB (16K x 14), FLASH, 14-SOIC	PIC16F18326-I/SL	Microchip
25	1	VR7	DIODE ZENER 4.7 V 500 MW SOD123	MMSZ5230B-7-F	Diodes, Inc.

### 15.6.2 Mechanicals

Item	Qty	Ref Des	Description	Mfg Part Number	Mfg
21	1	J4	8 Position (1 x 8) header, 0.1 pitch, Vertical	22-28-4080	Molex
22	1	J5	6 Position (1 x 6) header, 0.1 pitch, R/A Tin	22-05-2061	Molex





**Figure 100** – Dimming Performance vs DALI Command Level.



# 16 Revision History

Date	Author	Revision	Description and Changes	Reviewed
28-Jun-18	JB	1.0	Initial Release.	Apps



#### For the latest updates, visit our website: www.power.com

Reference Designs are technical proposals concerning how to use Power Integrations' gate drivers in particular applications and/or with certain power modules. These proposals are "as is" and are not subject to any qualification process. The suitability, implementation and qualification are the sole responsibility of the end user. The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may base on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information scontained herein. No responsibility is accepted for the accuracy or sufficiency of any of the statements, technical information, recommendations or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

#### Patent Information

The products and applications illustrated herein (including transformer construction and circuits' external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at <u>WWW.pOWEr.COM</u>. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.power.com/ip.htm.

The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, LYTSwitch, InnoSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS, HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, FluxLink, StadFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2015 Power Integrations, Inc.

#### Power Integrations Worldwide Sales Support Locations

#### WORLD HEADQUARTERS

5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: usasales@power.com

#### GERMANY

(IGBT Driver Sales) HellwegForum 1 59469 Ense, Germany Tel: +49-2938-64-39990 Email: igbtdriver.sales@power.com

#### KOREA

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 e-mail: koreasales@power.com

#### CHINA (SHANGHAI)

Rm 2410, Charity Plaza, No. 88, North Caoxi Road, Shanghai, PRC 200030 Phone: +86-21-6354-6323 Fax: +86-21-6354-6325 e-mail: chinasales@power.com **INDIA** #1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 Fax: +91-80-4113-8023

indiasales@power.com

#### SINGAPORE

e-mail:

51 Newton Road, #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 e-mail: singaporesales@power.com

#### CHINA (SHENZHEN)

17/F, Hivac Building, No. 2, Keji Nan 8th Road, Nanshan District, Shenzhen, China, 518057 Phone: +86-755-8672-8689 Fax: +86-755-8672-8690 e-mail: chinasales@power.com

#### ITALY

Via Milanese 20, 3rd. Fl. 20099 Sesto San Giovanni (MI) Italy Phone: +39-024-550-8701 Fax: +39-028-928-6009 e-mail: eurosales@power.com

#### TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 11493, Taiwan R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 e-mail: taiwansales@power.com

#### GERMANY

(AC-DC/LED Sales) Lindwurmstrasse 114 80337, Munich Germany Phone: +49-895-527-39110 Fax: +49-895-527-39200 e-mail: eurosales@power.com

#### JAPAN

Kosei Dai-3 Building 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: japansales@power.com

#### UK

Tel: +1 408 414 9200 Fax: +1 408 414 9201

Cambridge Semiconductor, a Power Integrations company Westbrook Centre, Block 5, 2nd Floor Milton Road Cambridge CB4 1YG Phone: +44 (0) 1223-446483 e-mail: eurosales@power.com

**Power Integrations** 

www.power.com