

Design Example Report

Title	3W Power Supply using LNK501P
Specification	Input: 90 – 265 VAC Output: 12V / 250mA
Application	Industrial
Author	Power Integrations Applications Department
Document Number	DER-57
Date	April 20, 2005
Revision	1.0

Summary and Features

This document is an engineering prototype report for a universal input, power factor corrected power supply unit providing 12V at 250mA.

- Very low cost, low component count isolated power supply
- Extremely simple circuit configuration designed for high volume low cost manufacture
- High input power factor
- Small EE16 transformer allows compact size
- No Optocoupler or sense resistors required
- Efficiency greater than 65%

The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com.

Table Of Contents

1	ln [.]	troductiontroduction	3
2	Po	ower Supply Specification	4
3		chematic	
4	Ci	ircuit Description	6
	4.1	Input Stage	6
	4.2	LinkSwitch Operation	6
	4.3	Transformer	
	4.4	Clamp and Feedback Components	7
	4.5	Output Stage	
5	P	CB Layout	9
6	Bi	ill Of Materials	10
7	Tr	ransformer Specification	11
	7.1	Transformer Winding	13
	7.2	Electrical Specifications	13
	7.3	Materials	
	7.4	Transformer Build Diagram	14
	7.5	Transformer Construction	
8	Pe	erformance Data	
	8.1	Line and Load Regulation	
	8.2	Input Current	
	8.3	Efficiency	
	8.4	Power Factor	
	8.5	Standby Power	
9		Vaveforms	
	9.1	Output Voltage Start-up Profile	
	9.2	Input Current Profile	20
	9.3	Bulk Capacitor Voltage Profile	
1(Output Ripple Measurements	
		0.1.1 Ripple Measurement Technique	
		0.1.2 Measurement Results	
1		Conducted EMI	
12	2	Revision History	25

Important Note:

Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

Design Reports contain a power supply design specification, schematic, bill of materials, and transformer documentation. Performance data and typical operation characteristics are included. Typically only a single prototype has been built.

Introduction

This document is an engineering prototype report for a universal input, power factor corrected power supply unit providing 12V at 250mA.

This power supply uses LinkSwitch – an integrated IC combining a 700 V high voltage MOSFET, PWM controller, start-up, thermal shut down and fault protection circuitry. This power supply is designed to provide a cost effective replacement for linear transformer based Auxiliary power supplies while providing the additional benefits of universal input range and high-energy efficiency.

This document contains the power supply specification, schematic, bill of materials, transformer documentation, printed circuit board layout, and performance data.

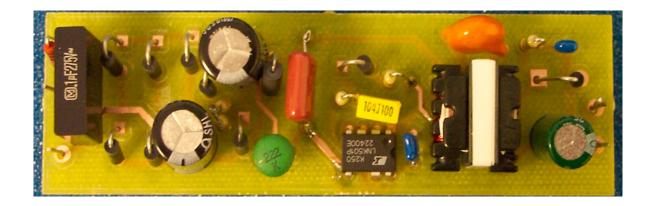


Figure 1 - Prototype Circuit Board Picture

Power Supply Specification

Description	Symbol	Min	Тур	Max	Units	Comment
Input						
Voltage	V_{IN}	90		265	VAC	2 Wire – no Protective Ground
Frequency	f _{LINE}	47	50/60	64	Hz	
No-load Input Power (265 VAC)				0.3	W	
Output						
Output Voltage	V_{OUT}	8	12	15	V	
Output Ripple Voltage	V _{RIPPLE R}			500	mV	
Output Current	I _{OUT}	50		250	mΑ	
Input Power Factor	%	65				0.25A Load / 120VAC / 220VAC
Continuous Output Power	P _{out}		3		W	
Efficiency	η		70		%	Measured at output peak power point, 25 °C
Environmental						
Ambient Temperature	T _{AMB}	0		60	°C	
Conducted EMI	Meets CISF	R22B / EI	N55022B 8	k FCC B w	ith artificial	hand connected to output return
Safety	Designed to meet IEC950, UL1950 Class II					

Schematic 3

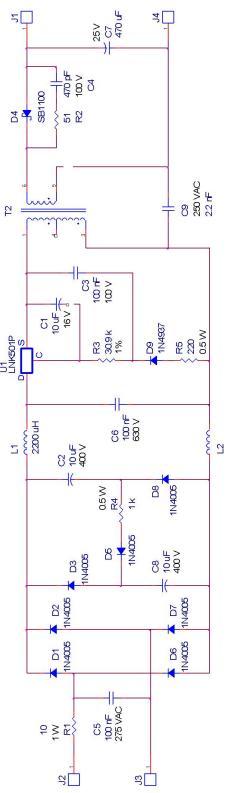


Figure 2 - Schematic

4 Circuit Description

The schematic shown in Figure 2 provides two isolated outputs from a universal input voltage range of 90 VAC to 265 VAC.

4.1 Input Stage

The incoming AC is rectified and filtered by D1, D2, D3, D5, D6, D7, D8, R4, C2, and C8 with a high power factor. Resistor R1 is a flameproof fusible type to protect against fault conditions and is a requirement to meet safety agency fault testing. Please consult with a safety engineer or local safety agency.

L1 and L2 provide differential mode filtering of switching frequency noise generated by the LNK500 power stage. C6 provides local energy storage for the Flyback stage. C5 is a safety X1 capacitor that helps filter switching noise of the bridge rectifier and maintains compliance to the conducted EMI requirements of EN55022 Class B in conjunction with safety Y1 capacitor C9.

4.2 LinkSwitch Operation

When power is applied to the supply, high voltage DC appears at the DRAIN pin of LinkSwitch (U1). The CONTROL pin capacitor C1 is then charged through a switched high voltage current source connected internally between the DRAIN and CONTROL pins. When the CONTROL pin voltage reaches approximately 5.7 V relative to the SOURCE pin, the internal current source is turned off. The internal control circuitry is activated and the high voltage internal MOSFET starts to switch, using the energy in C1 to power the IC.

As the current ramps in the primary of Flyback transformer T1, energy is stored. This energy is delivered to the output when the MOSFET turns off each cycle.

The secondary of the transformer is rectified and filtered by D4 and C7 to provide the DC output to the load.

Control of the output characteristic is entirely sensed from the primary-side by monitoring the primary-side V_{OR} (reflected output voltage). While the output diode is conducting, the voltage across the transformer primary is equal to the output voltage plus diode drop multiplied by the turn's ratio of the transformer. Since the *LinkSwitch* is connected on the high side of the transformer, the V_{OR} can be sensed directly.

Diode D9 and capacitor C3 form the primary clamp network. The voltage held across C3 is essentially the V_{OR} with a small error due to the parasitic leakage inductance.

The *LinkSwitch* has three operating modes determined by the current flowing into the CONTROL pin.

During start-up, as the output voltage, and therefore the reflected voltage and voltage across C3 increases, the feedback current increases from 0 to approximately 2mA through R3 into the CONTROL pin. The internal current limit is increased during this period until reaching 100%, providing an approximately constant output current.

Once the output voltage reaches the regulated value, the output voltage is regulated through control of the duty cycle. As the current into the CONTROL pin exceeds approximately 2mA, the duty cycle begins to reduce, reaching 30% at a CONTROL pin current of 2.3mA.

If the duty cycle reaches a 3% threshold, the switching frequency is reduced, which reduces energy consumption under light or no load conditions.

As the output load increases beyond the peak power point (defined by ½·L·l²·f) and the output voltage and V_{OR} falls, the reduced CONTROL pin current will lower the internal current providing an approximately constant current output characteristic. If the output load is further increased and the output voltage falls further to below a CONTROL pin current of 1mA, the CONTROL pin capacitor C1 will discharge and the supply will enter auto-restart.

4.3 Transformer

The transformer is designed to always be discontinuous; all the energy is transferred to the load during the MOSFET off time. The energy stored in the transformer during discontinuous mode operation is ½-L-l²-f where L is the primary inductance, l² is the peak primary current squared and f is the switching frequency.

Since the value of *LinkSwitch* current limit and frequency directly determines the peak power, the parameter of current squared times frequency is defined in the datasheet. This parameter, together with the output power, is used to specify the transformer primary inductance.

As *LinkSwitch* is powered by the energy stored in the leakage inductance of the transformer, only a low cost two winding transformer is required. Leakage inductance should be kept low, ideally at less than 2% of the primary inductance. High leakage inductance will cause the output current limit characteristic to walk out as the output voltage decreases and increases the no-load consumption of the supply.

4.4 Clamp and Feedback Components

Diode D9 should either be a fast (t_{rr} <250 ns) or ultra-fast type to prevent the voltage across *LinkSwitch* from reversing and ringing below ground. A fast diode is preferred, being lower cost.

Capacitor C3 is typically fixed at $0.1~\mu F$ and should be rated above the V_{OR} and be stable with both temperature and applied voltage. Low-cost, Metalized plastic film capacitors are ideal; high value, low-cost ceramic capacitors are not recommended. Dielectrics

used for these capacitors such as Z5U and Y5U are not stable and can cause output instability as their value changes with voltage and temperature. Stable dielectrics such as COG/NPO are acceptable but are costly when compared to a Metalized plastic film capacitor.

R3 was selected to program the peak power point to be 250mA when a transformer with a nominal L_P value was used. The expression used to size R3 is from Power Integrations Application note, AN-35. C1 sets the auto-restart period and also the time the output has to reach regulation before entering auto-restart from start-up.

4.5 Output Stage

Diode D4 should be rated for 80% of applied reverse voltage and thermally for average current multiplied by forward voltage at maximum ambient. Here a 1 A, 100 V Schottky diode was used to reduce the losses and improve efficiency. R2 and C4 from a snubber network to reduce ringing on D4. Capacitor C7 should be rated for output voltage and ripple current.

PCB Layout

Figure 3 – Printed Circuit Layout

Bill Of Materials

Item	Quantity	Reference	Part Description
1	2	C2, C8	Capacitor, 10 μF, 400 V
2	1	C1	Capacitor, 10 μF, 16 V, General Purpose
3	1	C3	Capacitor, 0.1 μ F, 5%, 100 V, Metallized Film – Capacitor, Panasonic, part # ECQ-V1104JM
4	1	C4	Capacitor, Ceramic, 470 pF, 100 V
5	1	C5	Capacitor, X-cap, 0.1 μF
6	1	C6	Capacitor, Film, 100 nF, 630V
7	1	C7	Capacitor, 470 μF, 25 V, Low ESR Panasonic FC Series
8	1	C9	Capacitor, Y-cap, 2200 pF
9	7	D1, D2, D3, D5, D6, D7, D8	Diode, 1N4005, 1 A, 600 V
10	1	D9	Diode, 1N4937, 1 A, 600 V, Fast Rectifier
11	1	D4	Diode, SB1100, 1 A, 100 V, Schottky
12	1	L1	Inductor, 2.2 mH
13	1	L2	Ferrite Bead
14	1	R1	10 Ω, 1 W, Fusible
15	1	R2	51 Ω, 5%, 1/4 W
16	1	R5	220 Ω, 5%, 1/2 W
17	1	R4	1 kΩ, 5%, 1/2 W
18	1	R3	30.9 kΩ, 1%, 1/4 W
19	1	T1	Custom EE16
20	1	U1	LNK501P – Power Integrations, Inc

Transformer Specification

Α	В	D	E	G	
,		,			-
LinkSwitch 030304; Rev.1.6; Copyright Power Integrations 2004	INPUT	INFO	ОПТРИТ	UNIT	LinkSwitch 030304: LinkSwitch Flyback Supply Design Spreadsheet
ENTER APPLICATION VARIA	ABLES				Customer
VACMIN	90			Volts	Minimum AC Input Voltage
VACMAX	135			Volts	Maximum AC Input Voltage
fL	60			Hertz	AC Mains Frequency
vo	10			Volts	Output Voltage
10	0.25			Amps	Continuous Output current
tc	3			msec	Bridge Redifier Conduction Time Estimate
CIN	9.4			uFarads	Input Filter Capacitor
TARGETED / ESTIMATED LO	SSES				
P_NO_LOAD_GOAL			300	miV	Target No Load losses for Power supply
PCORE			123.9	mi/V	Estimated Core Losses at peak Flux Density (BP)
RSEC			0.2	Ohms	Estimated Resistance of transformer secondary winding.
P_NO_LOAD_LOSS			265	mi/V	Power losses at no load (includes feedback and switching losses). No Load losses target achieved
DC INPUT VOLTAGE PARAM	IFTERS				
VMIN			111.7	Volts	Minimum DC Input Voltage
VMAX			190.92		Maximum DC Input Voltage
ENTER OUTPUT CABLE PAR	AMETE	RS			
RCABLE VCABLE			0.3 0.075	Ohms	Resistance of total length of cable from power supply terminals to load and back. Drop along cable connecting power supply to load
VCABLE		3	0.078	VOILS	Diop along cable conflicioning power supply to load
ENTER LINKSWITCH & OUTP	סום דטי	DE VAR	IABLES		
LINKSwitch	LNK500			Universal	115 Doubled 230
			Power	3.5	5.5
l^2f			2710	A^2 Hz	I^2 f (typical) co-efficient for LinkSwitch
VOR	60		60.00	\6he	Reflected Output Voltage (40 <vor<60 recommended)<="" td=""></vor<60>
VLEAK	- 00			Volts	Error in Feedback voltage as a result of leakage inductance in primary dircuit.
	2				Output Winding Diode Forward Voltage Drop (0.5~0.7V for schottky and 0.7~1.0V for PN
VD.	-			Volts	diode)
VR ID	3		100	Volts Amps	Rated Peak Rep Reverse Voltage of secondary diode Rated Average Forward current for secondary diode
				7 4.1 P 4	Taked 7 4 or ago 7 or Adia our fork for tooos flading alload
DISCONTINUOUS MODE CH	ECK				
KDP			1.85		Ensure KDP > 1.15 for discontinuous mode operation.
	1				
TON			5.55		Linkswitch conduction time
TDON			5.55 9.85		Linkswitch conduction time Secondary Diode conduction time
TDON	234/1701	AND O	9.85	us	
TDON VOLTAGE STRESS ON LINKS	SWITCH	AND O	9.85 JTPUT D	us IODE	Secondary Diode conduction time
TDON	SWITCH	AND O	9.85	us IODE Volts	Secondary Diode conduction time Maximum Drain Voltage Estimate (Indudes Effect of Leakage Inductance)
TDON VOLTAGE STRESS ON LINKS VDRAIN	SWITCH	AND O	9.85 JTPUT D 336.92	us IODE Volts	Secondary Diode conduction time
TDON VOLTAGE STRESS ON LINKS VDRAIN PIVS CURRENT WAVEFORM SHA			9.85 JTPUT D 336.92 45.56	us IODE Volts	Secondary Diode conduction time Maximum Drain Voltage Estimate (Indudes Effect of Leakage Inductance) Output Rediffer Maximum Reverse Voltage
TDON VOLTAGE STRESS ON LINKS VDRAIN PIVS CURRENT WAVEFORM SHA DMAX			9.85 JTPUT D	Volts	Secondary Diode conduction time Maximum Drain Voltage Estimate (Includes Effect of Leakage Inductance) Output Rediffer Maximum Reverse Voltage Maximum Operating Duty Cycle
TDON VOLTAGE STRESS ON LINKS VDRAIN PIVS CURRENT WAVEFORM SHA DMAX IAVG			9.85 JTPUT D 336.92 45.56 RS 0.23 0.030	Volts Volts Amps	Secondary Diode conduction time Maximum Drain Voltage Estimate (Includes Effect of Leakage Includance) Output Rediffer Maximum Reverse Voltage Maximum Operating Duty Cycle Average Primary Current
TDON VOLTAGE STRESS ON LINKS VDRAIN PIVS CURRENT WAVEFORM SHA DMAX			9.85 JTPUT D 336.92 45.56 RS 0.23 0.030	Volts	Secondary Diode conduction time Maximum Drain Voltage Estimate (Includes Effect of Leakage Inductance) Output Rediffer Maximum Reverse Voltage Maximum Operating Duty Cycle
TDON VOLTAGE STRESS ON LINKS VDRAIN PIVS CURRENT WAVEFORM SHA DMAX IAVG IRMS	PE PAR	AMETER	9.85 JTPUT D 336.92 45.56 RS 0.23 0.030 0.071	US VOITS VOITS Armps Armps	Secondary Diode conduction time Maximum Drain Voltage Estimate (Includes Effect of Leakage Includance) Output Re-differ Maximum Reverse Voltage Maximum Operating Duty Cycle Average Primary Current
TDON VOLTAGE STRESS ON LINKS VDRAIN PIVS CURRENT WAVEFORM SHA DMAX IAVG IRMS ENTER TRANSFORMER COF	PE PAR	AMETER	9.85 JTPUT D 336.92 45.56 RS 0.23 0.030 0.071	US VOITS VOITS Armps Armps	Secondary Diode conduction time Maximum Drain Voltage Estimate (Includes Effect of Leakage Includance) Output Rediffer Maximum Reverse Voltage Maximum Operating Duty Cycle Average Primary Current
TDON VOLTAGE STRESS ON LINKS VDRAIN PIVS CURRENT WAVEFORM SHA DMAX IAVG IRMS	PE PAR RE/CON: EE16	AMETER STRUCT	9.85 JTPUT D 336.92 45.56 RS 0.23 0.030 0.071	US VOITS VOITS Armps Armps	Secondary Diode conduction time Maximum Drain Voltage Estimate (Includes Effect of Leakage Includance) Output Rediffer Maximum Reverse Voltage Maximum Operating Duty Cycle Average Primary Current
TDON VOLTAGE STRESS ON LINKS VDRAIN PIVS CURRENT WAVEFORM SHA DMAX IAVG IRMS ENTER TRANSFORMER COF Core Bobbin	PE PAR RE/CON: EE16	AMETER	9.85 JTPUT D 336.92 45.56 RS 0.23 0.030 0.071	US IODE Volts Volts Amps Amps RIABLES	Secondary Diode conduction time Maximum Drain Voltage Estimate (Indudes Effect of Leakage Inductance) Output Redifier Maximum Reverse Voltage Maximum Operating Duty Cycle Average Primary Current Primary RMS Current
TDON VOLTAGE STRESS ON LINKS VDRAIN PIVS CURRENT WAVEFORM SHA DMAX IAVG IRMS ENTER TRANSFORMER COF Core Type Core Boobbin AE	PE PAR RE/CON: EE16	AMETER STRUCT	9.85 JTPUT D 336.92 45.56 RS 0.23 0.030 0.071 ION VAF	us IODE Volts Volts Amps Amps RIABLES	Secondary Diode conduction time Maximum Drain Voltage Estimate (Indudes Effect of Leakage Inductance) Output Rediffer Maximum Reverse Voltage Maximum Operating Duty Cycle Average Primary Current Primary RMS Current Core Effective Cross Sectional Area
TDON VOLTAGE STRESS ON LINKS VDRAIN PIVS CURRENT WAVEFORM SHA DMAX IAVG IRMS ENTER TRANSFORMER COF Core Type Core Bobbin AE LE	PE PAR RE/CON: EE16	AMETER STRUCT	9.85 JTPUT D 336.92 45.56 RS 0.23 0.030 0.071 ION VAF	us IODE Volts Volts Amps Amps Amps RIABLES cmr2 cm	Secondary Diode conduction time Maximum Drain Voltage Estimate (Includes Effect of Leakage Includance) Output Rediffer Maximum Reverse Voltage Maximum Operating Duty Cycle Average Primary Current Primary RMS Current Core Effective Cross Sectional Area Core Effective Path Length
TDON VOLTAGE STRESS ON LINKS VDRAIN PIVS CURRENT WAVEFORM SHA DMAX IAVG IRMS ENTER TRANSFORMER COP Core Bobbin AE LE AL	PE PAR RE/CON: EE16	AMETER STRUCT	9.85 JTPUT D 336.92 45.56 RS 0.23 0.030 0.071 ION VAF	US IODE Volts Volts Amps Amps Amps Amps Connection of the	Secondary Diode conduction time Maximum Drain Voltage Estimate (Indudes Effect of Leakage Inductance) Output Rediffer Maximum Reverse Voltage Maximum Operating Duty Cycle Average Primary Current Primary RMS Current Core Effective Cross Sectional Area Core Effective Path Length Ungapped Core Effective Inductance
TDON VOLTAGE STRESS ON LINKS VDRAIN PIVS CURRENT WAVEFORM SHA DMAX IRWS IRMS ENTER TRANSFORMER COF Core Bobbin AE LE AL VE	PE PAR RE/CON: EE16	AMETER STRUCT	9.85 JTPUT D 336.92 45.56 RS 0.23 0.030 0.071 ION VAF 0.192 3.56 1140 796	US IODE Volts Volts Amps Amps Amps anrea an	Secondary Diode conduction time Maximum Drain Voltage Estimate (Indudes Effect of Leakage Inductance) Output Rediffer Maximum Reverse Voltage Maximum Operating Duty Cycle Average Primary Current Primary RMS Current Core Effective Cross Sectional Area Core Effective Path Length Ungapped Core Effective Inductance Effective Core Volume
TDON VOLTAGE STRESS ON LINKS VDRAIN PIVS CURRENT WAVEFORM SHA DMAX IAVG IRMS ENTER TRANSFORMER COP Core Bobbin AE LE AL	PE PAR RE/CON: EE16	AMETER STRUCT	9.85 JTPUT D 336.92 45.56 RS 0.23 0.030 0.071 ION VAF 0.192 3.56 1140 796	US IODE Volts Volts Amps Amps Amps Amps Connection of the	Secondary Diode conduction time Maximum Drain Voltage Estimate (Indudes Effect of Leakage Inductance) Output Rediffer Maximum Reverse Voltage Maximum Operating Duty Cycle Average Primary Current Primary RMS Current Core Effective Cross Sectional Area Core Effective Path Length Ungapped Core Effective Inductance
TDON VOLTAGE STRESS ON LINKS VDRAIN PIVS CURRENT WAVEFORM SHA DMAX IAVG IRMS ENTER TRANSFORMER COF Core Type Core Boobbin AE LE AL VE BW	PE PAR RE/CON: EE16	AMETER STRUCT	9.85 JTPUT D 336.92 45.56 RS 0.23 0.030 0.071 ION VAR 0.192 3.5 1140 795 8.5	us IODE Volts Volts Amps Amps Amps am²2 cm²2 cm nH/T²2 mm²3 mm	Secondary Diode conduction time Maximum Drain Voltage Estimate (Indudes Effect of Leakage Inductance) Output Redifier Maximum Reverse Voltage Maximum Operating Duty Cycle Average Primary Current Primary RMS Current Core Effective Cross Sectional Area Core Effective Path Length Ungapped Core Effective Inductance Effective Core Volume Bobbin Physical Winding Wicith
TDON VOLTAGE STRESS ON LINKS VDRAIN PIVS CURRENT WAVEFORM SHA DMAX IAVG IRMS ENTER TRANSFORMER COF Core Bobbin AE LE AL VE BW KCORE T(n)	PE PAR RE/CON: EE16	AMETER STRUCT	9.85 336.92 45.56 RS 0.23 0.030 0.071 ION VAF 0.192 3.5 1140 795 8.5 437 0.9610	Amps Amps Amps Amps Amps Amps Amps Amps	Secondary Diode conduction time Maximum Drain Voltage Estimate (Indudes Effect of Leakage Inductance) Output Rediffer Maximum Reverse Voltage Maximum Operating Duty Cycle Average Primary Current Primary RMS Current Core Effective Cross Sectional Area Core Effective Path Length Ungapped Core Effective Inductance Effective Core Volume Bobbin Physical Winding Width Core losses per unit volume Estimated transformer efficiency. T(n)=(PSCU+PCORE/2)/POEFF. Re-iterate with n = 0.961
TDON VOLTAGE STRESS ON LINKS VDRAIN PIVS CURRENT WAVEFORM SHA DMAX IAVG IRMS ENTER TRANSFORMER COF Core Type Core Bobbin AE LE AL VE BW KCORE T(n)	PE PAR RE/CON: EE16 PC BE	AMETER STRUCT	9.85 336.92 45.56 RS 0.23 0.030 0.071 ION VAF 0.192 3.5 1140 795 8.5 437 0.9610	us IODE Volts Volts Amps Amps Amps am²2 cm²2 cm nH/T²2 mm²3 mm	Secondary Diode conduction time Maximum Drain Voltage Estimate (Includes Effect of Leakage Includance) Output Rediffer Maximum Reverse Voltage Maximum Operating Duty Cycle Average Primary Current Primary RMS Current Core Effective Cross Sectional Area Core Effective Path Length Ungapped Core Effective Includance Effective Core Volume Bobbin Physical Winding Width Core Isses per unit volume Estimated transformer efficiency. T(n)=(PSCU+PCORE/2)/POEFF. Re-iterate with n = 0)616 Safety Margin Width
TDON VOLTAGE STRESS ON LINKS VDRAIN PIVS CURRENT WAVEFORM SHA DMAX IAVG IRMS ENTER TRANSFORMER COF Core Bobbin AE LE AL VE BW KCORE T(n)	PE PAR	AMETER STRUCT	9.85 336.92 45.56 RS 0.23 0.030 0.071 ION VAF 0.192 3.5 1140 795 8.5 437 0.9610	Amps Amps Amps Amps Amps Amps Amps Amps	Secondary Diode conduction time Maximum Drain Voltage Estimate (Indudes Effect of Leakage Inductance) Output Rediffer Maximum Reverse Voltage Maximum Operating Duty Cycle Average Primary Current Primary RMS Current Core Effective Cross Sectional Area Core Effective Path Length Ungapped Core Effective Inductance Effective Core Volume Bobbin Physical Winding Width Core losses per unit volume Estimated transformer efficiency. T(n)=(PSCU+PCORE/2)/POEFF. Re-iterate with n = 0.961
TDON VOLTAGE STRESS ON LINKS VDRAIN PIVS CURRENT WAVEFORM SHA DMAX IRWG IRMS ENTER TRANSFORMER COF Core Bobbin AE LE AL VE BW KCORE T(r) M NS	PE PAR RE/CON: EE16 PC BE 0.961	AMETER STRUCT 40EE16-Z 16-116CP	9.85 336.92 45.56 RS 0.23 0.030 0.071 ION VAF 0.192 3.5 1140 795 8.5 437 0.9610 0	Amps Amps Amps Amps Amps Amps Amps Amps	Secondary Diode conduction time Maximum Drain Voltage Estimate (Includes Effect of Leakage Includance) Output Rediffer Maximum Reverse Voltage Maximum Operating Duty Cycle Average Primary Current Primary RMS Current Core Effective Cross Sectional Area Core Effective Path Length Ungapped Core Effective Includance Effective Core Volume Bobbin Physical Winding Width Core Isses per unit volume Estimated transformer efficiency. T(n)=(PSCU+PCORE/2)/POEFF. Re-iterate with n = 0)616 Safety Margin Width
TDON VOLTAGE STRESS ON LINKS VDRAIN PIVS CURRENT WAVEFORM SHA DMAX IAVG IRMS ENTER TRANSFORMER COF Core Type Core Bobbin AE LE AL VE BW KCORE T(n)	PE PAR RE/CON: EE16 PC BE 0.961	AMETER STRUCT 40EE16-Z 16-116CP	9.85 336.92 45.56 RS 0.23 0.030 0.071 ION VAF 0.192 3.5 1140 795 8.5 437 0.9610 0	Amps Amps Amps Amps Amps Amps Amps Amps	Secondary Diode conduction time Maximum Drain Voltage Estimate (Indudes Effect of Leakage Inductance) Output Rediffer Maximum Reverse Voltage Maximum Operating Duty Cycle Average Primary Current Primary RMS Current Core Effective Cross Sectional Area Core Effective Path Length Ungapped Core Effective Inductance Effective Core Volume Bobbin Physical Winding Width Core losses per unit volume Estimated transformer efficiency. T(n)=(PSCU+PCORE/2)/POEFF. Re-iterate with n = 0.961 Safety Margin Width Number of Secondary Turns
TDON VOLTAGE STRESS ON LINKS VDRAIN PIVS CURRENT WAVEFORM SHA DMAX IAVG IRMS ENTER TRANSFORMER COF Core Bobbin AE LE AL VE BW KCORE T(n) M NS TRANSFORMER PRIMARY D	PE PAR RE/CON: EE16 PC BE 0.961	AMETER STRUCT 40EE16-Z 16-116CP	9.85 JTPUT D 336.92 45.56 RS 0.23 0.030 0.071 ION VAF 0.192 3.5 1140 796 8.5 437 0.9610 0 IETERS 1.030	us IODE Volts Volts Volts Amps	Secondary Diode conduction time Maximum Drain Voltage Estimate (Includes Effect of Leakage Includance) Output Rediffer Maximum Reverse Voltage Maximum Operating Duty Cycle Average Primary Current Primary RMS Current Core Effective Cross Sectional Area Core Effective Path Length Ungapped Core Effective Includance Effective Core Volume Bobbin Physical Winding Width Core Isses per unit volume Estimated transformer efficiency. T(n)=(PSCU+PCORE/2)/POEFF. Re-iterate with n = 0,961 Safety Margin Width

A	B D	F	G	I .
NP		118		Primary Winding Number of Turns
ALG		167	nH/T^2	Gapped Core Effective Inductance
BP		2872	Gauss	Peak Flux Density (BP<3500)
LG		0.12	mm	Core Gap Length for primary inductance
OD		0.22	mm	Maximum Primary Wire Diameter including insulation to give specified number of layers.
DIA		0.17	mm:	Bare conductor diameter
A10/C				Disc 10/2- O (D 1-11)
AWG	0		AWG	Primary Wire Gauge (Rounded to next smaller standard AWG value)
CMA	Сотт	97 569	CmilsJAmp	increasing NS
TRANSFORMER SECONDAR	V DESIGN DA	DAMETER	26	
ISP ECONDAR	I DESIGN FA		Amps	Peak Secondary Current
ISRMS			Amps	Secondary RMS Current
IRIPPLE			Amps	Output Capacitor RMS Ripple Current
AWGS			AWG	Secondary Wire Gauge (Rounded up to next larger standard AWG value)
DIAS			nm	Secondary Wire Gauge (Rounded up to next ranger standard AWG value) Secondary Minimum Bare Conductor Diameter
ODS			nm	Secondary Maximum Insulated Wire Outside Diarneter
INSS			mm	Maximum Secondary Insulation Wall Thickness
VSEC		0.05	Volts	Voltage Drop across secondary winding
		+		
FEEDBACK CIRCUIT COMPO	NENTS	_		ALL MANAGEMENT AND
RFB		-	k-Ohms	Feedback resistor
PRFB		138.6	mW	Losses in the Feedback resistor
ESTIMATED LOSSES IN POV	VER SUPPLY			
PCABLE		18.75		Power loss in Output Cable
PSCU		51	mi/V	Transformer Secondary Copper Losses
PDIODE		275	mi/V	Output Diode conduction loss
PBIAS		151.8	mVV	Power Loss in Feedback dircuit
PCONDUCTION		210.7	mVV	Conduction Losses in LinkSwitch calculated at 1 00C
PCORE		123.9	mW	Core Losses at peak Flux Density
EFFICIENCY ESTIMATE		75.0	%	Estimated Power Supply Efficiency
ADDITIONAL OUTPUT				
vx	0		Volts	Auxiliary Output Voltage
VDX	0		Volts	Auxiliary Diode Forward Voltage Drop
NX		0.00		Auxiliary Number of Turns
PIVX		0.00	Volts	Auxiliary Rectifier Maximum Peak Inverse Voltage
				,

7.1 Transformer Winding

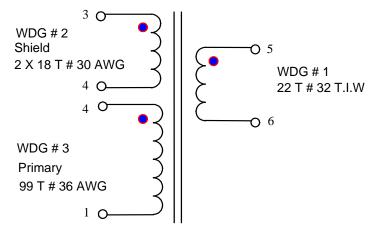


Figure 4 – Transformer Winding Diagram

7.2 Electrical Specifications

Electrical Strength	60Hz 1 minute, from Pins 1-4 to Pins 5-8	3 kV for 1 minute
Primary Inductance	All windings open	2.3mH -0%, +20%
Resonant Frequency	All windings open	300 kHz min.
Leakage Inductance	L ₁₃ with pins 5-6 shorted	50µH max.

7.3 Materials

Item	Description
[1]	Core: EE16, Gapped for AL = Nominal - 200 nH/T ²
[2]	Bobbin: Vertical 10 pins
[3]	Magnet Wire: # 30 AWG
[4]	Magnet Wire: # 36 AWG
[5]	Magnet Wire: # 32 AWG Triple-Insulated
[6]	Tape: 3M 1298 Polyester Film (white)
[7]	Varnish

Design Notes:

Power Integrations Device	
Frequency of Operation	42 kHz
Mode	Discontinuous
Primary Current	0.075 Arms
Reflected Voltage (Secondary to Primary)	60 V
Maximum DC Input Voltage	200 V
Minimum DC Input Voltage	111 V

7.4 Transformer Build Diagram

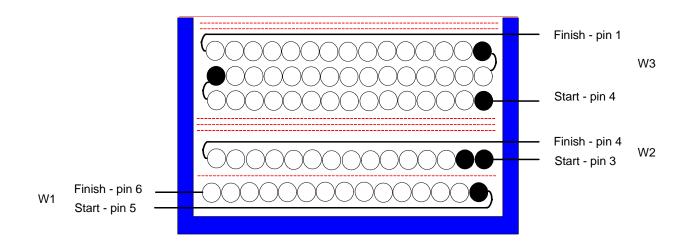


Figure 5 - Transformer Build Diagram

7.5 Transformer Construction

All windings should be wound in the forward direction.

Bobbin	Place the bobbin on the winding machine with pins 1-4 on the
orientation	right side and pins 5-8 on the left side.
W1 (Secondary	Wind 22 turns from right to left with # 32 triple-insulated
Winding)	magnet wire starting from pin 5 and finishing to pin 6.
Insulation	One layer of tape for insulation.
W2 (Primary)	Wind 18 turns from right to left with 2 x # 30 bifilar magnet
	wires starting from pin 3 and finishing to pin 4.
Insulation	Three layer of tape for insulation.
W3 (Primary)	Wind 99 turns from right to left with # 36 magnet wire starting
	from pin 3 and finishing to pin 1.
Outer Insulation	3 layers of tape for insulation.
Core Assembly	Assemble and secure core halves.
Final Assembly	Vanish transformer – Do not impregnate.

8 Performance Data

All measurements were performed at room temperature, 60 Hz input frequency unless otherwise specified.

8.1 Line and Load Regulation

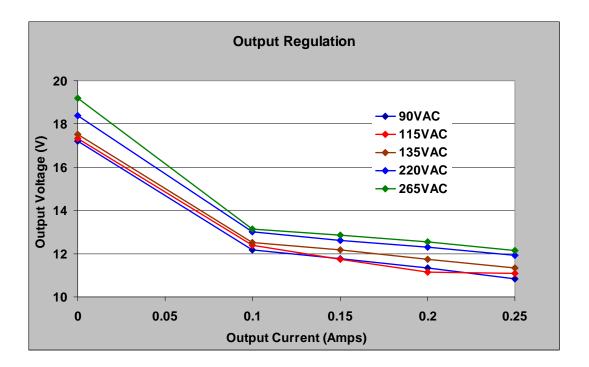


Figure 6 – Output Load Regulation at Selected Input Voltages

Note: a small preload can be used to reduce the peak voltage under no load conditions if so desired.

8.2 Input Current

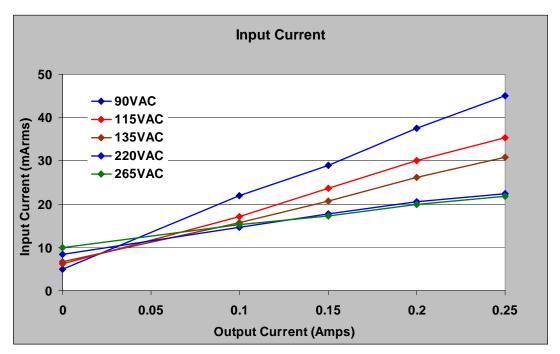


Figure 7 – Input Current

8.3 Efficiency

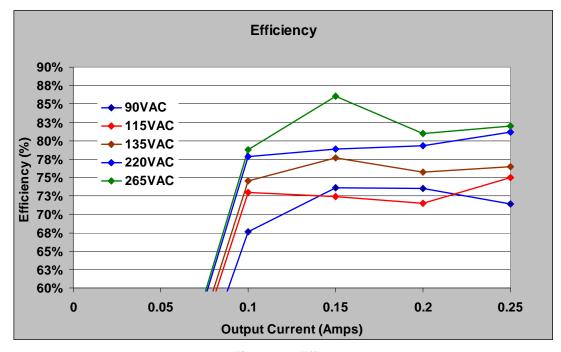
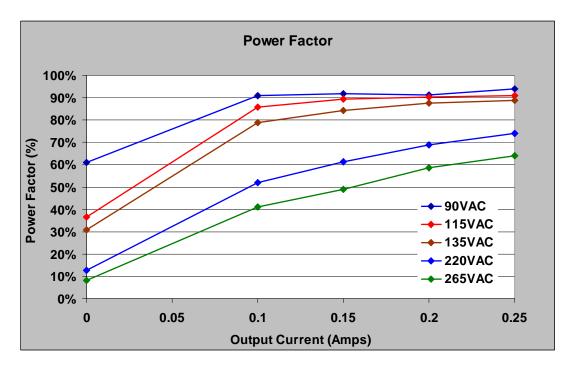
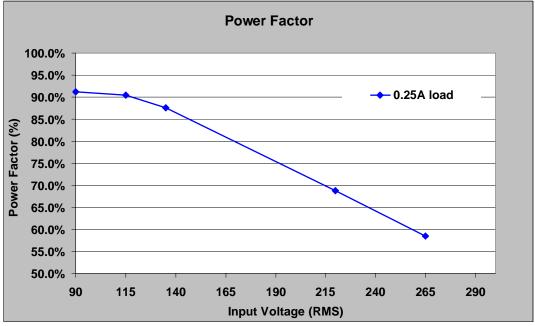




Figure 8 – Efficiency

8.4 Power Factor

Figure 9 – Power Factor

8.5 Standby Power

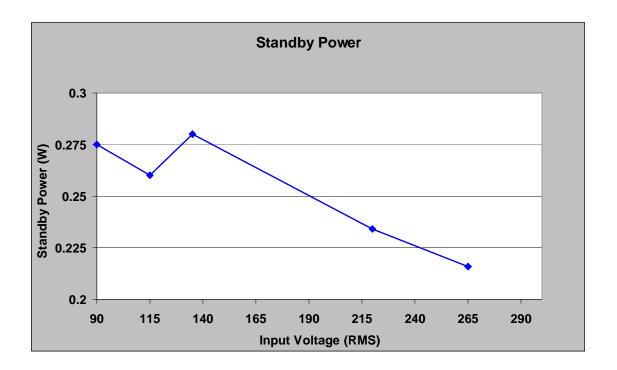


Figure 10 - Standby Power

Waveforms

9.1 Output Voltage Start-up Profile

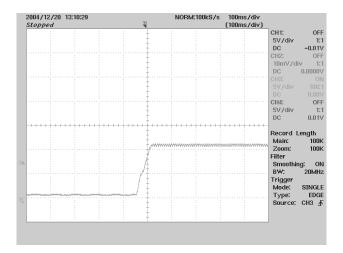


Figure 11 - Start-up Profile, 90VAC, 0.2A Load 5 V, 100 ms / div.

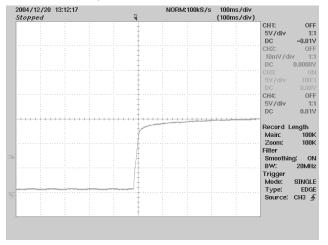


Figure 13 - Start-up Profile, 90VAC, No Load 5 V, 100 ms / div.

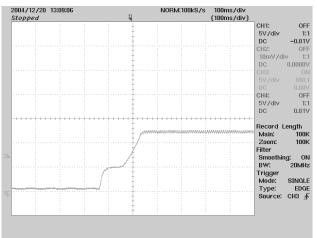


Figure 12 - Start-up Profile, 265 VAC, 0.2A Load 5 V, 100 ms / div.

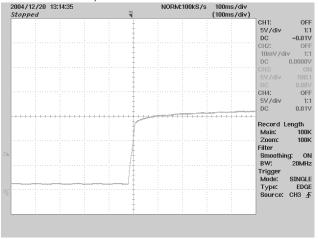


Figure 14 - Start-up Profile, 265 VAC, No Load 5 V, 100 ms / div.

9.2 Input Current Profile

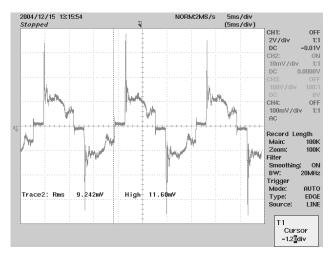


Figure 15 - Input Current Profile, 90VAC, 0.25A Load 50 mA/DIV, 5 ms / div.

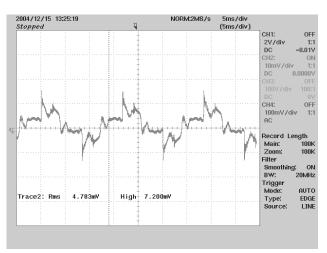


Figure 16 - Input Current Profile, 265VAC, 0.25A 50 mA/DIV, 5 ms / div.

9.3 Bulk Capacitor Voltage Profile

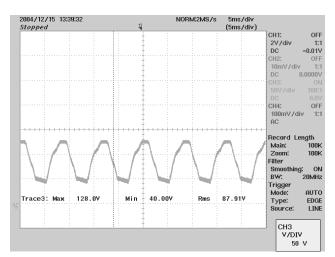


Figure 17 - Bulk Cap Voltage, 90VAC, 0.25A Load 50 V/DIV, 5 ms / div.

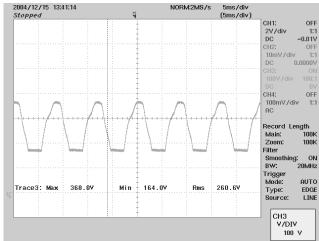


Figure 18 - Bulk Cap Voltage, 265VAC, 0.25A Load 100 V/DIV, 5 ms / div.

10 Output Ripple Measurements

10.1.1 Ripple Measurement Technique

For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pickup. Details of the probe modification are provided in Figure 19 and Figure 20.

The 5125BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) 0.1 μ F/50 V ceramic type and one (1) 1.0 μ F/50 V aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below).

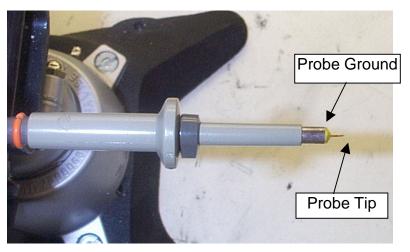
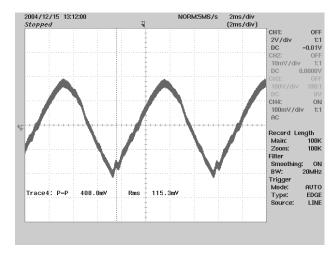



Figure 19 - Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed)

Figure 20 - Oscilloscope Probe with Probe Master 5125BA BNC Adapter. (Modified with wires for probe ground for ripple measurement, and two parallel decoupling capacitors added)

10.1.2 Measurement Results

Figure 21 – Ripple Profile, 90VAC, 0.25A Load 100 mV/DIV, 2 ms / div.

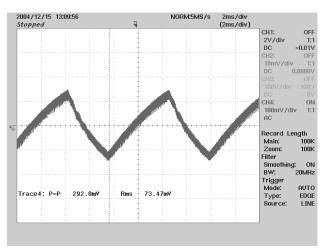


Figure 22 – Ripple Profile, 265VAC, 0.25A Load 100 mV/DIV, 2 ms / div.

11 Conducted EMI

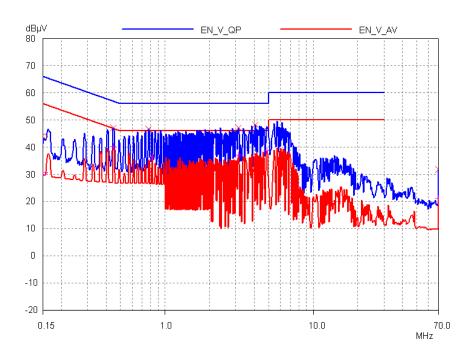


Figure 23 – Conducted EMI, V_{IN} = 120 VAC, 60 Hz Line, 250mA Load

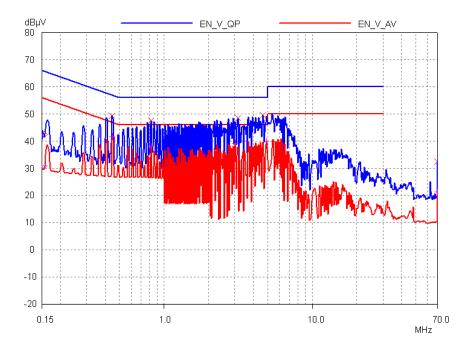


Figure 24 – Conducted EMI, V_{IN} = 120 VAC, 60 Hz Neutral, 250mA Load

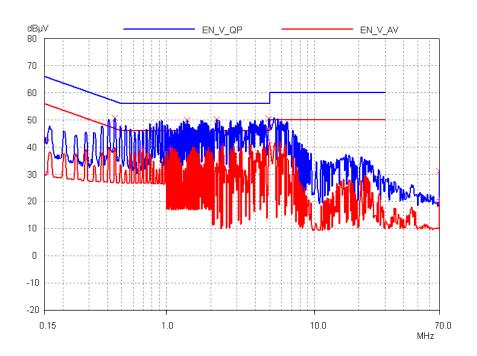


Figure 25 – Conducted EMI, V_{IN} = 230 VAC, 60 Hz Line, 250mA Load

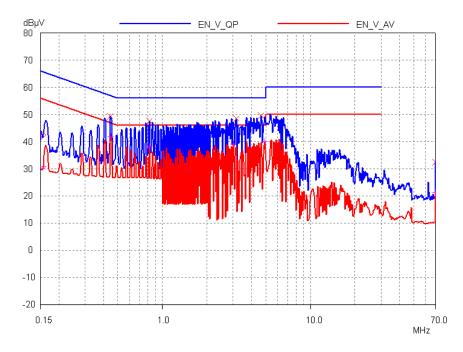


Figure 26 – Conducted EMI, V_{IN} = 230 VAC, 60 Hz Line, 250mA Load

12 Revision History

Date	Author	Revision	Description & changes	Reviewed
April 20, 2005	RSP/EC	1.0	Initial release	KM / AM

For the latest updates, visit our Web site: www.powerint.com

Power Integrations may make changes to its products at any time. Power Integrations has no liability arising from your use of any information, device or circuit described herein nor does it convey any license under its patent rights or the rights of others. POWER INTEGRATIONS MAKES NO WARRANTIES HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

PATENT INFORMATION

The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com.

The PI Logo, **TOPSwitch, TinySwitch**, **LinkSwitch**, and **EcoSmart** are registered trademarks of Power Integrations. **PI Expert** and **DPA-Switch** are trademarks of Power Integrations. © Copyright 2004, Power Integrations.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue, San Jose, CA 95138, USA Main: +1-408-414-9200

Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765

e-mail:

usasales @powerint.com

CHINA (SHANGHAI)

Rm 807, Pacheer, Commercial Centre, 555 Nanjing West Road, Shanghai, 200041, China Phone: +86-21-6215-5548 Fax: +86-21-6215-2468

e-mail: chinasales@powerint.com

CHINA (SHENZHEN)

Rm# 1705, Bao Hua Bldg. 1016 Hua Qiang Bei Lu, Shenzhen, Guangdong, 518031. China

Phone: +86-755-8367-5143 Fax: +86-755-8377-9610

e-mail:

chinasales @powerint.com

APPLICATIONS HOTLINE

World Wide +1-408-414-9660

GERMANY

Rueckertstrasse 3, D-80336, Munich, Germany Phone: +49-895-527-3910 Fax: +49-895-527-3920

e-mail: eurosales @powerint.com

INDIA (TECHNICAL SUPPORT)

Innovatech
261/A, Ground Floor
7th Main, 17th Cross,
Sadashivanagar
Bangalore, India, 560080
Phone: +91-80-5113-8020
Fax: +91-80-5113-8023
e-mail: indiasales @powerint.com

ITALY

Via Vittorio Veneto 12, Bresso, Milano, 20091, Italy

Phone: +39-028-928-6001

Fax: +39-028-928-6009 e-mail: eurosales @powerint.com

APPLICATIONS FAX

World Wide +1-408-414-9760

JAPAN

Keihin-Tatemono 1st Bldg. 12-20 Shin-Yokohama, 2-Chome,

Kohoku-ku, Yokohama-shi, Kanagawa 222-0033, Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717

Fax: +81-45-471 e-mail

e-mail:

japansales @powerint.com

KOREA

8th Floor, DongSung Bldg. 17-8 Yoido-dong, Youngdeungpo-gu, Seoul, 150-874, Korea Phone: +82-2-782-2840 Fax: +82-2-782-4427 e-mail:

koreasales @powerint.com

SINGAPORE

51 Newton Road, #15-08/10 Goldhill Plaza, Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 e-mail:

singaporesales @powerint.co

m

TAIWAN

17F-3, No. 510, Chung Hsiao E. Rd., Sec. 5, Taipei, Taiwan 110, R.O.C. Phone: +886-2-2727-1221 Fax: +886-2-2727-1223 e-mail:

taiwansales @powerint.com

UK (EUROPE & AFRICA HEADQUARTERS)

1st Floor, St. James's House East Street Farnham, Surrey GU9 7TJ

United Kingdom

Phone: +44-1252-730-140 Fax: +44-1252-727-689 e-mail: eurosales @powerint.com

