

Title	Engineering Prototype Report for EP-73 2.3 W CV/CC Charger/Adapter Using LinkSwitch [®] -HF (LNK354P)				
Specification	85-265 VAC Input, 5.7 V, 400 mA Output				
Application	Low Cost Charger or Adapter				
Author	Power Integrations Applications Department				
Document Number	EPR-73				
Date	25-Oct-04				
Revision	1.0				

Summary and Features

- Low cost, low component count battery charger or adapter solution
- No-load power consumption <300 mW at 265 VAC input meets worldwide energy conservation guidelines
- Output voltage (CV) tolerance: ±10% across operating range
- Output current (CC) tolerance: ±12% across operating range
- Meets EN550022 and CISPR-22 Class B EMI with low value Y1 safety capacitor
- Ultra-low leakage current: <10 µA at 265 VAC input

The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at *www.powerint.com*.

Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com ~ ~ ~

lable Of Contents	
1 Introduction	3
2 Power Supply Specification	4
3 Schematic	6
4 Circuit Description	7
4.1 Input EMI Filtering	7
4.2 LinkSwitch-HF Primary	7
4.3 Output Rectification	7
4.4 Output Feedback	7
4.5 Design Aspects for EMI	8
5 PCB Layout	9
6 Bill Of Materials	10
7 Transformer Specification	11
7.1 Electrical Diagram	11
7.2 Electrical Specifications	11
7.3 Materials	11
7.4 Transformer Build Diagram	
7.5 Transformer Construction	
8 Transformer Design Spreadsheet	13
9 Performance Data	16
9.1 Efficiency	
9.2 No-load Input Power	
9.3 Regulation	
9.3.1 CV and CC Output Characteristics	
9.3.2 Load Regulation in CV	
10 Thermal Performance	
11 Line Surge	
12 Waveforms	
12.1 Drain Voltage and Current, Normal Operation	
12.2 Output Voltage Start-up Profile	
12.3 Drain Voltage and Current Start-up Profile	
12.4 Load Transient Response (75% to 100% Load Step)	
12.5 Output Ripple Measurements	
12.5.1 Ripple Measurement Technique	
12.5.2 Weasurement Results	
13 UIIUUUUUUU EIVII	
12.2 220 VAC Input, Full Load	20 דר
13.2 200 VAC IIIpul, Full LOad	
	Ζδ

Important Note:

15

Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

1 Introduction

This document is an engineering report describing a 5.7 V, 400 mA power supply utilizing a LNK354P device. This power supply is intended as a general purpose evaluation platform for *LinkSwitch-HF* devices in a battery charger application with secondary side CV/CC control.

The document contains the power supply specification, schematic, bill of materials, transformer documentation, printed circuit layout, and performance data.

Figure 1 – EP73 Populated Circuit Board Photograph.

2 Power Supply Specification

Description	Symbol	Min	Тур	Max	Units	Comment
Input Voltage Frequency	V _{IN} f _{LINE}	85 47	50/60	265 64	VAC Hz	2 Wire – no P.E.
No-load Input Power (230 VAC)				0.3	VV	
Output Output Voltage 1 Output Ripple Voltage 1	V _{out1} V _{ripple1}	5.2	5.7	6.3 100	V mV	$\pm5\%$ 20 MHz bandwidth With battery model attached to
Output Current 1	I _{OUT1}	350	400	450	mA	end of output cable, measured at 25 °C
Total Output Power						0(20 0
Continuous Output Power	Pout	1.82	2.3	2.8*	W	
Efficiency	η	55			%	Measured at P _{OUT} (1.8 W), 230 VAC, 25 °C
Environmental						
Conducted EMI		Mee	ts CISPR2	2B / EN55	022B	> 6 dB Margin
Safety		Designed to meet IEC950, UL1950 Class II				
Surge		2			kV	1.2/50 μs surge, IEC 1000-4-5, Series Impedance: Differential Mode: 2 Ω Common Mode: 12 Ω
Surge		2			kV	100 kHz ring wave, 500 A short circuit current, differential and common mode
Ambient Temperature	T _{AMB}	0		50	°C	Free convection, sea level

^{*}Maximum output power of the LNK354 is restricted by enclosure size – higher powers are possible with larger enclosures and PCB heatsink area.

Figure 2 – Output CV/CC Envelope Specification.

3 Schematic

Figure 3 – EP73 Schematic.

4 Circuit Description

This circuit is configured as a flyback topology power supply utilizing the LNK354P. Secondary side constant voltage (CV) and constant current (CC) feedback circuitry provides characteristics required for battery charging applications.

4.1 Input EMI Filtering

The AC input voltage is rectified by input bridge D1 - D4. The rectified DC is then filtered by the bulk storage capacitors C1 and C2. Inductor L1, C1 and C2 form an input pi filter, which attenuates differential mode conducted EMI.

It is recommended that RF1 be of wire-wound construction to withstand input current surges while the input capacitor charges (metal film type are not recommended), and be compliant with safety flammability hazard requirements. Please consult your safety agency representative for requirements specific to your application.

4.2 LinkSwitch-HF Primary

The LNK354P device U1 integrates the power switching device, oscillator, control, startup, and protection functions. The integrated 700 V MOSFET has excellent switching characteristics allowing operation at the 200 kHz operating frequency.

The rectified and filtered input voltage is applied to the primary winding of T1. The other side of the transformer primary is driven by the integrated MOSFET in U1. Diode D5, C3, R1, R2, and R3 form the primary clamp network. This limits the peak drain voltage due to leakage inductance. Resistor R3 allows the use of a slow, low cost rectifier diode by limiting the reverse current through D5 when U1 turns on. The selection of a slow diode also improves conducted EMI.

To regulate the output, ON/OFF control is used. During normal operation, switching of the power MOSFET is disabled when a current greater than 49 μ A is delivered into the FEEDBACK pin. Current lower than this threshold allows a switching cycle to occur terminating when the peak primary current reaches the internal current limit.

Current into the FEEDBACK pin is fed, via optocoupler U2, from the BYPASS pin removing the need for an auxiliary bias winding on the transformer.

4.3 Output Rectification

Output rectification is provided by Schottky diode D6. The low forward voltage provides high efficiency across the operating range. Low ESR capacitor C6 achieves minimum output voltage ripple and noise in a small can size for the rated ripple current specification.

4.4 Output Feedback

Output voltage, in constant voltage (CV) mode, is set by the Zener diode VR1 plus emitter-base voltage of PNP transistor Q1. The V_{BE} of Q1 divided by the value of R7 sets

the bias current through VR1 (~2.7 mA). When the output voltage exceeds the threshold voltage determined by Q1 and VR1, Q1 is turned on and current flows through the LED of U2. As the LED current increases, the current fed into the FEEDBACK pin increases disabling further switching cycles of U1. At very light loads almost all switching cycles will be disabled, giving a low effective switching frequency and providing low no-load consumption.

Resistors R6 and R8 ensure that the ratings of Q1 are not exceeded during load transients.

Resistors R9 and R10 form the constant current (CC) sense circuit. Above approximately 400 mA, the voltage across the sense resistor exceeds the optocoupler diode forward conduction voltage of approximately 1 V. The current through the LED is therefore determined by the output current and CC control dominates the CV feedback loop.

4.5 Design Aspects for EMI

In addition to the simple input pi filter for differential mode EMI, this design makes use of shielding techniques in the transformer to reduce common mode EMI displacement currents. Resistor R5 and C5 are added to act as a damping network to reduce high frequency transformer ringing.

To return high frequency common mode displacement currents, a small value (100 pF) Y1 safety capacitor is placed across the isolation barrier. This is a small enough value to still meet the design requirement of low leakage current.

These techniques combined with the frequency jitter of *LinkSwitch-HF* give excellent conducted and radiated EMI performance.

5 PCB Layout

Figure 4 – Printed Circuit Layout (Approximately 1.2 x 1.8 inches).

6 Bill Of Materials

ltem	Qnty	Ref. Des.	. Value	Description	Mfg Part Number	Manufacturer
1	2	C1, C2	4.7 μF	4.7 μF, 400 V, Electrolytic, (8 x 11.5) 4.7 μF, 380 V, Electrolytic, (8 x 11.5)	SHD400WV 4.7uF XX380VB4R7M8X11LL	Sam Young United Chemi-Con
2	1	C3	2.2nF	2.2 nF, 400 V, Film	222237065222	Vishay (BC Components)
3	1	C4	100 nF	100 nF, 50 V, Ceramic, X7R, 0805	ECU-V1H221KBN	Panasonic
4	1	C5	2.2 nF	2.2 nF, 50 V, Ceramic, X7R, 0805	ECJ-2VB1H222K	Panasonic
5	1	C6	330 μF	330 $\mu F,$ 16 V, Electrolytic, Very Low ESR, 72 mΩ, (8 x 11.5)	KZE16VB331MH11LL	Nippon Chemi-Con
6	1	CY1	100 pF	100 pF, Ceramic, Y1	440LT10	Vishay
7	4	D1, D2, D3, D4	1N4005	600 V, 1 A, Rectifier, DO-41	1N4005	Vishay
8	1	D5	DL4007	1000 V, 1 A, Rectifier, Glass Passivated, DO-213AA (MELF)	DL4007	Diodes Inc
9	1	D6	SS14	40 V, 1 A, Schottky, DO-214AC	SS14	Vishay
10	2	J1,J2	PCB Terminal 22 AWG	PCB Terminal Hole, 22 AWG	N/A	N/A
11	1	J3	Output Cable Assembly	6 ft, 0.25 Ω , 2.1 mm connector (custom)	3PH243	Anam Instruments (Korea)
12	3	JP1, JP2 JP3	' J	Wire Jumper, Non insulated, 22 AWG, 0.4 in	298	Alpha
13	1	L1	1 mH	1 mH, 0.15 A, Ferrite Core	SBCP-47HY102B	Tokin
14	1	Q1	MMST3906	PNP, Small Signal BJT, 40 V, 0.2 A, SOT-323	MMST3906-7	Diodes Inc
15	2	R1, R2	47 kΩ	47 kΩ, 5%, 1/8 W, Metal Film, 0805	ERJ-6GEYJ473V	Panasonic
16	2	R3, R9	200 Ω	200 Ω, 5%, 1/8 W, Metal Film, 0805	ERJ-6GEYJ201V	Panasonic
17	1	R4	5.1 kΩ	5.1 kΩ, 5%, 1/8 W, Metal Film, 0805	ERJ-6GEYJ512V	Panasonic
18	1	R5	68 Ω	68 Ω, 5%, 1/8 W, Metal Film, 0805	ERJ-6GEYJ680V	Panasonic
19	1	R6	6.8 Ω	6.8 Ω, 5%, 1/8 W, Metal Film, 0805	ERJ-6GEYJ6R8V	Panasonic
20	1	R7	220 Ω	220 Ω, 5%, 1/8 W, Metal Film, 0805	ERJ-6GEYJ221V	Panasonic
21	1	R8	390 Ω	390 Ω, 5%, 1/8 W, Metal Film, 0805	ERJ-6GEYJ391V	Panasonic
22	1	R10	2.4 Ω	2.4 Ω, 5%, 1 W, Metal Oxide	RSF100JB-2R4	Yageo
23	1	RF1	8.2 Ω	8.2 $\Omega,$ 2.5 W, Fusible/Flame-Proof Wire-Wound	CRF253-4 5T 8R2	Vitrohm
24	1	T1	EE16	Custom	Sil6032 LSLA40331B IM 040 416 11	Hical Li Shin Vogt
25	1	U1	LNK354P	LinkSwitch-HF, LNK354P, DIP-8B	LNK354P	Power Integrations
26	1	U2	PC817D	Optocoupler, 80 V, CTR 300-600%, 4-DIP	PC817X4, IPC817D	Sharp, ISP
27	1	VR1	BZX79-B5V1	5.1 V, 500 mW, 2%, DO-35	BZX79-B5V1	Vishay

7 Transformer Specification

7.1 Electrical Diagram

Figure 5 – Transformer Electrical Diagram.

7.2 Electrical Specifications

Electrical Strength	60 Hz 1 minute, from Pins 3-5 to Pins 6-10	3000 VAC
Primary Inductance	Pins 3-5, all other windings open, measured at 200 kHz, 0.4 VRMS	916 μH, -/+12%
Resonant Frequency	Pins 3-5, all other windings open	900 kHz (Min.)
Primary Leakage Inductance	Pins 3-5, with Pins 8-9 shorted, measured at 200 kHz, 0.4 VRMS	75 μH (Max.)

7.3 Materials

ltem	Description
[1]	Core: PC40EE16-Z, TDK or equivalent Gapped for A_L of 70 nH/T ²
[2]	Bobbin: EE16 Horizontal 10 pin
[3]	Magnet Wire: #37 AWG
[4]	Magnet Wire: #34 AWG
[5]	Magnet Wire: #28 AWG
[6]	Triple Insulated Wire: #25 AWG.
[7]	Tape: 3M 1298 Polyester Film, 2.0 mils thick, 8.4 mm wide
[8]	Varnish

7.4 Transformer Build Diagram

Figure 6 – Transformer Build Diagram.

7.5 Transformer Construction

First Winding - Cancellation	Primary pin side of the bobbin oriented to left-hand side. Start at Pin 8 temporarily. Wind 28 bifilar turns of item [3] from right to left. Wind with tight tension across entire bobbin evenly and leave the finish end free. Bend the free end 90° and draw the wire across the bobbin window cutting in the center of the bobbin. Move start end of winding from Pin 8 to Pin 5.
Insulation	4 Layers of tape [6] for insulation.
Second Winding - Primary	Start at Pin 3 wind 38 turns of item [4] from left to right. Add one layer of tape. Wind another 38 turns from right to left. Add one layer of tape. Wind 38 turns in third layer from left to right. Wind with tight tension across entire bobbin evenly. Finish at Pin 5.
Insulation	2 Layers of tape [6] for insulation.
Third Winding - Shield	Start at Pin 8 temporarily, wind 6 quadfilar turns of item [5]. Wind from right to left with tight tension in a single uniform layer across entire width of bobbin. Finish on Pin 4. Cut start end at Pin 8 ensuring uniformity of winding and tape down in place.
Insulation	2 Layers of tape [7] for insulation.
Fourth Winding	Start at Pin 9, wind 9 turns of item [6] from right to left. Wind uniformly, in a single layer across entire bobbin width. Finish on Pin 8.
Outer insulation	3 Layers of tape [7] for insulation.
Core Assembly	Assemble and secure core halves.
Varnish	Dip Varnish [8] – Do Not Vacuum Impregnate

8 Transformer Design Spreadsheet

ACDC_LinkSwitch-					ACDC LinkSwitch-HE 060004 Roy1-1 xls: LinkSwitch-
HF_060904; Rev1-1;				LINUT	ACDC_LINKSWIICH-FIF_000904_Rev I-1.XIS, LINKSWIICH-
Copyright Power	INPUT	INFO	OUIPUI	UNIT	IN_HF Continuous/Discontinuous Flyback Transformer
Integrations Inc. 2004					Design Spreadsneet
ENTER APPLICATION VA		5			
VACMIN	85			Volts	Minimum AC Input Voltage
VACMAX	265			Volts	Maximum AC Input Voltage
fl	50			Hertz	
VO	57			Volts	
10	0.1			Amps	Power Supply Output Current
10	0.4			Лпрз	Voltage drep across sonse resister. For CV only circuits enter
CC Threshold Voltage	1.04			Volts	"0"
PO			2.696	Watts	Output Power
n	0.57				Efficiency Estimate. For CV only designs enter 0.7 if no better data available
Z			0.75		Loss Allocation Factor
tC	3			mSeconds	Bridge Rectifier Conduction Time Estimate
CIN	94			uFarads	Input Capacitance
	0.1			araao	
ENTER LinkSwitch-HEV		\$			
		5		Universal	115 Doublod/2201/
	LINKJJ4		Dowor	Universal	TTS DOUDIEU/230 V
Chosen Device		LNK354	Out	4.5 W	5 W
ILIMITMIN			0.233	Amps	Minimum Current Limit
ILIMITMAX			0.268	Amps	Maximum Current Limit
fS			186000	Hertz	Minimum Device Switching Frequency
					Maximum switching frequency at full load and LP min. For
fS Full Load	178750		178750	Hertz	maximum power capability enter 186 kHz (fs min), reducing
					this value will reduce EMI but lower power capability
VOR	91		91	Volts	Reflected Output Voltage
VDS	-		10	Volts	LinkSwitch-HE on-state Drain to Source Voltage
VD	0 45		0.45	Volts	Output Winding Diode Forward Voltage Drop
KP	0.10		1 15	10110	Ripple to Peak Current Ratio (0.6 <krp<1.0.1.0<kdp<6.0)< td=""></krp<1.0.1.0<kdp<6.0)<>
			1.10		
ENTER TRANSFORMER		NSTRUC			
Core Type	EE16		EE16		User-Selected transformer core
Core		EE16		D/NI-	
Bobbin		EE16 DC	DDINI	F/IN. D/NI:	
		EE IO_BC	0 102	F/IN.	Core Effective Cross Sectional Area
			0.192	cm^2	Core Effective Cross Sectional Area
			3.5	cm	
AL			1140	nH/1^2	Ungapped Core Effective Inductance
BW			8.6	mm	Bobbin Physical Winding Width
Μ			0	mm	Safety Margin Width (Half the Primary to Secondary Creepage
			•		Distance)
	•		3		Number of Primary Layers
NS	9		9		Number of Secondary Turns
DC INPUT VOLTAGE PAR	RAMETER	RS	T.		
VMIN			90	Volts	Minimum DC Input Voltage
VMAX			375	Volts	Maximum DC Input Voltage
			D.C.		
CURRENT WAVEFORM S	SHAPE PA	ARAMETE	KS 0 F (1	
DMAX			0.54		
IAVG			0.05	Amps	Average Primary Current
IP			0.23	Amps	Minimum Peak Primary Current
IR			0.23	Amps	Primary Ripple Current
IRMS			0.09	Amps	Primary RMS Current

TRANSFORMER PRIMAR	Y DESIGN PARAMETER	S		
LP		916	uHenries	Typical Primary Inductance, +/- 12%
		12	0/2	Primary inductance tolerance
		114	70	Primary Winding Number of Turns
ALG		71	nH/T^2	Ganned Core Effective Inductance
1.20		/ 1		III Caution Elux densities above ~ 1250 Gauss may produce audible
ВМ	Caution	1298	Gauss	noise. Verify with dip varnished sample transformers. Increase NS to
				greater than or equal to 10 turns or increase VOR
BAC		649	Gauss	AC Flux Density for Core Loss Curves (0.5 X Peak to Peak)
ur		1654		Relative Permeability of Ungapped Core
LG		0.32	mm	Gap Length (Lg > 0.1 mm)
BWE		25.8	mm	Effective Bobbin Width
OD		0.23	mm	Maximum Primary Wire Diameter including insulation
INS		0.05	mm	Estimated Total Insulation Thickness (= 2 * film thickness)
DIA		0.18	mm	Bare conductor diameter
AWG		34	AWG	Primary Wire Gauge (Rounded to next smaller standard AWG value)
CM		40	Cmils	Bare conductor effective area in circular mils
СМА		466	Cmils/Amp	Primary Winding Current Capacity (200 < CMA < 500)
TRANSFORMER SECON	DARY DESIGN PARAME	TERS		
Lumped parameters				
ISP		2.95	Amps	Peak Secondary Current
ISRMS		1.02	Amps	Secondary RMS Current
IRIPPLE		0.94	Amps	Output Capacitor RMS Ripple Current
CMS		205	Cmils	Secondary Bare Conductor minimum circular mils
AWGS		26	AWG	Secondary Wire Gauge (Rounded up to next larger standard AWG value)
DIAS		0.41	mm	Secondary Minimum Bare Conductor Diameter
ODS		0.96	mm	Secondary Maximum Outside Diameter for Triple Insulated Wire
INSS		0.27	mm	Maximum Secondary Insulation Wall Thickness
VOLTAGE STRESS PARA	METERS			
VDRAIN		586	Volts	Maximum Drain Voltage Estimate (Includes Effect of Leakage Inductance)
PIVS		35	Volts	Output Rectifier Maximum Peak Inverse Voltage
TRANSFORMER SECON	DARY DESIGN PARAME	TERS (MU		PUTS)
1st output				
V01		5.7	Volts	Output Voltage (if unused, defaults to single output design)
101		0.473	Amps	
P01		2.70	vvatts	Output Power
VD1		0.45	VOItS	Output Diode Forward Voltage Drop
		0.04	Amno	Output Winding Number of Turns
		1.210	Amps	Output Canaditor BMS Bingle Current
		22	Anips	Output Capacitor Rivis Ripple Current
PIV51		33	VOIIS	Output Rectilier Maximum Peak Inverse Voltage
CMS1		242	Cmile	Output Winding Bare Conductor minimum circular mile
AWGS1		26	AWG	Wire Gauge (Rounded up to next larger standard AWC value)
DIAS1		0.41	mm	Minimum Bare Conductor Diameter
ODS1		1.03	mm	Maximum Outside Diameter for Triple Insulated Wire
		1.00		
2nd output		1		
VO2			Volts	Output Voltage
102			Amps	Output DC Current
PO2		0.00	Watts	Output Power
VD2			Volts	Output Diode Forward Voltage Drop
NS2		0.00		Output Winding Number of Turns
ISRMS2		0.000	Amps	Output Winding RMS Current
IRIPPLE2		0.00	Amps	Output Capacitor RMS Ripple Current
PIVS2		0	Volts	Output Rectifier Maximum Peak Inverse Voltage
CMS2		0	Cmils	Output Winding Bare Conductor minimum circular mils
AWGS2		N/A	AWG	Wire Gauge (Rounded up to next larger standard AWG value)
DIAS2		N/A	mm	Minimum Bare Conductor Diameter
ODS2		N/A	mm	Maximum Outside Diameter for Triple Insulated Wire

3rd output			
VO3		Volts	Output Voltage
103		Amps	Output DC Current
PO3	0.00	Watts	Output Power
VD3		Volts	Output Diode Forward Voltage Drop
NS3	0.00		Output Winding Number of Turns
ISRMS3	0.000	Amps	Output Winding RMS Current
IRIPPLE3	0.00	Amps	Output Capacitor RMS Ripple Current
PIVS3	0	Volts	Output Rectifier Maximum Peak Inverse Voltage
CMS3	0	Cmils	Output Winding Bare Conductor minimum circular mils
A)MC 82	NI/A	ANAC	Wire Gauge (Rounded up to next larger standard AWG
AV/033	IN/A	AWG	value)
DIAS3	N/A	mm	Minimum Bare Conductor Diameter
ODS3	N/A	mm	Maximum Outside Diameter for Triple Insulated Wire
Total power	2.696	Watts	Total Output Power

9 Performance Data

All measurements performed at room temperature, 60 Hz input frequency. A DC output cable was not included.

9.1 Efficiency

Figure 7 – Efficiency vs. Output Current (CV), Room Temperature, 60 Hz.

Figure 8 – Zero Load Input Power vs. Input Line Voltage, Room Temperature, 60 Hz.

9.3 Regulation

9.3.1 CV and CC Output Characteristics

No measurable difference was seen over line voltage variation.

9.3.2 Load Regulation in CV

Figure 10 – Load Regulation in CV Operation, Room Temperature, Full Load.

10 Thermal Performance

Temperature of key components was recorded using a T-type thermocouple. Thermocouples were soldered directly to LNK354P SOURCE pin and cathode of output rectifier. Thermocouples were glued to the output capacitor and transformer external core/winding surfaces.

The unit was operated at full load in free convection in a thermal chamber inside an additional enclosure to eliminate airflow. The ambient was measured in the additional enclosure and maintained at 40 °C.

Temperature (°C)						
Item 85 VAC 265 VAC						
Ambient	40	40				
LNK354P (U1)	94	96				
Transformer (T1)	80	82				
Output Rectifier (D6)	67	64				
Output Capacitor (C6)	60	58				

For reference an infrared thermograph was taken with the unit operating at room ambient showing the relative temperature rise of the key supply components.

Figure 11 – Infrared Thermograph of PCB (85 VAC, Room Ambient).

11 Line Surge

Surge Voltage	Phase Angle	Generator Impedance	Number of Strikes	Test Result
2 kV	90°	2 Ω	10	PASS
2 kV	90°	12 Ω	10	PASS

12 Waveforms

12.1 Drain Voltage and Current, Normal Operation

Figure 14 – 115 VAC, Full Load. $$V_{\text{DRAIN}}$$ 50 V, 20 μs / div.

Figure 13 – 230 VAC, Full Load. Upper: I_{DRAIN} , 0.1 A / div. Lower: V_{DRAIN} , 100 V, 100 ns / div.

Figure 15 – 115 VAC, Full Load. $$V_{\text{DRAIN}}$$, 100 V, 20 μs / div.

12.2 Output Voltage Start-up Profile

Startup into resistive full load and no-load was verified. Load resistor was sized at 13 Ω to maintain 300 mA under steady-state conditions.

Figure 16 – Start-up Profile115 VAC. Fast trace is no load rise time. Slower trace is maximum load (13 Ω) 1 V, 2 ms / div.

12.3 Drain Voltage and Current Start-up Profile

Figure 18 – 90 VAC Input and Maximum Load (Resistive Load). Upper: 200 V & 500 μs/ div. Lower: V_{DRAIN}, I_{DRAIN}, 0.1 A / div.

Figure 19 – 265 VAC Input and Maximum Load (Resistive Load). Upper: 200 V & 500 μs/ div. Lower: V_{DRAIN}, I_{DRAIN}, 0.1 A / div.

12.4 Load Transient Response (75% to 100% Load Step)

- Figure 20 Transient Response, 115 VAC, 75-100-75% Load Step. Upper:. V_{OUT} 20 mV, 1 ms / div. Lower: I_{OUT} , 0.1 A / div.
- $\begin{array}{l} \textbf{Figure 21} \text{Transient Response, 230 VAC,} \\ 75\text{-}100\text{-}75\% \text{ Load Step.} \\ \text{Upper: } V_{\text{OUT,}} \text{ 20 mV, 1ms / div.} \\ \text{Lower: } I_{\text{OUT,}} \text{ 0.1 A / div.} \end{array}$

12.5 Output Ripple Measurements

12.5.1 Ripple Measurement Technique

For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pickup. Attach probe with end cap and ground clip removed to circuit shown below which is attached to end of output cable.

The 5125BA probe adapter is affixed

Figure 22 – Oscilloscope Probe Prepared for Ripple Measurement (End Cap and Ground Lead Removed).

Figure 23 – Equivalent Battery Model Circuit.

12.5.2 Measurement Results

Figure 24 – Output Ripple, 115 VAC, Full Load. 20 $\mu s,\,50$ mV / div.

Figure 25 – Output Ripple, 230 VAC, Full Load. 20 µs, 50 mV / div.

13 Conducted EMI

Conducted emissions tests were completed at 115 VAC and 230 VAC at full load, 5.5 V / 400 mA. Measurements were completed with Artificial Hand connection and floating DC output load resistor. An output DC cable was included.

Composite EN55022B / CISPR22B conducted limits are shown.

Line Neutral dBµV 80 ┏ EN_V_QP EN_V_AV dBµV 80 ┏ EN_V_QP EN_V_AV 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 -10 -10 -20 -20 . 70.0 MHz 0.15 1.0 10.0 0.15 1.0 10.0 70.0 MHz Artificial Hand Connected to Output Return Artificial Hand Connected to Output Return dBµV 80 ┏ dBµV 80 ┌ EN V QF EN_V_AV EN V QE EN V AV 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 -10 -10 -20 -20 0.15 1.0 10.0 70. 0.15 1.0 10.0 70.0 MHz MHz **Output Floating Output Floating**

13.1 115 VAC Input, Full Load

14 Appendix A – Design Modification Required To Remove Y Capacitor

In some applications where extremely low leakage current is required, it may be necessary to remove the Y capacitor (CY1) that bridges the primary-to-secondary isolation barrier.

In order to achieve this while still meeting conducted and radiated EMI requires reoptimization of the transformer. As with all no Y capacitor transformer designs, the mechanical arrangement and relative spacing of the windings has a large impact on the EMI performance of the supply. Therefore ensure that transformers are wound consistently to ensure repeatable EMI performance.

14.1 No Y capacitor Transformer Specification

14.1.1 Electrical Diagram

14.1.2 Electrical Specifications

Electrical Strength	60Hz 1minute, from Pins 3-5 to Pins 6-10	3000 VAC
Primary Inductance	Pins 3-5, all other windings open, measured at 200 kHz, 0.4 VRMS	916 μH, -/+12%
Resonant Frequency	Pins 3-5, all other windings open	900 kHz (Min.)
Primary Leakage Inductance	Pins 3-5, with Pins 8-9 shorted, measured at 200 kHz, 0.4 VRMS	75 μH (Max.)

14.1.3 Winding Instructions

WD1	Primary pin side of the bobbin oriented to left-hand side. Add 1 layer of				
Cancellation	item [7] to the secondary side. Start at Pin 5. Wind 17 bifilar turns of item				
Winding	[3] from right to left. Wind with tight tension across entire bobbin evenly.				
	Cut the ends of the bifilar and leave floating.				
Insulation	4 Layers of tape [8] for insulation.				
WD#2	Apply 1 layer of item [7] to the secondary side. Start at Pin 3. Wind 40				
Primary winding	turns of item [4] from left to right. Add 1 layer of item [8] and 1 layer of				
	item [7] to the secondary side. Wind another 40 turns from right to left.				
	Add 1 layer of item [8] and 1 layer of item [7] to the secondary side. Wind				
	34 turns in third layer from left to right. Wind with tight tension across				
	entire bobbin evenly. Finish at Pin 5.				
Insulation	2 Layers of tape [8] for insulation.				
WD #3	Start at Pin 8 temporarily, wind 7 trifilar turns of item [5]. Wind from right				
Shield Winding	to left with tight tension. Wind uniformly, in a single layer across entire				
_	width of bobbin. Finish on Pin 4. Cut the lead of the starting end and				
	ensure that the void area around the starting end is entirely covered with				
	the cut end. Tape down in place.				
Insulation	2 Layers of tape [8] for insulation.				
WD #4	Reverse orientation of bobbin such that secondary pin side is to the left-				
Secondary	hand side. Start at Pin 8, wind 9 turns of item [6] from right to left. Wind				
Winding	uniformly, in a single layer across entire bobbin evenly. Finish on Pin 9.				
Outer Insulation	3 Layers of tape [8] for insulation.				
Core Assembly	Assemble and secure core halves using item [9].				
Core Grounding	Solder 1 end of item [10] to Pin 5. Wrap 2 turns around entire transformer				
	making sure that wire is in contact with cores. Terminate end to Pin 5.				
Varnish	Dip Varnish, item [11]				

14.1.4 Materials

ltem	Description		
[1]	Core: PC40EE16-Z, TDK or equivalent Gapped for A_{L} of 192 nH/T ²		
[2]	Bobbin: EE16 Horizontal 10 pin		
[3]	Magnet Wire: #32 AWG		
[4]	Magnet Wire: #36 AWG		
[5]	Magnet Wire: #28 AWG		
[6]	Triple Insulated Wire: #25 AWG.		
[7]	Tape: 3M # 44 Polyester web. 1.5 mm wide		
[8]	Tape: 3M 1298 Polyester Film, 2.0 mils thick, 8.0 mm wide		
[9]	Tape: 3M 1298 Polyester Film, 2.0 mils thick, 3.0 mm wide		
[10]	Solid Wire: #28 AWG		
[11]	Varnish		

14.1.5 Transformer Build Diagram

14.2 EMI Results

Both conducted and radiated EMI results with the revised transformer and CY1 removed showed excellent margin to respective standards. Tests were performed on both line and neutral (conducted) with the output return connected to the artificial hand input of the LISN (line impedance stabilization network). The red trace represents EMI measured with a quasi peak detector and the blue an average detector. These results should be below the respective limit line of the same color.

dBµV EN V QP EN_V_AV 80 70 60 50 40 30 20 10 0 -10 -20 0.15 1.0 10.0 70.0 MHz

Radiated results gave a margin of > 6dB.

Figure 26 – No Y Capacitor Conducted EMI Results (115 VAC).

Figure 27 - No Y Capacitor Conducted EMI (230 VAC).

15 Revision History

Date	Author	Revision	Description & changes
01-Mar-04	AO	0.1	First Draft
01-Apr-04		0.2	Transformer and layout change
05-Apr-04	PV	0.3	Applied correct template, updated circuit description
08-Apr-04	PV	0.4	Reinserted Figure 4 (didn't printout)
28-Apr-04	AO	0.5	Updated BOM, Spreadsheet, Schematic and Transformer
02-May-04	PV	0.6	4.3: Change R2 to R3, replace terminated with disabled
			4.4: Added 1 V opto threshold
			6: Corrected description of D6
	_		Fig 4: Added filar to diagram
20-May-04	AO	0.7	Added output characteristic spec
27-May-04	PV	0.8	Updated PCB layout, charts corrected
16-June-04	PV	0.81	R10 part number corrected
			Figure 2 updated (Q1 shown as NPN not PNP)
24-June-04	PV	0.9	Reinserted final spreadsheet
25-Oct-04	PV	1.0	Appendix A added for no Y cap solution

Notes

Notes

For the latest updates, visit our website: www.powerint.com

Power Integrations may make changes to its products at any time. Power Integrations has no liability arising from your use of any information, device or circuit described herein nor does it convey any license under its patent rights or the rights of others. POWER INTEGRATIONS MAKES NO WARRANTIES HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

PATENT INFORMATION

The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at *www.powerint.com*.

The PI Logo, **TOPSwitch**, **TinySwitch**, **LinkSwitch**, **DPA-Switch** and **EcoSmart** are registered trademarks of Power Integrations. **PI Expert** and **PI FACTS** are trademarks of Power Integrations. © Copyright 2004, Power Integrations.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue, San Jose, CA 95138, USA Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 *e-mail: usasales@powerint.com*

CHINA (SHANGHAI)

Rm 807-808A, Pacheer, Commercial Centre, 555 Nanjing West Road, Shanghai, 200041, China Phone: +86-21-6215-5548 Fax: +86-21-6215-2468 *e-mail: chinasales@powerint.com*

CHINA (SHENZHEN)

Room 2206-2207, Block A, Electronics Science & Technology Bldg., 2070 Shennan Zhong Road, Shenzhen, Guangdong, China, 518031 Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 *e-mail: chinasales@powerint.com*

GERMANY Rueckertstrasse 3, D-80336, Munich, Germany Phone: +49-895-527-3910 Fax: +49-895-527-3920

e-mail: eurosales@powerint.com

INDIA (TECHNICAL SUPPORT)

Innovatech 261/A, Ground Floor 7th Main, 17th Cross, Sadashivanagar Bangalore 560080 Phone: +91-80-5113-8020 Fax: +91-80-5113-8023 *e-mail: indiasales@powerint.com*

ITALY

Via Vittorio Veneto 12, Bresso Milano, 20091, Italy Phone: +39-028-928-6001 Fax: +39-028-928-6009 *e-mail: eurosales@powerint.com*

JAPAN

Keihin-Tatemono 1st Bldg. 12-20 Shin-Yokohama, 2-Chome, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033, Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 *e-mail: japansales@powerint.com*

KOREA

RM 602, 6FL Korea City Air Terminal B/D, 159-6, Samsung-Dong, Kangnam-Gu, Seoul, Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 *e-mail: koreasales@powerint.com*

SINGAPORE

51 Newton Road, #15-08/10 Goldhill Plaza, Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 *e-mail: singaporesales@powerint.com*

TAIWAN

5F-1, No. 316, Nei Hu Rd., Sec. 1 Nei Hu Dist. Taipei, Taiwan 114, R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 *e-mail:* taiwansales@powerint.com

UK (EUROPE & AFRICA HEADQUARTERS)

Ist Floor, St. James's House East Street Farnham, Surrey GU9 7TJ United Kingdom Phone: +44 (0) 1252-730-140 Fax: +44 (0) 1252-727-689 *e-mail: eurosales@powerint.com*

APPLICATIONS HOTLINE

World Wide +1-408-414-9660

APPLICATIONS FAX World Wide +1-408-414-9760

Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com