
Application Note AN-110
InnoSwitch5-Pro Family

www.power.com 	 December 2025

Programming Manual

This Product is Covered by Patents and/or Pending Patent Applications.

Introduction
This manual describes the firmware considerations for the InnoSwitch5-
Pro IC family with respect to I2C write and read protocol format, and
provides example calculations for output voltage and current commands.
Also addressed are parity bit implementation, effects of a system reset,
recommended sequences for initialization and voltage transitions,
telemetry register examples, and a high-level overview of the code
libraries (PIC microcontroller and Arduino platform).
InnoSwitch5-Pro I2C Protocol Format
In this section, the InnoSwitch5-Pro I2C Write and Read protocol formats
are explained with the following conventions:
[A]	 – 	 Slave acknowledgement
[a]	 –	 Master acknowledgement
[na]	 –	 Master NACK
[W]	 –	 Write command (1’b0)
[r]	 –	 Read command (1’b1)
[PI_SLAVE_ADDRESS] =0x18 (7’b001 1000)
[PI_COMMAND] – PI Command Register Address
[TELEMETRY_REGISTER_ADDRESS] – Telemetry Register Address

I2C Slave Address
The InnoSwitch5-Pro device has a 7-bit slave address of 0x18 (7’b001 1000).

0 0 1 1 0 0 0

6 5 4 3 2 1 0

LSB

PI-8444-100417

Figure 1.	 Slave Address.

For an I2C communication, the 7-bit slave address is shifted to the left
by one bit and is appended by either a ‘0’ or a ‘1’ to specify whether
the transaction is I2C Write or I2C Read, respectively. Therefore, the
InnoSwitch5-Pro 7-bit slave address with write/read bit will be as
follows:
•	 I2C Write: PI_SLAVE_ADDRESS + W = 0x30 (8b’0011 0000)
•	 I2C Read: PI_SLAVE_ADDRESS + r = 0x31 (8b’0011 0001)

I2C Write Format
An InnoSwitch5-Pro IC I2C Write Command is either a 2-byte or a
3-byte write, depending on the data length of the corresponding
command register that will be written. Refer to the InnoSwitch5-Pro
family datasheet to determine whether a command type has a 16-bit or
8-bit data length.
Command registers with only 8-bit data length (W_Byte) will use the
2-byte write command format:

•	 [PI_SLAVE_ADDRESS][W][A][PI_COMMAND][A][Low Byte][A]

Similarly, command registers with 16-bit data length (W_Word) will use
the 3-byte write command format:

•	 [PI_SLAVE_ADDRESS][W][A][PI_COMMAND][A][Low Byte] [A]
[High Byte][A]

I2C transactions start with the I2C slave address including the write/
read bit. For a write command, this becomes 0x30. The succeeding
bytes consist of the PI command register address and the data bytes
to be written. Examples of I2C write sequences for a 2-byte and 3-byte
commands are shown in Figure 2.

Figure 2.

AAA0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0w ASDA

SCL

A

PI-8445c-062325

START

I2C Protocol Format for Write Command (3-Byte)

STOP
PI_SLAVE_ADDRESS [W]

0x30

ACK GENERATED BY PI_SLAVE

PI_COMMAND BYTE
0x10

WRITE LOW BYTE DATA
0x20

WRITE HIGH BYTE DATA
0x86

COMMAND
EXECUTED

AA0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1w ASDA

SCL

A

START STOP
PI_SLAVE_ADDRESS

0x30

ACK GENERATED BY PI_SLAVE

PI_COMMAND BYTE
0x04

WRITE BYTE DATA
0x83

COMMAND
EXECUTED

I2C Protocol Format for Write Command (2-Byte)

	 Example Register Write Sequences for a 2-Byte Command (VBEN register) and a 3-Byte Command (CV register).

Rev. A 12/25

2

Application Note

www.power.com

AN-110

PI-8446b-062325

START
PI_SLAVE_ADDRESS [W]

0x30

ACK GENERATED BY PI_SLAVE

MASTER ack

MASTER nack

READ REGISTER
0x80

START TELEMETRY REGISTER
0x20

END TELEMETRY REGISTER
0x20

START STOP
PI_SLAVE_ADDRESS [r]

0x31
LOW BYTE READ-BACK

0x00
HIGH BYTE READ-BACK

0x02

A aSDA

SCL

AAA0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0W ASDA

SCL

A

0 0 1 1 0 0 0 r na0 0 0 0 0 0 1 0

STOP

0 0 0 0 0 0 0 0

na

a

I2C Protocol Format for Read Command (3-Byte Write Followed by 2-Byte Read)

I2C Read Format
An InnoSwitch5-Pro IC I2C read transaction is a 3-byte write followed
by a 2-byte read. The first part (3-byte write) contains the PI slave
address with write bit (0x30), followed by the read register address
(0x80), Start-Telemetry register, and End-Telemetry register. This
informs the InnoSwitch5-Pro IC that the I2C master (external
micro-controller) is requesting for the values of the specified
telemetry registers. When reading back the value of a single
telemetry register, the Start-and End-Telemetry registers are set to
the same value.

•	 	[PI_SLAVE_ADDRESS][W][A][PI_COMMAND][A]
[START_TELEMETRY_REGISTER_ADDRESS][A]
[END_TELEMETRY_REGISTER_ADDRESS [A]

Once the telemetry register has been specified, the second part is
performed with a 2-byte read. This contains the PI slave address with
read bit (0x31), followed by the low byte read-back and high- byte
readback values respectively provided by the InnoSwitch5-Pro device.

•	 	[PI_SLAVE_ADDRESS][r][A] {PI Slave responds Low Byte}[a]
{PI Slave responds High Byte}[na]

Telemetry registers with adjacent addresses can be read sequentially
by setting the Start-and End-Telemetry registers correspondingly. In
this case, the first 2-byte read will give the telemetry value for the
Start-Telemetry register, and for each succeeding 2-byte read, the
telemetry register address automatically increments until the
End-Telemetry register has been reached. Note that each 2-byte read
needs to terminate with an I2C Stop bit to automatically increment the
telemetry register address.

Figure 3.	 Example Register Read Sequence (READ16, Telemetry Register Address 0x20).

Rev. A 12/25

3

Application Note

www.power.com

AN-110

Command Register Example Calculations Output
Voltage Register, CV (0x10)
The output voltage of the power supply is regulated on the VOUT pin
and is configured with the CV register (address 0x10). The CV
register has a valid programming range from 3 V to 30 V with a bit
resolution of 10 mV/LSB.

To convert the desired output regulation voltage (volts) into CV register
value (data), divide the voltage by the bit resolution and then
implement odd parity on both high byte and low byte data.
Example: Convert 20 V into CV register value.

Step 1 – Divide the voltage setpoint by the bit resolution to obtain the 	
 equivalent decimal value.

CV (decimal equivalent) Resolution
Set Point in Volts

(10 mV / LSB)
20 V 2000

=

= =

Step 2 – Implement odd parity on high byte and low byte data (refer 	
 to Parity Bit Implementation section for more details).

=

CV (decimal equivalent) 2000
0x07D0 (hex)

CV Register Value (with OddParity) 0x8FD0 (hex)

=
=

After calculating the CV register value with odd parity data applied,
the I2C write command protocol format described in the previous
section can then be used to configure the CV register.

CV Command – Code Example
In this pseudo-code, the function input parameter u16SetPtCV is the
decimal equivalent of the desired output voltage (e.g. 2000 decimal
for 20 V output). Limiting the CV Setpoint within the programmable
range (3 V to 30 V) is recommended. The saturation macro sig_
minmax sets the lower and upper limits. Any u16SetPtCV value lower
or higher than 300 or 3000 will be clamped to these values,
respectively. Once the data value has been limited, an odd parity
function is used to format the high byte and low byte data and the
I2C write command is then sent.

 #define INNO5PRO_CV_SET_PT_MIN 300
 #define INNO5PRO_CV_SET_PT_MAX 3000
 #define sig_minmax(sig, min, max) ((sig < min) ? sig =

min : (sig > max) ? sig = max : 0)

 void Inno5Pro_Write_Volts(uint16_t u16SetPtCV)
 {

uint8_t u8Buffer[2] = {0};	

// Limit the setpoint within range
 sig_minmax (u16SetPtCV,
 INNO5PRO_CV_SET_PT_MIN,
 INNO5PRO_CV_SET_PT_MAX);

// Format data with odd parity into buffer
InnoProBase_Format_Buffer(u16SetPtCV,

			 u8Buffer);	

// I2C Write into CV Register					
						

I2C_Write16(INNOPRO_I2C_ADDRESS,
 INNO5PRO_CV,
 u8Buffer,
 WR_WORD)}
 }

Constant Current Register, CC (0x98)
Output constant current regulation is configured with the CC register
(address 0x98), which sets the IS-GND pin voltage regulation
threshold. By default, the CC register is set at the full-scale value of
d’192. This also corresponds to the full-scale voltage of 32 mV across
the IS-GND pins (ISV(TH) typical), and the full-scale CC threshold is set
by the current sense resistor RSENSE across the IS-GND pins. The
recommended values for are RSENSE are either 6 mΩ or 9 W for designs
with 5 A or 3 A rated load current, respectively.

Full Scale cc Threshold (Amps) =
. 5.33 A (with RSENSE 6 mX)
. 3.56 A (with RSENSE 9 mX)

32 mV
 RSENSE

The CC register has a valid programming range from 15% (d’29) to
100% (d’192) of the full-scale and has a CC bit resolution (mA/LSB)
dependent on RSENSE as shown in the equation below. The effective
RSENSE seen by the IS-GND pins may be slightly different based on the
PCB layout and therefore characterization on a hardware prototype is
recommended.

CC Bit Resolution R
32 mV

192 LSB
1

27.3 mA/LSB with effective R 6.1m
18.3 mA/LSB with effective R 9.1m

SENSE

SENSE

SENSE

. .

. .

X

X

= b b

]
]

l l

g
g

To convert the desired CC regulation threshold (mA) into CC register
value (data), divide the target current by the CC bit resolution and
then implement odd parity on both the high byte and the low byte
data.

Example: Convert 5.0 A into CC register value with RSENSE ≈ 6 mΩ.

Step 1 – Divide the current setpoint by the bit resolution to obtain the
equivalent decimal value. The target current setpoint is typically
expressed in mA. To minimize errors, it is not recommended to round
up/down the CC bit resolution (e.g. use 27.3 mA/LSB instead of 27
mA/LSB) while ensuring there is no variable overflow in the firmware
calculations. Without floating point variables, this can be performed
by multiplying the numerator by 10 and directly using “273” for the
denominator as shown below.

CC decimal equivalent CC Bit Resolution inmA/LSB
Set Point inmA

273 mA/LSB
(5000) mA (10)

183

#=

=

=^

d

h

n

Step 2 – Implement odd parity on high byte and low byte data (refer
to Parity Bit Implementation section for more details).

CC decimal equivalent
0x00B7 (hex)=

=^ h 183

= 0x0137 (hex)CC Register Value (with Odd Parity)

 

Rev. A 12/25

4

Application Note

www.power.com

AN-110

CC Command – Code Example
In this pseudo-code, the function input parameter u16SetPtCCmA is
the desired current threshold in mA (e.g. 5000 for 5.0 A threshold).
This is converted to CC register equivalent decimal value using the CC
bit resolution. The saturation macro (sig_minmax) sets the lower and
upper limits such that any u16SetPtCC value lower or higher than 29
or 192 will be clamped to these values, respectively. Once the data
value has been set, an odd parity function is used to format the high
byte and low byte data and then the I2C write command is sent.

 #define INNO5PRO_CC_SET_PT_MIN 29
 #define INNO5PRO_CC_SET_PT_MAX 192
 // Rsense ~6.1mohm
 // CC Bit Resolution (32mV/Rsense)*(1/192LSB)
 // 27.3 mA/LSB for Rsense 6.1mohm
 #define INNO5PRO_CC_BIT_RESOLUTION (273)

 void Inno5Pro_Write_Amps(uint16_t u16SetPtCCmA)
 {

uint8_t u8Buffer[2] = {0};	
uint16_t u16SetPtCC = 0;

// e.g. Convert 5000 mA into CC value
// 5000mA * 10 / 273 = 183 decimal
u16SetPtCC = ((u16SetPtCCmA * 10)/

INNO5PRO_CC_BIT_RESOLUTION);

// Limit the setpoint within range
 sig_minmax (u16SetPtCC,
 INNO5PRO_CC_SET_PT_MIN,
 INNO5PRO_CC_SET_PT_MAX);

// Format data with odd parity into buffer
InnoProBase_Format_Buffer(u16SetPtCC,

			 u8Buffer);	

 // I2C Write into CC Register					
					
	

// I2C_Write16 (INNOPRO_I2C_ADDRESS,
 INNO5PRO_CC,
 u8Buffer,
 WR_WORD);
}

CC Command with End of Line Calibration – Code
Example
In this pseudo code, End of Line Calibration telemetry is used to
adjust the CC setpoint to improve the output current tolerance
between multiple InnoSwitch5-Pro devices. This method is preferred
over the previous example where the there is no CC offset correction
applied.

The internal CC calibration offset is stored within each device. It is
available as an I2C telemetry (READ23, 0x2E), which provides the
digital value of CC regulation offset (bit[2:0]) and whether it is a
positive or a negative offset (bit[3]). A one-time check during
initialization is sufficient to store the READ23 value into a variable,
that can be used as the 2nd input parameter when using the function
below.

 #define INNO5PRO_CC_SET_PT_MIN 29
 #define INNO5PRO_CC_SET_PT_MAX 192
 // Rsense ~6.1mohm
 // CC Bit Resolution (32mV/Rsense)*(1/192LSB)
 // 27.3 mA/LSB for Rsense 6.1mohm
 #define INNO5PRO_CC_BIT_RESOLUTION (273)

 void Inno5Pro_Write_Amps_EOL(uint16_t u16SetPtCCmA,
 uint16_t u16EOL)
 {

uint8_t u8Buffer[2] = {0};	
uint16_t u16SetPtCC = 0;
uint16_t u16Offset = 0;
bool bSign = 0;

// e.g. Convert 5000 mA into CC value
// 5000mA * 10 / 273 = 183 decimal
u16SetPtCC = ((u16SetPtCCmA * 10)/

INNO5PRO_CC_BIT_RESOLUTION);

// Extract Calibration Offset and Sign from raw data
u16Offset = (u16EOL & 0x0007);
bSign = (u16EOL >> 3);

if (bSign)
{

// Offset is positive, add to CC Setpoint
u16SetPtCC = u16SetPtCC + u16Offset;

}
else
{

// Offset is negative, subtract to CC Setpoint
u16SetPtCC = u16SetPtCC - u16Offset;

}

// Limit the setpoint within range
 sig_minmax (u16SetPtCC,
 INNO5PRO_CC_SET_PT_MIN,
 INNO5PRO_CC_SET_PT_MAX);

// Format data with odd parity into buffer
InnoProBase_Format_Buffer(u16SetPtCC,u8Buffer);	

// I2C Write into CC Register			
I2C_Write16 (INNOPRO_I2C_ADDRESS,

 INNO5PRO_CC,
 u8Buffer,

 WR_WORD);
}

Rev. A 12/25

5

Application Note

www.power.com

AN-110

Cable Drop Compensation Register, CDC (0x16)
The CDC register has a valid programming range from 0 V to 600 mV
(d’0 to d’12) with a bit resolution of 50 mV/LSB. The increase in
output voltage regulation is dependent on the voltage across IS-GND
pins (current through RSENSE). At no-load there is no CDC, and the
voltage compensation linearly increases as load increases and
reaches the maximum programmed CDC value when IS-GND pin
voltage is at ISV(TH) (32 mV typical).
CDC Command – Code Example
The mapping between the desired CDC setpoint (in mV) and its
decimal data value can be simplified using macros. In this pseudo-
code, the function can be called with the macro as the input
parameter based on the desired CDC value.

 #define INNO5PRO_CDC_SET_PT_MIN 0
 #define INNO5PRO_CDC_SET_PT_MAX 12
 #define INNO5PRO_CDC_SET_PT_0MV 	 0
 #define INNO5PRO_CDC_SET_PT_50MV 	 1
 #define INNO5PRO_CDC_SET_PT_100MV	 2
 #define INNO5PRO_CDC_SET_PT_150MV	 3
 #define INNO5PRO_CDC_SET_PT_200MV	 4
 #define INNO5PRO_CDC_SET_PT_250MV	 5
 #define INNO5PRO_CDC_SET_PT_300MV	 6
 #define INNO5PRO_CDC_SET_PT_350MV	 7
 #define INNO5PRO_CDC_SET_PT_400MV	 8
 #define INNO5PRO_CDC_SET_PT_450MV	 9
 #define INNO5PRO_CDC_SET_PT_500MV	 10
 #define INNO5PRO_CDC_SET_PT_550MV	 11
 #define INNO5PRO_CDC_SET_PT_600MV	 12

 void Inno5Pro_Write_Cable_Drop_Comp(uint16_t u16SetPtCDC)
 {

uint8_t u8Buffer[2] = {0};	

// Limit the setpoint within range
 sig_minmax (u16SetPtCDC,
 INNO5PRO_CDC_SET_PT_MIN,
 INNO5PRO_CDC_SET_PT_MAX);

// Format data into buffer
InnoProBase_Encode_Buffer (u16SetPtCDC,

			 u8Buffer);	

// I2C Write into CDC Register				
 I2C_Write16 (INNOPRO_I2C_ADDRESS,

 INNO5PRO_CDC,
 u8Buffer,
 WR_BYTE);
 }

Rev. A 12/25

6

Application Note

www.power.com

AN-110

Undervoltage Fault Register, UVA (0x94)
The UVA register configures the following settings for output UV
protection in a single command: UV threshold, fault response, timer,
and timer enable/disable. The UV threshold has a valid programming
range from 2.7 V to 40 V with a bit resolution of 100 mV/LSB, and the
options for the remaining settings are as listed in the InnoSwitch5-Pro
family data sheet.

To convert the desired UV threshold (volts) into UV register value
(data), divide the voltage by the bit resolution. Append the bits for
the remaining UV settings and then implement odd parity on both
high byte and low byte data.

Example: Set UV register value as 4.5 V, auto-restart, 8 ms timer, and
UV timer enabled.

Step 1 – Divide the UV threshold by the bit resolution to obtain the
equivalent decimal value.

UV (decimal equivalent) Resolution
Set Point in Volts

(10mV / LSB
4.5 V 45

=

= =

Step 2 – Append the fault response, timer, and timer enable settings
by using bit shifts and bitwise-OR operation (refer to the pseudo-code
for implementation). Here, the amount of bit shifts does not include
the parity bit and the settings will be properly aligned to their bit
assignments once the parity bit has been inserted.

 UV Threshold	= d’45 (4.5 V)
 UV Response = 0x02 (AR)

 UV Timer	= 0x00 (8 ms)
 UV Timer Enable	= 0 x00 {Enabled}

UV Register Value (before Odd Parity)	= 0x042D (hex)

Step 3 – Implement odd parity on high byte and low byte data (refer
to Parity Bit Implementation section for more details).

 UV Register Value (with Odd Parity) = 0x08AD (hex)

UVA Command – Code Example
In this pseudo-code, the function’s first input parameter u16SetPtUVA
is the decimal equivalent of the desired UV threshold (e.g. 45 decimal
for 4.5 V). The provided macros for fault response, timer, and timer
enable settings can then be used for the next three input parameters
when calling the function.

The saturation macro sig_minmax sets the lower and upper limits
such that any u16SetPtUVA value lower or higher than 27 or 400 will
be clamped to these values, respectively. Once the threshold value
has been limited, the remaining UV settings are then appended. An
odd parity function is used to format the high byte and low byte data
and the I2C write command is then sent.

 #define INNO5PRO_UV_SET_PT_MIN 27
 #define INNO5PRO_UV_SET_PT_MAX 400
 #define INNO5PRO_UVL_FAULT_RESPONSE_NORESPONSE 	 0x0
 #define INNO5PRO_UVL_FAULT_RESPONSE_LATCHOFF	0x1
 #define INNO5PRO_UVL_FAULT_RESPONSE_AUTORESTART	 0x2
 #define INNO5PRO_UVL_FAULT_RESPONSE_DISABLEOUTPUT	 0x3
 #define INNO5PRO_UVL_FAULT_TIMER_8MS	 0x0
 #define INNO5PRO_UVL_FAULT_TIMER_16MS	 0x1
 #define INNO5PRO_UVL_FAULT_TIMER_32MS	 0x2
 #define INNO5PRO_UVL_FAULT_TIMER_64MS	 0x3
 #define INNO5PRO_UVL_FAULT_TIMER_ENABLE	 0x0
 #define INNO5PRO_UVL_FAULT_TIMER_DISABLE	 0x1

 void Inno5Pro_Write_Under_Volts (uint16_t u16SetPtUVA,
 uint16_t u16Uv_FaultResp,
 uint16_t u16Uv_timer,

 uint16_t u16Uv_timer_En)
 {

uint8_t u8Buffer[2] = {0};	

// Limit the setpoint within range
 sig_minmax(u16SetPtUVA,
 INNO5PRO_UV_SET_PT_MIN,
 INNO5PRO_UV_SET_PT_MAX);

// Append UVL response, Timer, and Timer Enable bits
// before inserting parity bit
u16SetPtUVA = u16SetPtUV	 |
(u16Uv_FaultResp 	 << 9)	 |
(u16Uv_timer 		 << 11)	 |
(u16Uv_timer_En	<< 13);

// Format data with odd parity into buffer
InnoProBase_Format_Buffer(u16SetPtUVA,

			 u8Buffer);	
	

// I2C Write into UVA Register				
					

I2C_Write16(INNOPRO_I2C_ADDRESS,
 INNO5PRO_UVA,
 u8Buffer,
 WR_BYTE);
 }

Rev. A 12/25

7

Application Note

www.power.com

AN-110

Parity Bit Implementation
As listed in the command register assignments from the InnoSwitch5-
Pro family data sheet, some of the registers requires odd parity error
bits to be added to the high and low byte data. In odd parity bit
error checking, the total number of 1’s in the binary format of the
8-bit data (including the parity bit) must be an odd number.

Example for CV-Setpoint = 5.00 V
(Note: CV register requires odd parity on both high and low byte data.)

Register Output Voltage CV (Decimal Equivalent) Hex without Parity Hex with Odd Parity

CV 5.00 V 500 0x01f4 0x83f4

For the low byte, the parity bit (bit[7]) selection will change based on
the data contents from bit[6:0]. Similarly for the high byte, the parity
bit (bit[15]) will be set based on existing data from bit[14:8]. This is
illustrated in the example below.

P P

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PI-10213-071725

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0

P

Pa
rit

y

Pa
rit

y

Pa
rit

y

Bits Shifted to the Left by 1

Data Data

Odd parity bits will be assigned for bit[15] and bit[7]. The remaining bits will be used for the actual data.

Binary Equivalent of d’500 (initial data):

From the initial binary data, all bits from bit[7] and above must be shifted to the left by one place to reserve the position for the parity bits.

For the low byte, if bit[6:0] has an odd number of 1’s, then the parity bit[7] is cleared to ‘0’. Otherwise, it is set to ‘1’.
For the high byte, if bit[14:8] has an odd number of 1’s, then the parity bit[15] is cleared to ‘0’. Otherwise, it is set to ‘1’.
In this example, a 5.00 V CV setpoint results in a CV Register value = 0x83F4.

Pa
rit

y

0 0 0 0 0 1 1 P 1 1 1 0 1 0 0

1 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0

Rev. A 12/25

8

Application Note

www.power.com

AN-110

Odd Parity – Code Example
In this pseudo-code, the function InnoProBase_Format_Buffer has
two input parameters: the initial data that needs odd parity format,
and the pointer to the variable where the formatted result will be
stored. The initial data has the low byte and high byte masked. Each
masked data set is checked and modified accordingly to implement
odd parity using the functions Inno5Pro_CheckOddParity and
Inno5Pro_AddOddParity, respectively.

 void InnoProBase_Format_Buffer (uint16_t u16Temp, uint8_t *u8WriteBuffer)
 {

// Extract the low byte bit[6:0] from initial data and then add the parity bit
// Store the result into low byte buffer for I2C Write
u8WriteBuffer[0] = Inno5Pro_AddOddParity(u16Temp & 0x007F);

// Extract the high byte bit[13:7] from initial data and then add the parity bit
// Store the result into high byte buffer for I2C Write
u8WriteBuffer[1] = Inno5Pro_AddOddParity((u16Temp & 0x3F80) >> 7);

 }

 uint8_t Inno5Pro_AddOddParity(uint8_t u8Temp)
 {

// Check odd parity and update parity bit
if (Inno5Pro_CheckOddParity(u8Temp))
{

// No of 1’s is Odd. Keep parity bit clear.
return u8Temp;

}
else
{

// No of 1’s is Even. Assert parity bit.
 return set_bit(u8Temp,7);

}
 }

 bool Inno5Pro_CheckOddParity(uint8_t u8OddParity)
 {

u8OddParity ^= (u8OddParity >> 4);
u8OddParity ^= (u8OddParity >> 2);
u8OddParity ^= (u8OddParity >> 1);
// Return 1 if the data has odd number of 1’s. Otherwise return 0.
return u8OddParity & 1;

 }

Rev. A 12/25

9

Application Note

www.power.com

AN-110

Effects of VBEN State and System Reset to
Secondary Timers and Registers
Before proceeding with I2C command Sequences, it is important to
understand the behavior of InnoSwitch5-Pro IC during the VBEN-
Disabled state and at a system reset event.

VBEN Disabled State and System Reset
For InnoSwitch5-Pro parts, the timers described below will be 8 times
the programmed setting when VBEN is disabled. These will
automatically update to match the programmed setting once VBEN is
enabled. Note that a system reset event will also change VBEN to
disabled which will also cause the timers below to be updated.

•	 	Watchdog Timer (0x26)
•	 	CVO Timer (0x0E)
•	 	UVA Timer (0x94)
•	 	Fast VI Timer (0x8C)

Similarly, the update delay of internal voltage reference due to a
change in CV setpoint (is which discussed later in the Voltage
Decrement Sequence section) will also be 8 times slower during the
VBEN disabled state (compared to VBEN enabled state). However, a
system reset event immediately changes the output voltage reference
to the default of 5 V, disables the bus switch drive, and sets all
command registers to their default values at the same time.
Therefore, when a system reset event occurs while VOUT is above 5
V, the power supply will stop switching (since the internal voltage
reference is immediately lower than VOUT). Enabling the Strong-
Bleeder function with Auto-Disable can be used if needed.

Additionally, a system reset exhibits the following behaviors.
•	 	System reset event while VOUT is above 9.6 V will also trigger an

auto-restart (AR) since the OVA register will immediately return to
its default value of 9.6 V threshold and AR response.

•	 	Average IOUT, READ12 (0x18) and average VOUT, READ13 (0x1A)
are 16-sample averages of their instantaneous telemetry registers
READ8 and READ9, respectively. Both the average telemetry values
will reset to 0 and will re-start accumulating a 16-sample average,
therefore, after a system reset event, there will be some delay
before the average Telemetry registers match the actual VOUT and
IOUT values.

•	 	Faults with a response set to Disable-Output will also result into a
system reset when the fault is triggered. If its corresponding
Interrupt Mask is enabled, the interrupt signal on SCL pin will be
uncertain. It is not recommended to enable the Interrupt Mask for
the faults that are configured to Disable-Output response.

A system reset will be initiated by each of the following actions:
	
1.		I2C Write: VBEN (0x04) = 0x80 (Disable VBEN with Reset)
2.		I2C Write: VDIS (0x08) = 0x83 (Enable Discharge, Disable VBEN

with Reset)
3.		Watchdog timer expiry (I2C commands not received within the

programmable time interval)
4.		Any secondary fault triggered with the response programmed to

Disable-Output: CVO (0x0E), OVA (0x92), UVA (0x94), and ISSC
(0xA2).

5.		BPS voltage increasing from the BPS Pin undervoltage threshold
(VBPS(UVLO)TH, 3.8 V typical) to VBPS (4.5 V typical) such as during an
initial power-on event

6.		uVCC voltage exceeding BPS voltage during externally applied
abnormal operating conditions such as component or trace shorts.

Note that auto-restart or latch-off events, or uVCC voltage dropping
below its reset threshold (uVCCRST, 2.5 V typical) and recovering to

nominal level (uVCC, 3.6 V typical) do not inherently open the bus
switch or initiate a system reset. The I2C master controller must send
a command to open the bus switch if this is the desired behavior or
program the watchdog timer with the desired time-out period which
would trigger a system reset when it expires.

VBEN Disable with Reset Pseudo Code
It is recommended to set the output voltage register (CV) to 5 V prior
to sending a VBEN disable with reset command to avoid unwanted
auto-restart due to the assertion of overvoltage protection.

 //VBEN Disable w/ Reset

 //Set Output voltage to 5V
 Voltage Decrement Sequence -> 5V

 //Resets all registers to their default value
 Set VBEN -> Disable w/ Reset (0x00)

 Set VDIS -> Enable Discharge w/ Reset

 Wait Delay in miliseconds

 Set VDIS -> Disable

Note: It is not required to transition to 5 V when using VBEN Disable
without Reset. Simply sending the VBEN Disable without reset will be
sufficient.

Watchdog Timer
The InnoSwitch5-Pro ICs will initiate a system reset if I2C commands
are not received within the programmable watchdog time interval. By
default, the watchdog timer is set at 0.5 seconds. The watchdog
timer does not engage until the master controller issues the first I2C
command (read or write). During the VBEN-Disabled state, the
watchdog timer period will be 8 times of the programmed value.

Disabling the watchdog feature (write 0x00 into the watchdog
register 0x26) can be useful in initial software debugging or bench
checking functionality of the device on the bench. For the final
application (watchdog is not disabled) ensure there is recurring valid
I2C communication with the InnoSwitch5-Pro IC that is sent faster
than the watchdog timer.

 #define INNO5PRO_WATCHDOG_TIMER_NOWATCHDOG	 0x0
 #define INNO5PRO_WATCHDOG_TIMER_500MS		 0x1
 #define INNO5PRO_WATCHDOG_TIMER_1000MS		 0x2
 #define INNO5PRO_WATCHDOG_TIMER_2000MS		 0x3

 void Inno5Pro_Initialization (void)
 {

//...
// Configure Watchdog with user-preferred timer
Inno5Pro_Write_Watchdog_Timer(

INNO5PRO_WATCHDOG_TIMER_500MS);
//...
//(Initialization Codes)

 }

CVO Timer
When the Constant Voltage Only mode is enabled (CVO register 0x0E,
bit[0] = 1) and the sensed load current in the IS pin exceeds the
programmed threshold in the CC register (0x98), the peak load timer
(CVO Timer bit[4:3] of the CVO register 0x0E) is started. If this
condition is sustained for the duration programmed into the CVO
timer, then a CVO fault will be triggered with the corresponding
programmed response.

During VBEN-Disabled state, the timer for CVO fault detection will be
8 times the programmed value; however, the VBUSSC fault will also

Rev. A 12/25

10

Application Note

www.power.com

AN-110

be actively monitoring the sensed load current while VBEN is
disabled. If the sensed current by the IS pin exceeds the current
threshold programmed into the VBUSSC register (0xB6, bit[5:4]) for
the set number of consecutive samples (0xB6, bit[3:2]), then a
VBUSSC fault will be triggered. Therefore, during a VBEN-Disabled
state, a VBUSSC fault detection protects the system faster than the
CVO fault monitor.

UVA Timer
Output UV protection compares the VOUT pin voltage with the
programmed UVA threshold (UVA register 0x94, bit[9:8] and bit[6:0]).
Once the VOUT pin drops below the threshold, the UV Timer (0x94,
bit[13:12]) is started. If this condition is sustained for the duration
programmed in the UV Timer period, then a UV fault will be triggered
with the corresponding programmed response.

During a VBEN-Disabled state, the timer for the UV fault will be 8
times of the programmed value. Additionally for InnoSwitch5-Pro
ICs, there is an option either disable or enable the by setting the UVA
register bit[14] to “0” or “1” respectively, regardless of VBEN state.

Fast VI Timer
By default, the CV (0x10) and CC (0x98) commands that program the
output voltage/current respectively cannot be updated faster than a
maximum speed limit of 10 milliseconds. During the VBEN-Disabled
state, the timer for Fast-VI will be 8 times of the programmed value.

After the CV or CC command register is updated, any additional CV or
CC command sent within the time limit will be ignored. The speed
limit can be removed by setting the Fast VI register (0x8C) to 0x01. 

Rev. A 12/25

11

Application Note

www.power.com

AN-110

Command Sequences
This section provides the recommended sequence for InnoSwitch5-Pro
IC initialization and output voltage increment / decrement processes.

 InnoSwitch5-Pro Initialization
The pseudo-code example below shows the recommended
initialization sequence for InnoSwitch5-Pro devices. This sequence
first ensures that all the command registers are at their default values
by using the VDIS-Enable with a reset command. The power supply is
then configured for 5 V operation. Some of the programmable fault
responses are still configured with the default values for thresholds
and response, but these can be adjusted if required.

 void Inno5Pro_Initialization (void)
 {
	 // Create a System Reset Event to ensure all registers are at default value
	 // When this command is used while VO Pin Voltage > 9.6V, the OV Fault with AR response will trigger
	 // VDIS Enable is used to also the ensure the discharge of the voltage after the bus switch
	 // Set VDIS (0x08) = 0x83

	 Inno5Pro_Load_Discharge (INNO5PRO_LOAD_DISCHARGE_ENABLE_WITH_RESET);

	 // Configure Watchdog with user-preferred timer
	 Inno5Pro_Write_Watchdog_Timer (INNO5PRO_WATCHDOG_TIMER_500MS);

	 // Remove speed limit for updating CV and CC registers
	 // Set FAST_VI (0x8C) = 0x01
	 Inno5Pro_FastVI (INNO5PRO_FASTVI_UPDATE_LIMIT_DISABLE);

	 // Read and store into a variable the End of Line Calibration Offset for Output Current Tolerance
	 Inno5Pro_Store_EOL (INNO5PRO_Read_EOL());

	 // Set Over Current Protection Threshold when CVO is enabled
	 // CC Setpoint is adjusted with EOL Calibration Offset to improve tolerance
	 Inno5Pro_Write_Amps_EOL (INNO5PRO_DEFAULT_CC_ASSERT_LEVEL, Inno5Pro_Get_EOL());

	 // Set Under Voltage Fault Threshold, Fault Response, Timer, and Timer Control
	 Inno5Pro_Write_Under_Volts (INNO5PRO_DEFAULT_UVA_SET_PT_LEVEL,

	 INNO5PRO_UVL_FAULT_RESPONSE_AUTORESTART,
	 INNO5PRO_UVL_FAULT_TIMER_8MS,
	 INNO5PRO_UVL_TIMER_ENABLE);

	 // Set Output Voltage Setpoint to 5V
	 Inno5Pro_Write_Volts (INNO5PRO_DEFAULT_CV_SET_PT_LEVEL);

	 // Set Over Voltage Fault Threshold and Fault Response
	 Inno5Pro_Write_Over_Volts (INNO5PRO_DEFAULT_OVA_SET_PT_LEVEL,

	 INNO5PRO_OVL_FAULT_RESPONSE_AUTORESTART);

	 // Set IS Pin (current sense) Short-Circuit Fault Response, Detection Frequency, and Fault Threshold
	 Inno5Pro_Write_ISSC_Fault_Response (INNO5PRO_ISSC_FAULT_RESPONSE_NORESPONSE,

	 INNO5PRO_ISSC_FREQ_THRESHOLD_60KHZ,
	 INNO5PRO_ISSC_CC_THRESHOLD_64);

	 // Enable CVO Mode and set the fault response and timer
	 Inno5Pro_CVOnlyMode_Enable (INNO5PRO_CVOL_FAULT_CV_ONLY,

	 INNO5PRO_CVOL_FAULT_RESPONSE_AUTORESTART,
	 INNO5PRO_CVOL_FAULT_TIMER_8MS);

	 // Disable the load discharge on VBD pin
	 // Set VDIS (0x08) = 0x0E
	 Inno5Pro_Load_Discharge (INNO5PRO_LOAD_DISCHARGE_DISABLE);

	 // Set Switching Window Optimization (0x02) = 0x1F
	 Inno5Pro_Switch_Window_Optimization (INNO5PRO_SWITCH_WINDOW_RECOMMENDED);

	 // Set Transient Response 1 (0x32) = 0x140A
	 Inno5Pro_Write_Loop_Speed1 (INNO5PRO_LOOPSPEED1_RECOMMENDED);

	 // Set Transient Response 2 (0x34) = 0x1F84
	 Inno5Pro_Write_Loop_Speed2 (INNO5PRO_LOOPSPEED2_RECOMMENDED);

}

Rev. A 12/25

12

Application Note

www.power.com

AN-110

Voltage Increment Sequence
The figure below illustrates the recommended command sequence for
output voltage increment, with the assumption that the InnoSwitch5-
Pro IC has already been initialized (as described in the previous
section) and the bus switch is closed (VBEN enabled).

OVA: 11.2 V

VOUT: 9 V

UVA: 7.6 B
6.2 V

5 V

3.6 V

PI-10204-062725

* OVA CV UVA
CVO

(user-preference)

*Update CC either before or after the voltage transition
based on system requirements

CVO
(Disable)

*

Figure 4.	 Recommended Command Sequence for VOUT Increment.

The CVO register (0x0E) is disabled by writing ‘0’ into bit[0]. In
contrast to the response when CVO is enabled, changing the CVO
setting to disabled will slow down the rate of change of output
voltage (based on the transient response registers) and may prevent
unintentional CCM cycles and associated increased SR FET voltage
stress during upward voltage transitions under heavy load.

Prior to increasing the CV Setpoint, the OVA Threshold must be
increased to its new value (higher than the new target VOUT plus
margin) to prevent the OV Fault from asserting when the output
voltage rises.

After writing the new CV Setpoint, the system must wait for the
output voltage to reach the new value before updating the UVA
Threshold. This will prevent the UV Fault from asserting as the
output rises. The simplest method is a firmware delay based on the
magnitude of voltage increment (refer to Voltage Increment pseudo
-code section). With the CVO disabled and with the Transient
Response registers set to the recommended values, a time delay of
~5ms per volt is sufficient. Other methods can also be used, such as
allowing the external microcontroller to monitor the actual output
voltage to determine if the new target voltage has been reached.

Once the output voltage has settled to the new value, the UVA
Threshold can be updated, and the CVO Register can be configured.
For example, with a USB-PD Fixed Supply output, the CVO can be
reset to enbaled to reactivate output overcurrent protection.
However, with a USB-PD PPS output, the CVO needs to remain
disabled to have a constant-current output profile.
The CC Setpoint, it can be adjusted either before or after the voltage
transition. For example, if the output is being changed from 5 V / 3 A
into 9 V / 2 A and the CC setpoint is updated after the transition has
been completed, there will be an intermediate condition where the
programmed setpoints are 9 V / 3 A. In contrast if the CC setpoint is
updated before the transition, the intermediate condition will be 5 V /
2 A. The end-user can adjust when the CC setpoint is updated based
on which behavior is suitable for the application. A similar analysis
can be used for determining when to update the ISSC and CDC
registers.
Voltage Increment Pseudo Code
The pseudo-code below shows the commands and delay sequence
for output voltage increment. The OVA and UVA thresholds are set to
120% and 85% of the new CV setpoint respectively.

	
	 //Voltage Increase Routine

//CVO (0x0E) bit[0] = 0 (Disable CVO)
	 Set CVO -> Disable

	 Set OVA -> (New CV Setpoint) * 1.20

	 Set CV -> New CV Setpoint

	 //Compute Delay in ms based on voltage difference
	 //Setpoints are in 10mV/LSB
	 //Effective delay = 5ms per volt increase
	 //Limit minimum delay to certain value (e.g. 6ms)
	 Compute Delay in miliSeconds ->
		 (Previous CV Setpoint – New CV Setpoint)/20

	 Wait	 Delay in miliSeconds

	 Set UVA -> (New CV Setpoint) * 0.85

	 //Set CVO based on user preference
	 Set CVO -> Enable, 8ms, AR

	 //Set CC at end of transition
	 //Adjust placement based on user preference
	 Set CC -> New CC Setpoint

Rev. A 12/25

13

Application Note

www.power.com

AN-110

Voltage Decrement Sequence
Figure 5 below illustrates the recommended command sequence for
output voltage decrement, with the assumption that InnoSwitch5-Pro
IC has already been initialized based on the process described in the
previous section and the bus switch is closed (VBEN enabled).

OVA: 6.2 V

110% CV

104% CV

VOUT: 5V

UVA: 3.6 B

11.2 V

9 V

7.6 V

PI-10204-082825

*
CDC

(0 mV)
CVO, CDC

(user-
preference)

UVA OVACV

BLEEDER = 0x00
(Disable Both Weak and

Strong Bleeders)

Continuous Polling
of VOUT4PCT bit

*Update CC either before or after the voltage transition
based on system requirements

BLEEDER = 0xD3
(Week ON, Strong ON with
Auto Disable at VOUT10PCT

At least 1 ms Delay
is required

(CV to Bleeder)

*

Figure 5.	 Recommended Command Sequence for VOUT Decrement.

The CDC Register is set to 0 mV to later simplify the later monitoring
of output voltage. With CDC disabled, the output voltage becomes
independent of the load current, and the microcontroller can either
use the VOUT4PCT telemetry (READ10, bit[5]) or independently
monitor the output voltage.

Prior to decreasing the CV Setpoint, the UVA Threshold must be
decreased to its new value (lower than the new target VOUT with
appropriate margin) to prevent the UV Fault from asserting before the
output voltage falls.

The timing between the CV and Bleeder commands is critical to
ensure proper operation for voltage decrements. The VOUT pin
bleed function is only intended to discharge the flyback output
capacitor close to the new voltage for large transitions (e.g.
>500 mV decrements). If the Bleeder is not used, it may take a long
time to discharge the output capacitor voltage and an auto-restart
may be triggered or the desired time requirements for voltage
transition not achieved. It is necessary to avoid overlap between
power supply switching and the strong Bleeder being active. Writing
to the CV register takes up to 1 ms for the internal reference to
update when VBEN is enabled, which will also be the point at which
the power supply stops switching (VOUT will be higher than the
reference). Therefore, after updating the CV Setpoint, a delay of at
least 1 ms is required before enabling the Bleeder.

The Bleeder register (0x86) must be enabled with a value of 0xD3
only. The Weak Bleeder is a ~2.5 mA current sink on VOUT pin that
turns on/off when the VOUT is greater than or below ~104% of the
target regulation voltage. The Strong Bleeder is a ~270 mA current
sink on the VOUT pin that turns on when the appropriate I2C
command is received (Bleeder 0x86 = 0xD3). It turns off when VOUT
drops below ~110% of the target regulation voltage. By sending the
Bleeder command after a 1 ms delay from the CV command, the
overlap between Strong Bleeder and power supply switching is
avoided and results in a successful downward output voltage
transition.

After sending the Bleeder Enable command, the MCU must
continuously monitor the output voltage tp determine if it has
reached the new target voltage before adjusting the OVA threshold.
This prevents unwanted triggering of OV fault protection. One
method is for the MCU to indepedently monitor VOUT through its own
peripherals. Another method is by polling the telemetry VOUT4PCT
bit from the InnoSwitch5-Pro IC READ10 (0x14, bit[5]).

Note that using the command Bleeder 0x86 = 0xD3 will initiate a fast
output discharge due to the Strong Bleeder, which will only be
disabled when 110% of target voltage is reached (see region in red in
Figure 5). Upon crossing VOUT10PCT, the Weak Bleeder remains on
and helps further discharge VOUT to 104% of target voltage (see
orange region from Figure 5). Once VOUT4PCT is reached, the next
I2C commands can be written – Bleeder 0x86 = 0x00 to disable the
Weak Bleeder, and then set the new target OVA threshold. The same
analysis can be used whether output load is present or not. The
presence of an output load simply makes the downward voltage
transition faster.

Once the output voltage has settled, the CVO and CDC registers can
then be configured. For example, with a USB-PD Fixed Supply
output, the CVO can be set as Enabled to have output overcurrent
protection together with a certain CDC value. However, with a
USB-PD PPS output, the CVO needs to remain as Disabled to have a
constant-current output profile and CDC is typically set to 0 mV to
meet output regulation limits. For the CC Setpoint and ISSC register
update, the same analysis as described in the previous section can be
applied. Updates to these registers is based on the intermediate value
acceptable in the end-user application.
Voltage Decrement Pseudo-Code
The pseudo-code below shows the commands for output voltage
decrement. The UVA and OVA thresholds are set to 85% and 120%
of the new CV setpoint respectively.

 //Voltage Decrease Routine

 //Disable CDC for simple monitoring
 //when VOUT decreased to new value
 Set CDC -> 0 mV

 Set UVA -> (New CV Setpoint) * 0.85

 Set CV -> New CV Setpoint

 //At least 1 ms delay required from CV to Bleeder
 Wait Delay -> 1ms

 //Set Bleeder = 0xD3 (Weak Bleeder Enable,
 // Strong Bleeder Enable with
 //	 Auto-Disable at VOUT10PCT)
 Set BLEEDER -> 0xD3

 Poll Read10 bit[5] -> Until VOUT4PCT bit = 0

 //Set Bleeder = 0x00 (Weak Bleeder Disable,
 //		 Strong Bleeder Disable)
 Set BLEEDER -> 0x00

 Set OVA -> (New CV Setpoint) * 1.20

 //Set CVO and CDC based on user preference
 Set CVO -> Enable, 8ms, AR

 Set CDC -> 200 mV

 //Set CC at end of transition
 //Adjust placement based on user preference
 Set CC -> New CC Setpoint

Rev. A 12/25

14

Application Note

www.power.com

AN-110

Line Sensing Sequence
The InnoSwitch5-Pro IC has a primary switch and secondary
synchronous rectifier conduction-time reporting which can be used to
estimate the input line voltage. The primary switch on-time is
reported as TON on READ21 (0x2A) and the secondary synchronous
rectifier conduction time is reported as TOFF on READ22 (0x2C).

The TON and TOFF registers will only start to be updated once 0x01
is sent to the Line Sense Trigger register (0x1C). The Line Sense
Report flag will be set after 16 samples are accumulated for both
registers. The line sense value can be calculated shown below.

The TON value needs to be subtracted by b’64 to account for system
delays.

The accuracy of the line sense feature is dependent on the SR
conduction period which will be compromised at light loads. Before
estimating values, it is recommended that the user characterize the
line voltage across different operating conditions. The SR ZVS values
need to be optimized before using the Line Sense Enable command
during the this mode of operation.

Note: This equation is valid for both SR ZVS and QR mode of
operation

Example 1
At 30 V output, NP = 25T, & NS = 5T
Obtained TON = 0x062E or d’1582
Obtained TOFF = 0x03F2 or d’1010

VIN NS

NP= X (VOUT + VDS(SR)) X TON

TOFF

 //Line Sensing

 //Trigger Line Sensing Trigger Register 0x1C
 Set LS -> 0x01

 //Poll Line Sense Ready Register bit
 while (READ10 BIT [12]
 {
 delay_ms (5ms)
 }

 Set CV -> New CV Setpoint

 //Read Line Sense TON register
 Read READ21 bit [11:0]

 //Read Line Sense TOFF register
 Read READ22 bit [15:0]

VIN 5
25

= X 30 V X 1518
1010

VIN 99.8 V=

Rev. A 12/25

15

Application Note

www.power.com

AN-110

Telemetry / Read Back
The InnoSwitch5-Pro IC communicates with the I2C Master (external
MCU) to report back the status of the power supply. The telemetry
features include the CV, CC, and constant power setpoints, OV/UV
thresholds, all programmable protection settings, interrupt status,
and individual fault status. The InnoSwitch5-Pro family datasheet
provides the complete list of available telemetry register assignments.

Prior to using the telemetry, the I2C Read/Write drivers of the
microcontroller must be configured appropriately. The pseudo-codes
in this section are in C programming language, which is used in the
InnoSwitch5-Pro IC code library for the Microchip PIC16F family.

System Ready Signal
When starting from an initial power-up, the microcontroller should
monitor the System Ready bit (READ10, bit14). A value of “1”
indicates the InnoSwitch5-Pro is IC ready to communicate and accept
further commands. The code example below shows a function
reading back the System Ready bit.
System Ready – Code Example

#define READ10_Reg_CONTROL_S 14

bool Inno5Pro_Read_Status_SystemReady (void)
{
 //READ10 bit14, System Ready Signal
return InnoProBase_Read_Bit (INNO5PRO_READ10,
 READ10_Reg_CONTROL_S);
{

I2C Read Back Code Examples

Read Word (16-bit) Telemetry
InnoProBase_Telemetry function is an API for reading 16-bits data
from the desired telemetry register address. It uses the I2C_Read16
function which is an I2C driver created for the InnoSwitch5-Pro family
and it returns the high and low bytes appended together in a 16-bits
format. The return value from this function is simply the 16-bits raw
data as it is, regardless of the presence of any parity bits.

uint16_t InnoProBase_Telemetry(uint8_t u8ReadBack_Address)
{
 uint16_t u16TempRead = 0;

 //I2C_Read16 reads 16 bits of data
 u16TempRead = I2C_Read16(INNOPRO_I2C_ADDRESS,
 u8ReadBack_Address);

 return u16TempRead;
}

Read Byte (8-bit) Telemetry
InnoProBase_Read_Byte function is an API for reading either the
high byte or the low byte from the desired telemetry register address.

 uint8_t InnoProBase_Read_Byte (uint8_t u8ReadBack_Address,
 bool bHighByte)
{
 uint16_t u16TempRead = 0;

 //I2C_Read16 reads 16 bits of data
 u16TempRead = I2C_Read16(INNOPRO_I2C_ADDRESS,
 u8ReadBack_Address);

 if (bHighByte)
 {
 return (u16TempRead & 0xFF00) >> 8;
 }
 else
 {
 return (u16TempRead & 0x00FF);
 }
}

Read Bit Telemetry
InnoProBase_Read_Bit function is an API for reading the desired bit
of a telemetry register. This function returns a value of either 1 or 0.

#define test_bit(VAR,BIT)		 (VAR & (1<<BIT))

bool InnoProBase_Read_Bit (uint8_t u8ReadBack_Address,
 uint8_t u8Bit)
{
 uint16_t u16TempRead = 0;
 //I2C_Read16 reads 16 bits of data
 u16TempRead = I2C_Read16(INNOPRO_I2C_ADDRESS,
 u8ReadBack_Address);

 //return the value of the bit
 return (test_bit(u16TempRead,u8Bit));
}

VOUT10PCT Bit – Code Example
The VOUT10PCT bit is automatically set whenever the output voltage
is above 10% of the target voltage (CV Setpoint). Otherwise,
VOUT10PCT bit is automatically cleared.

#define READ10_Reg_VOUT10PCT 4

bool Inno5Pro_Read_Status_Vout10pct (void)
{
 //READ10 bit4, VOUT > 1.1 * target regulation voltage
 return Inno5Pro_Read_Bit (INNO5PRO_READ10,
 READ10_Reg_VOUT10PCT);
}

VOUT4PCT Bit – Code Example
The VOUT4PCT bit is automatically set whenever the output voltage is
above 4% of the target voltage. Otherwise, VOUT4PCT bit is
automatically cleared.

With InnoSwitch5-Pro devices, writing 4b’0 into the high nibble
(bit[7:4]) of the Bleeder command register (address 0x86) disables
the Weak Bleeder function and will result in VOUT4PCT bit to always
be cleared. The VOUT4PCT bit will again become dependent on
output voltage once the Weak Bleeder is enabled, e.g. writing into
the Bleeder command register with the high nibble set to 0xD and the
low nibble configured based on the desired Strong Bleeder operation.

Rev. A 12/25

16

Application Note

www.power.com

AN-110

#define READ10_Reg_VOUT4PCT 5

bool Inno5Pro_Read_Status_Vout4pct(void)
{
 //READ10 bit5, VOUT > 1.04 * target regulation voltage
 return Inno5Pro_Read_Bit (INNO5PRO_READ10,
 READ10_Reg_VOUT4PCT);
}

Line Sense Reporting Ready Bit – Code Example
The line sense Reporting Ready bit is automatically set once the
secondary controller line sense measurement has been completed
and the line sense TON and TOFF Telemetry registers have been
updated with their 16-sample accumulated values.

#define READ10_Reg_LS_READY 12

bool Inno5Pro_Read_Status_LineSense (void)
{
 //READ10 bit5, VOUT > 1.04 * target regulation voltage
 return Inno5Pro_Read_Bit (INNO5PRO_READ10,
 READ10_Reg_LS_READY);
}

Read Setpoint and Threshold
Inno5Pro_Read_SetPoint function reads the specified telemetry. The
register and returns its corresponding 16-bits data with the odd parity
(bit[15] and bit[7]) removed. This function can be used to analyze
the result from telemetry registers that contain odd parity in their raw
data such as READ1, READ2, READ3, and READ4.

uint16_t InnoProBase_Read_SetPoint (uint16_t
 u16ReadBack_Address)
{
 uint16_t u16 TempRead Value = 0;
 uint16_t u16 Converted Value = 0;

 u16TempReadValue = InnoProBase_Telemetry (
 u16ReadBack_Address);

 u16ConvertedValue = ((u16TempReadValue & 0x7F00 >> 1) +
 		 	 (u16TempReadValue & 0x007F);

 return u16ConvertedValue;
}

Read Voltage – Instantaneous and Average
The two functions provide the decimal equivalent data from the
instantaneous and average output voltage telemetry registers. As
specified in InnoSwitch5-Pro family datasheet, these telemetry
registers have a report-back step size that depends on the output
voltage. The decimal result can be mapped to the actual output
voltage by dividing it by 10 mV (e.g READ9 data = 0x01F4 -> d’500
-> 5.00 V).

#define INNO5PRO_READ9 0x12

uint16_t Inno5Pro_Read_Measured_Volts(void)
{
 uint16_t u16TempReadValue = 0;
 uint16_t u16ConvertedValue = 0;

 //Read instantaneous output voltage
 u16TempReadValue = InnoProBase_Telemetry(
 INNO5PRO_READ9);

 //Clear bit [15:12], use bit [11:0]
 u16ConvertedValue = (u16TempReadValue & 0x0FFF);

 //Return the masked result, e.g. 0x01F4 -> d’500 -> 5.00V
 return u16ConvertedValue;
}

#define INNO5PRO_READ13 0x1A

uint16_t Inno5Pro_Read_VoltsAverage(void)
{
 uint16_t u16TempReadValue = 0;
 uint16_t u16ConvertedValue = 0;

 //Read average output voltage
 u16TempReadValue = InnoProBase_Telemetry(
 INNO5PRO_READ13);

 //Clear bit [15:12], use bit [11:0]
 u16ConvertedValue = (u16TempReadValue & 0x0FFF);

 //Return the masked result, e.g. 0x01F4 -> d’500 -> 5.00V
 return u16ConvertedValue;
}

Read Current – Instantaneous and Average
The two functions below provide the data converted into mA units
from the instantaneous and average output current telemetry
registers. The macro for CC bit resolution is provided via the
Constant Current register, CC (0x98) section which is set based on
the effective RSENSE seen by the IS-GND pins. The data from the
telemetry register is mapped to the actual output current by
multiplying it with the CC bit resolution.

Rev. A 12/25

17

Application Note

www.power.com

AN-110

#define INNO5PRO_READ8		 0x10
// Rsense ~6.1mohm
// CC Bit Resolution (32mV/Rsense)*(1/192LSB)
// 27.3 mA/LSB for Rsense 6.1mohm
#define INNO5PRO_CC_BIT_RESOLUTION (273)

uint16_t Inno5Pro_Read_Amps (void)
{
 uint16_t u16TempReadValue = 0;
 uint16_t u16ConvertedValue = 0;

 //Read instantaneous output current
 u16TempReadValue = InnoProBase_Telemetry(
 INNO5PRO_READ8);

 //Clear bits [15:9] and the remove parity bit [7]
 u16ConvertedValue = ((u16TempReadValue & 0x0100 >> 1) +
 (u16TempReadValue & 0x007F);

 //Example READ8 data = 183 decimal
 //Output Current 	 = 183 * CC bit resolution
 //		 = 183 * 27.3mA/LSB
 //		 = 183 * 273 / 10
 //		 = 4995 mA
return ((u16ConvertedValue *
 		 INNO5PRO_CC_BIT_RESOLUTION) / 10);
}

#define INNO5PRO_READ12		 0x18
// Rsense ~6.1mohm
// CC Bit Resolution (32mV/Rsense) * (1/192LSB)
// 27.3 mA/LSB for Rsense 6.1mohm
#define INNO5PRO_CC_BIT_RESOLUTION (273)

uint16_t Inno5Pro_AmpsAverage(void)
{
 uint16_t u16TempReadValue = 0;
 uint16_t u16ConvertedValue = 0;

 //Read instantaneous output current
 u16TempReadValue = InnoProBase_Telemetry (
 INNO5PRO_READ12);

 //Clear bits [15:8]
 u16ConvertedValue = (u16TempReadValue & 0x00FF);

 //Example READ12 data = 183 decimal
 //Output Current 	 = 183 * CC bit resolution
 //		 = 183 * 27.3mA/LSB
 //		 = 183 * 273 / 10
 //		 = 4995 mA
 return ((u16ConvertedValue *
 	 INNO5PRO_CC_BIT_RESOLUTION) / 10);
}

Rev. A 12/25

18

Application Note

www.power.com

AN-110

Code Library Overview
To simplify the use of InnoSwitch5-Pro devices, a simple code library
for Microchip PIC16 family and Arduino platform is provided as a
reference. The library contains all the registers needed for
controlling the device. These registers are organized as command
registers and telemetry registers. The computation macros are
presented to aid in setpoint calculations. The register default values
are also included to assist writing into the required registers for
device initialization.

PIC16F18325 MCU Implementation

Implementation
Header Files Inclusion
The Library header files contain all the function declarations and
macro definitions. This must be included in the main page as shown.

#include “Drv_Rtc.h”
#include “Drv_i2c.h”
#include “Inno5Pro.h”
#include “Inno5Pro_Config.h”

InnoSwitch5-Pro Initialization
Before the continuous execution of the main code, the status of
System Ready Signal is monitored to ensure the InnoSwitch5-Pro IC
is ready to receive I2C commands. Afterwards, initialization
commands can be sent to the device to re-configure the default
settings as needed.

void main(void)
{
 //...
 Inno5Pro_Initialization();
 //...
 // (Main Loop Codes)
}

Control Functions Set-up
Some example control functions are listed below, and the complete
list can be found in the source code library.

Sets the Output Voltage Setpoint

Inno5Pro_Write_Volts (u16SetPtCV);

Sets the Constant Current Setpoint

Inno5Pro_Write_Amps(u16SetPtCCmA);

Sets the Over Voltage Threshold and Response

Inno5Pro_Write_Over_Volts (u16SetPtOVA,
 u16Ov_FaultResp);

Sets the Under Voltage Threshold, Response, Timer Value and Timer
Control

Inno5Pro_Write_Under_Volts (u16SetPtUVA,
 u16Uv_FaultResp,
 u16Uv_timer,
 u16Uv_timer_En);

Sets the Cable Drop Compensation Value

Inno5Pro_Write_Cable_Drop_Comp(u16SetPtCDC);

Sets the Constant Output Power Threshold

Inno5Pro_Write_Volt_Peak (u16SetPtVKP);

 Used for Turning On or Off the Bus Voltage Switch

Figure 6.Inno5Pro_Vbus_Switch_Control (u16VbenControl

Used for Turning On or Off the VOUT pin Weak and Strong Bleeder

Inno5Pro_Bleeder_Control (u16BleederControl)

Used to perform an output transition wherein:
•	 Proper sequence and timing of I2C commands are used to update

CC and CV setpoint while preventing inadvertent triggering of UV or
OV protection.

•	 VOUT pin Weak and Strong Bleeder are controlled when decreasing
into a lower voltage setpoint.

•	 OverVoltage (OVA) and Under Voltage (UVA) thresholds are updated
into new values:

1.	 	OVA is 120% of new CV set-point
2.	 	UVA is 85% of new CV set-point

Inno5Pro_PD_Write_VI (u16SetPtCV, u16SetPtCCmA);

Telemetry Functions Setup
Some example telemetry functions are listed below, and the complete
list can be found in the source code library.

Used for reading the desired Register Address
Inno5Pro_Telemetry(u16Register_Address);

Used for reading the specific bit from the Register Address

Inno5Pro_Read_Bit(u16Register_Address, u8Bit);

Returns the Reg_Control_S bit value to identify when InnoSwitch5-Pro
is ready to communicate and accept commands

Inno5Pro_Read_Status_SystemReady();

Returns the instantaneous measured output voltage

Inno5Pro_Read_Volts();

Returns the instantaneous measured output current

Inno5Pro_Read_Amps

Returns the VOUT10PCT bit value

Inno5Pro_Read_Amps();

Returns the VOUT4PCT bit value
Inno5Pro_Read_Status_Vout4pct();

Returns the Line Sense Reporting Ready bit value
Inno5Pro_Read_Status_LineSense();

Rev. A 12/25

19

Application Note

www.power.com

AN-110

Basic Code Example
This code example is to demonstrate the basic usage of the
InnoSwitch5-Pro family code library.
•	 	Initial commands are sent using the InnoSwitch5-Pro IC

initialization routine.
•	 	The main routine sets the output voltage to 5 V and constant

current to 5 A.
•	 	Cable Drop Compensation (CDC) is programmed to 300 mV.
•	 	VBUS Switch is turned ON.

//MPLAB Code Configurator Header File
#include “mcc_generated_files/mcc.h”

//Step 1: Add Header Files
#include “Code/Drv_i2c.h”
#include “Code/Drv_Rtc.h”
#include “Code/Inno5Pro_Config.h”
#include “Code/Inno5Pro.h”

void main(void)
{
 //Initialize the device
 SYSTEM_Initialize();
 INTERRUPT_GlobalInterruptEnable();
 INTERRUPT_PeripheralInterruptEnable();

 MSSP_HostInit();

 //Step 2: Write Initialize Commands to InnoSwitch5-Pro
 Inno5Pro_Initialization();

 //Step 3: Call functions on the Main Loop
 while(1)
 {
 //Main Loop Variable Initialization
 //Initialize Output Voltage at 5V
 uint16_t u16Volts = 500;
 //Initialize Constant Current at 5A	
 uint16_t u16Amps = 5000;

 //Library Call in the Mainloop
 //Set Voltage and Current
 Inno5Pro_PD_Write_VI (u16Volts, u16Amps);
 //Set Cable Drop Compensation
 Inno5Pro_Write_Cable_Drop_Comp(
 INNO5PRO_CDC_SET_PT_300MV);
 //Set Vbus Enable
 Inno5Pro_Vbus_Switch_Control	 (INNO5PRO_VBUS_ENABLE);
 }
}

I2C Drivers
I2C drivers must be correctly configured depending on the
microcontroller being used. This must be configured to meet the I2C
packet format on the InnoSwitch5-Pro family datasheet for read and
write transactions. I2C transactions must have at least a 150μs delay
between commands.
I2C Write Code Example

void I2C_Write16 (uint8_t slaveAddress,
 uint8_t dataAddress,
 uint8_t *dataBuffer,
 uint8_t buflen)
{
 //150us delay on every I2C transaction
 delayMicroseconds(150);

 uint8_t writeBuffer[3];

 //Copy Command/Telemetry Register Address to buffer
 writeBuffer[0] = dataAddress;

 if (buflen > 3)
{
 buflen = 3;
}

 //Copy Data Bytes to buffer
 writeBuffer[1] = dataBuffer[0];
 writeBuffer[2] = dataBuffer[1];

 //Initiate Write to Device
 MSSP_WriteBlock (slaveAddress,
 writeBuffer,
 buflen);
	
}

I2C Read Code Example

uint16_t I2C_Read16 (uint8_t slaveAddress,
 uint8_t dataAddress,
 uint8_t *dataBuffer,
 uint8_t buflen)
{
//150us delay on every I2C transaction
delayMicroseconds(150);

uint8_t buflen = 0x02;
uint8_t readDataBuffer[2];
uint16_t u16Lsb;
uint16_t u16Msb;

//Routine for I2C Write 0x80, Start , End
//followed by I2C Read LSB MSB
//Results stored in readDataBuffer
MSSP_RegisterSelectAndRead (slaveAddress,
 dataAddress,
 readDataBuffer,
 buflen);

//Example 5V, Returns F4
u16Lsb = readDataBuffer[0]; 		

//Example 5V, Returns 01
u16Msb = readDataBuffer[1];

//Returns 01F4
return ((u16Msb<<8)|(u16Lsb));
}

Rev. A 12/25

20

Application Note

www.power.com

AN-110

Arduino Implementation

Implementation

Header Files Inclusion
The library header files contain all the function declarations and
macro definitions. This must be included in the main page as shown.

#include “Drv_Rtc.h”
#include “Drv_i2c.h”
#include “Inno5Pro.h”
#include “Inno5Pro_Config.h

Class Instance Creation
Construct a class instance to call the functions inside Inno5Pro_
Application. Constructing a class instance of Inno5Pro_Rtc is
optional.

Inno5Pro_Application Inno5ProApp;
Inno5Pro_Rtc Inno5ProClk;

InnoSwitch5-Pro Initialization
Before the continuous execution of the main code, the status of
System Ready Signal is monitored to ensure the InnoSwitch5-Pro IC
is ready to receive I2C commands. Afterwards, initialization
commands can be sent to the device to re-configure the default
settings as needed.

The 400 kHz clock frequency for the I2C communication is set-up on
initialization.

void setup()
{
 Inno5ProApp.Inno5Pro_Initialization();
}

Control Functions Set-up
Some example control functions are listed below, and the complete
list can be found in the source code library.

Sets the Output Voltage Setpoint
Inno5ProApp.Inno5Pro_Write_Volts (u16SetPtCV);

Sets the Constant Current Setpoint

Inno5ProApp.Inno5Pro_Write_Amps (u16SetPtCCmA);

Sets the Overvoltage Threshold and Response

Inno5ProApp.Inno5Pro_Write_Over_Volts (u16SetPtOVA,
 u16Ov_FaultResp);

Sets the Undervoltage Threshold, Response, Timer Value and Timer
Control

Inno5ProApp.Inno5Pro_Write_Under_Volts(
 u16SetPtUVA,
 u16Uv_FaultResp,
 u16Uv_timer,
 u16Uv_timer_En);

Sets the Cable Drop Compensation Value

Inno5ProApp.Inno5Pro_Write_Cable_Drop_Comp(
 u16SetPtCDC);

Sets the Constant Output Power Threshold

Inno5ProApp.Inno5Pro_Write_Volt_Peak (u16SetPtVKP);

Used for turning On or Off the Bus Voltage Switch
Inno5ProApp.Inno5Pro_Vbus_Switch_Control(
 u16VbenControl);

Used for turning On or Off the VOUT pin Weak and Strong Bleeder

Inno5ProApp.Inno5Pro_Bleeder_Control(
 u16BleederControl);

Used to perform an output transition wherein:
•	 Proper sequence and timing of I2C commands are used to update

CC and CV setpoint while preventing any inadvertent triggering of
UV or OV faults.

•	 VOUT pin weak and strong Bleeder are controlled when decreasing
into a lower voltage setpoint.

•	 Overvoltage (OVA) and Undervoltage (UVA) thresholds are updated
into new values:

 1. OVA is 120% of new CV set-point
 2. UVA is 85% of new CV set-point

Inno5ProApp.Inno5Pro_PD_Write_VI (u16SetPtCV,
 u16SetPtCCmA);

Telemetry Functions Setup
Some example telemetry functions are listed below, and the complete
list can be found in the source code library.

Used for reading the desired register address
Inno5ProApp.Inno5Pro_Telemetry(
 u16Register_Address);

Used for reading the specific bit from the Register Address

Inno5ProApp.Inno5Pro_Read_Bit (u16Register_Address,
 u8Bit);

Returns the Reg_Control_S bit value to identify when InnoSwitch5-Pro
is ready to communicate and accept commands

Inno5ProApp.Inno5Pro_Read_Status_SystemReady ();

Returns the instantaneous measured output voltage

Inno5ProApp.Inno5Pro_Read_Volts ();

Returns the instantaneous measured output current

Inno5ProApp.Inno5Pro_Read_Amps ();

 Returns the VOUT10PCT bit value

Inno5ProApp.Inno5Pro_Read_Status_Vout10pct ();

Returns the VOUT4PCT bit value

Inno5ProApp.Inno5Pro_Read_Status_Vout4pct ();

Returns the Line Sense Reporting Ready bit value

Inno5ProApp.Inno5Pro_Read_Status_LineSense ();

Rev. A 12/25

21

Application Note

www.power.com

AN-110

Basic Code Example

//Step 1: Add Header Files
#include “Code/Drv_i2c.h”
#include “Code/Drv_Rtc.h”
#include “Code/Inno5Pro_Config.h”
#include “Code/Inno5Pro.h”

//Step 2: Create the class instance
Inno5Pro_Application Inno5Pro;

//Step 3: Write initial commands to InnnoSwitch5-Pro
void setup(void)
{
 Inno5ProApp.Inno5Pro_Initialization ();
}

//Step 4: Call the functions on the main loop
void loop()
{
 //Output Voltage and Constant Current Setpoint 5V, 5A
 Inno5ProApp.Inno5Pro_Write_VI(500, 5000);

 //Cable Drop Compensation 300 mV
 Inno5ProApp.Inno5Pro_Write_Cable_Drop_Comp(
 INNO5PRO_CDC_SET_PT_300MV);

 //Vbus Enable
 Inno5ProApp.Inno5Pro_Vbus_Switch_Control (
 INNO5PRO_VBUS_ENABLE);
}

I2C Drivers
The I2C drivers must be correctly configured based on the Arduino
Wire Library.

https://www.arduino.cc/en/Reference/Wire

This must be configured to meet the I2C packet format in the
InnoSwitch5-Pro family data sheet for write and read transactions.
Every I2C transaction must have at least a 150 μs delay between
commands.

I2C Write Code Example

void Inno5Pro_I2C::I2C_Write16 (uint8_t slaveAddress,
			 uint8_t dataAddress,
			 uint8_t *dataBuffer,
			 uint8_t buflen)
{
	 //150us delay on every I2C transaction
	 delayMicroseconds(150);
	 Wire.beginTransmission((uint8_t)slaveAddress);

//I2C driver depends on Arduino board
#if ARDUINO >= 100
	 //Send register address followed by data bytes
	 Wire.write((uint8_t)dataAddress);
	 Wire.write((uint8_t)dataBuffer[0]);
	 if (buflen == 3)
	 {
			 Wire.write((uint8_t)dataBuffer[1]);
	 }
#else
 //Send register address followed by data bytes
	 Wire.send((uint8_t)dataAddress);	
	 Wire.send((uint8_t)dataBuffer[0]);
	 if (buflen == 3)
	 {
	 Wire.send((uint8_t)dataBuffer[1]);
	 }
#endif

	 Wire.endTransmission ();
}

I2C Read Code Example

void Inno5Pro_I2C::I2C_Read16 (uint8_t slaveAddress,
			 uint8_t dataAddress,
			 uint8_t *dataBuffer,
			 uint8_t buflen)
{
 	 //150us delay on every I2C transaction
 delayMicroseconds(150);
 //Storage for LSB and MSB
 uint8_t u8Lsb;						

 uint8_t u8Msb;

	 //Start transmission to device
 Wire.beginTransmission(slaveAddress);

#if (ARDUINO >= 100)
 //Send 0x80 followed by Start and End address
 Wire.write(0x80);
 Wire.write(dataAddress);
 Wire.write(dataAddress);
#else
	 //Send 0x80 followed by Start and End address
 Wire.send(0x80);
 Wire.send(dataAddress);
 Wire.send(dataAddress);
#endif
 Wire.endTransmission ();

	 //150us delay on every I2C Transaction
	 delayMicroseconds (150);

	 //Start transmission to device
	 Wire.beginTransmission(slaveAddress);
	 //Send data n-bytes read
	 Wire.requestFrom (slaveAddress, (uint8_t)0x02);

#if (ARDUINO >= 100)
	 //Example 5V, Returns F4
	 u8Lsb = Wire.read ();	
	
	 //Example 5V, Returns 01
	 u8Msb = Wire.read ();		
#else
	 //Example 5V, Returns F4
	 u8Lsb = Wire.receive ();

	 //Example 5V, Returns 01
	 u8Msb = Wire.receive ();
#endif

	 Wire.endTransmission ();

	 //Returns 0x01F4
	 return ((u8Msb<<8) | (u8Lsb));
}

 

Rev. A 12/25

22

Application Note

www.power.com

AN-110

 Documentation
The code documentation in .html and .chm file formats can be found
in the InnoSwitch5-Pro PIC library in the Documentation folder.

The .chm file serves as a manual that provides an overview and
overall setup for programming the InnoSwitch5-Pro device using the
MPLAB IDE. The documentation includes all the function
descriptions, macros, and code examples used in the InnoSwitch5-Pro
PIC Library. The file contains a navigation panel on the left to assist
in browsing through the different sections.

Revision Notes Date

A Production release. 12/25

For the latest updates, visit our website: www.power.com

For patent information, Life support policy, trademark information and to access a list of Power Integrations worldwide Sales and engineering
support locations and services, please use the links below.

https://www.power.com/company/sales/sales-offices

