

Design Example Report

Title	16W Low Profile Adapter Supply using TOP245P			
Specification	Input: 90 – 265 VAC Output: 5.25V / 3A			
Application	Video Game			
Author	Power Integrations Applications Department			
Document Number	DER-37			
Date	April 27, 2004			
Revision	1.0			

Summary and Features

A TOP245P is used to create a low profile video game adapter that features the following:

- Very low no-load consumption of <100mW @ 230 VAC
- Low parts count / Low cost
- Low profile, high power density
- EMI has 10 dB margin even with output grounded
- No Safety X-cap needed
- Meets thermal requirements at 45°C ambient with good margin
- No heatsinks
- >80% Efficiency even at high temp
- Tight Built-in Over Power Protection (no need for OCP)
- < 50uA Safety leakage current

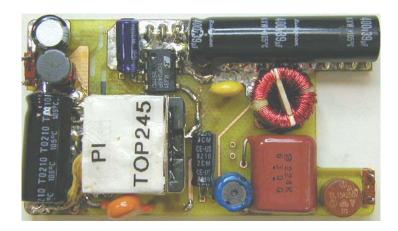
The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com.

Table Of Contents Introduction......4 2 Power Supply Specification5 3 Circuit Description7 4.1 4.2 Output Rectification......7 4.3 Output Feedback......7 5 PCB Layout9 Transformer Specification......11 7.1 Electrical Diagram11 7.2 Electrical Specifications......11 7.3 Materials......12 Transformer Build Diagram13 7.4 7.4.1 SHLD Build diagram......13 7.5 Transformer Construction......14 8.1 Electrical Diagram15 8.2 Electrical Specifications......15 8.3 Materials......15 8.4 Common Mode Choke Build Diagram......16 9 Transformer Spreadsheets......17 10 10.1 10.2 10.3 10.4 10.5 11 Thermal measurements at max ambient......21 11.1 11.2 12 12.1 12.2 Output Voltage Start-up Profile22 12.3 12.4 Output Ripple Measurements......24 Ripple Measurement Technique24 12.5.1 Measurement Results25 13 13.1 115 VAC Maximum Load26

14 Cond	lucted EMI	27
	0Vac	
14.1.1	Output grounded	27
14.1.2	Output floating	28
14.2 11	5Vac	29
14.2.1	Output grounded	29
	Output floating	
15 Revis	sion History	31

Important Note:

Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.


Design Reports contain a power supply design specification, schematic, bill of materials, and transformer documentation. Performance data and typical operation characteristics are included. Typically only a single prototype has been built.

Introduction

This document is an engineering report describing a prototype16W power supply utilizing a TOP245P. This power supply is designed for a sealed adapter supply.

This design is low cost, low parts count and meets EMI with no X-cap. It meets thermal requirements with no heatsink in either primary or secondary side.

The document contains the power supply specification, schematic, bill of materials, transformer documentation, printed circuit layout, and performance data.

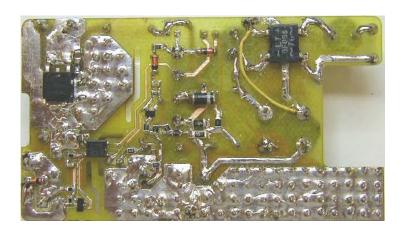


Figure 1 – Populated Circuit Board Photograph. Component side (Top) and Solder side (Bottom).

Note an additional wire jumper was required on this prototype layout as shown above.

Power Supply Specification

Description	Symbol	Min	Тур	Max	Units	Comment
Input						
Voltage	V_{IN}	90		265	VAC	2 Wire – Output ground connected to P.E.
Frequency	f _{LINE}	47	50/60	64	Hz	
No-load Input Power (230 VAC)				0.1	W	
Output						
Output Voltage 1	V_{OUT1}		5.25		V	± 5%
Output Ripple Voltage 1	$V_{RIPPLE1}$			50	mV	20 MHz bandwidth
Output Current 1	I_{OUT1}			3	Α	
Total Output Power						
Continuous Output Power	P _{OUT}			15.75	W	
Over Power protection	P _{OUT_PEAK}	20		24	W	Auto-restart
Over Voltage Protection				6.8	V	Zener on output
Efficiency	η	80			%	Measured at the board O/P
Environmental						terminals, P _{OUT} (15.75 W), 25 °C
Conducted EMI			ts CISPR2		-	
Safety		Designed to meet IEC950, UL1950 Class II				
Ambient Temperature	T _{AMB}	0		45	°C	Free convection, sea level

3 Schematic

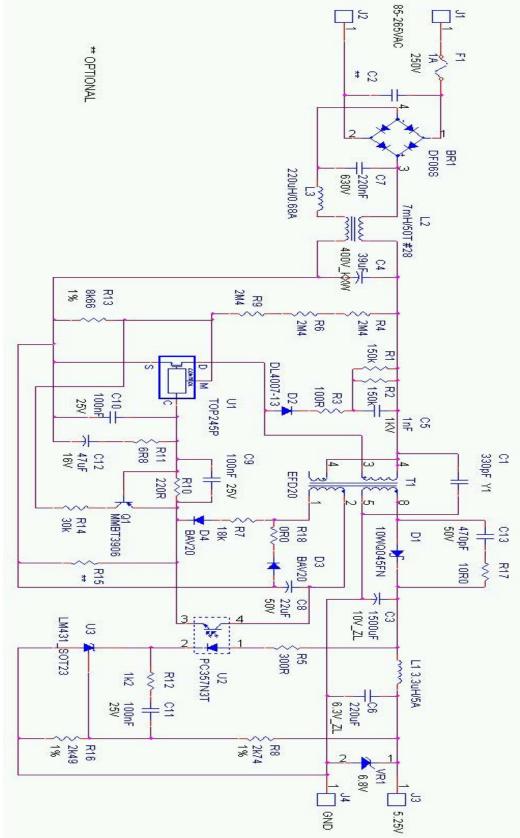


Figure 2 – Schematic.

4 Circuit Description

The schematic in Figure 2 shows an off-line flyback converter using the TOP245P. The circuit is designed for 90 VAC to 265 VAC input and provides an isolated 5.25V, 3A continuous output.

To provide <100m W no-load consumption at 230 VAC, a frequency reduction circuit is implemented using the X pin feature of the TOPSwitch-GX. More details of this operation provided below.

4.1 Input EMI Filtering

Conducted EMI filtering is provided by pi formed filter C4, C7, L2, & L3. The switching frequency jitter feature of the TOPSwitch-GX family allows the use of a small, low cost common mode choke for L2.

To keep the peak DRAIN voltage acceptably below the BV_{DSS} (700V) of U1, diode D2, C5 and R1&R2 form a primary clamp. This network clamps the voltage spike seen on the DRAIN due to primary and secondary reflected leakage inductance. Diode D3 and capacitor C8 provide rectified and filtered bias supply for U1.

4.2 Output Rectification

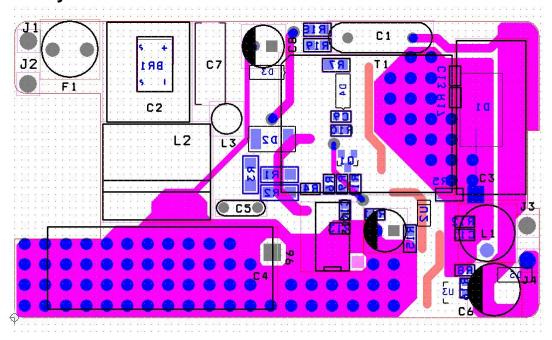
The secondary of T1 is rectified and filtered by D1, & C3. Post filter choke L1 and C6 provide additional high frequency filtering and help suppress high frequency EMI.

4.3 Output Feedback

DC feedback to the output voltage regulator error amplifier (U3) comes from a divider network R8 and R16. The center point is tied to the 2.5 V REF pin of U2. Capacitor C11 and resistor R12 roll off the high frequency gain of U3 while R5 sets the overall gain.

In a typical TOPSwitch-GX design, regulation of the output is normally provided by voltage mode PWM control. The current into the CONTROL pin sets the duty cycle of the internal MOSFET. The duty cycle control operates over a CONTROL pin current of 2mA to 6mA. Current below this level is used to supply power to the IC.

In this design the control is accomplished by employing the externally programmable current limit function of the TOPSwitch-GX family, which is the X pin. This allows the TOPSwitch-GX to operate at lower frequency in order to further improve light load efficiency.


The CONTROL pin requires 2 mA to power the internal circuitry of the chip. Any current beyond that normally would be shunted, and commands the duty cycle to reduce. With 2 mA of current the duty cycle is set to maximum.

Feedback current above ~2mA forward biases Q1 through R10 and pulls up R13 via R14. The X pin looks like a 1.2V voltage source. The current it is sourcing determines the output MOSFET peak current limit. As current decreases, the peak current limit is reduced from maximum (when X-pin current is 170 uA), down to a minimum of 40% of nominal peak current limit (when X-pin is at 30 uA). Therefore, as the feedback current increases, the sink current decreases and the primary current limit reduces, thereby allowing the output voltage feedback loop to control the primary peak current. Resistor R14 sets the peak current limit (startup and overload). Any feedback current above 2 mA engages the X pin control, the current into the CONTROL pin is limited to this level and therefore, the PWM function of the CONTROL pin does not determine the duty cycle.

As the load is reduced, the primary current limit reduces until it reaches 40% of peak current limit. At this point, another X-pin function is activated. The remote ON/OFF (inhibit) threshold is reached at an X pin sink current of approximately 27 μA. The supply then operates with fixed 25% current limit, but with a variable off-time, resulting in a variable switching frequency. To maintain regulation, as the load is further reduced, the frequency reduces. This greatly reduces switching losses, maintaining high standby efficiency and low no-load power consumption.

Slope compensation is provided by a ramp signal generated from the bias winding via D4, R7 and C9. C9 also serves as a high frequency roll off filter.

5 **PCB Layout**

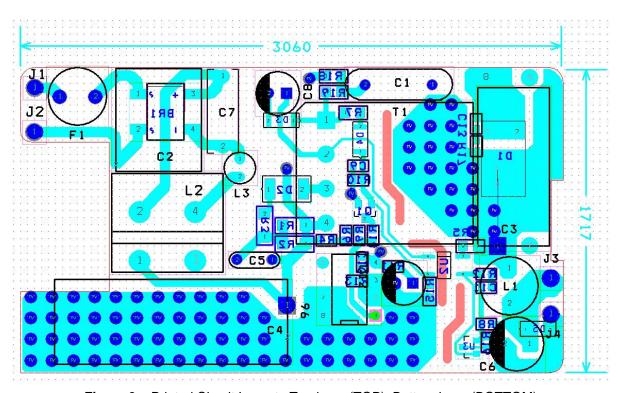


Figure 3 – Printed Circuit Layout. Top layer (TOP), Bottom layer (BOTTOM)

Note: Some rework was done on the actual sample board as shown in the photos above

Bill Of Materials

			alciiais	la	l	1
ltem		Part Reference		Description	Mfg Part Number	Mfg
1		BR1	DF06S	Bridge Rectifier, 600v, 1A, SMD	DF06S	Gen. Semi.
2		C1	330pF	Cap,Cer,330pF,Y1, 250Vac	440LT330	Panasonic
3		C2	**	optional		
4		C3	1500uF	Cap,Al Elect,1500uF,10V,10mmX25mm,ZL Series,Rubycon	10ZL1500M10X25	Rubycon
5		C4	39uF	Cap,Al Elect,39uF,400V,10mmX40mm,KXW Series, Rubycon	400KXVV39M10X40	Rubycon
6	1	C5	1nF	Cap,Cer,1000pF, 1000V, 10%	NCD102K1KVY5F	NIC Components Corp
7	1	C6	220uF	Cap,Al Elect,220uF, 6.3V, 8mmX7mm, ZL series Rubycon	6.3ZL220M8x7	Rubycon
- 8		C7	220nF	Cap,Metal Poly ,0.22uF, 630V, 10%	ECQ-E63224KF	Panasonic
9	1	C8	22uF	Cap,Al Elect,22uF,50V,5mmX11mm,KZE Series,NIPPON CHEMI-CON	KZE50VB22RME11LL	Nippon Chemi-Con
10	1	C12	47uF	Cap,Al Elect,47uF,16V,5mmX11.5mm,LXZ Series,NIPPON CHEMI-CON	LXZ16VB47RME11LL	Nippon Chemi-Con
11	3	C9 C10 C11	100nF	CAP 0.1uF 25V CERM CHIP X7R 0805 SMD	ECU-V1H221KBN	Panasonic
12	1	C13	470pF	CAP 470pF 50V CERM CHIP X7R 0805 SMD	ECJ-1VC1H471J	Panasonic
13	1	D1	10WQ045FN	Schottky 45V, 10A D-PAK	10WQ045FN	IR .
14	1	D2	DL4007-13	RECT,DL4007-13 PASSIVATED 1A 1000V SMD MELF	DL4007-13	Diodes Inc
15	2	D3 D4	BAV20	RECT,BAV20, 500mW 200V SMD MELF	BAV20	Diode Inc.
16	1	F1	1A	FUSE T-LAG 1A, 250V SIo-BIo IEC SHORT TR5	3,721,100,041	Wickman
17	4	J1 J2 J3 J4	TERM_1Pin22AWG	Terminal,1Pin,22AWG		
18	1	L1	3.3uH/5A	Inductor,3.3uH,5A 22AWG	custom	
19	1	L2	7mH/50T #28	custom (see spec)	custom	
20	1	L3	220uH/0.68A	CHOKE,220uH, 0.68A Barrel	SBC3-221-681	TOKIN
21	1	Q1	MMBT3906	TRANSISTOR,2N3906, PNP 40V SOT-323	MMBT3606	Diode Inc.
22	2	R1 R2	150k	Res,150K 1/8W 1% 1206 SMD	ERJ-8ENF1503V	Panasonic
23	1	R3	100R	Res,100 1/8W 5% 1206 SMD	ERJ-8GEYJ101V	Panasonic
24	3	R4 R6 R9	2M4	Res,2.4M 1/10W 5% 0805 SMD	ERJ-6GEYJ245V	Panasonic
25	1	R5	300R	Res,300 1/16W 5% 0603 SMD	ERJ-3GEYJ301V	Panasonic
26	1	R7	18k	Res,18K 1/16W 5% 0603 SMD	ERJ-3GEYJ183V	Panasonic
27	1	R8	2k74	Res,2.74K 1/16W 1% 0603 SMD	ERJ-3EKF2741V	Panasonic
28	1	R10	220R	Res,220 1/16W 5% 0603 SMD	ERJ-3GEYJ221V	Panasonic
29	1	R11	6R8	Res,6.8 1/16W 5% 0603 SMD	ERJ-3GEYJ6R8V	Panasonic
30	1	R12	1k2	Res,1.2K 1/16W 5% 0603 SMD	ERJ-3GEYJ122V	Panasonic
31	1	R13	8k66	Res,8.66K 1/16W 1% 0603 SMD	ERJ-3EKF8661V	Panasonic
32	1	R14	30k	Res,15K 1/10W 5% 0805 SMD	ERJ-6GEYJ153V	Panasonic
33	1	R15	**	optional		
34	1	R16	2k49	Res,2.49K 1/16W 1% 0603 SMD	ERJ-3EKF2491V	Panasonic
35		R17	10R0	Res,10.0 1/16W 1% 0603 SMD	ERJ-3EKF10R0V	Panasonic
36		R18	ORO .	Res,0 1/16W 1% 0603 SMD	ERJ-3EKFOROV	Panasonic
37		T1	EFD20	custom (see spec)	custom	
38	_	U1	TOP245P	IC,TOP245P,INT. OFF-LINE SWITCHER,DIP-8B	TOP246P	Power Int.
39		U2	PC357N3T	·	PC357N3T	Sharp
40		U3	LM431 SOT23	Shunt regulator 2.5V LM431 SOT23	LM431 SOT23	Generic
41		VR1	ZMM535B	Diode, Zener, 6.8V, 1/2W, 5%, DO-35	ZMM535B	Siemens

7 Transformer Specification

7.1 Electrical Diagram

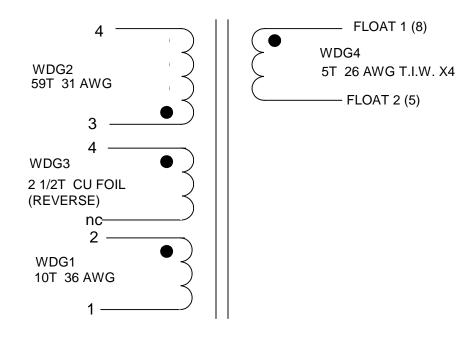


Figure 4 - Transformer Electrical Diagram

7.2 Electrical Specifications

Electrical Strength	1 second, 60 Hz, from Pins 1-4 to Pins FLOAT 1-2	3000 VAC
Primary Inductance	Pins 3-4, all other windings open, measured at 100 kHz, 0.4 VRMS	750 μH, -0/+20%
Resonant Frequency	Pins 3-4, all other windings open	1000 kHz (Min.)
Primary Leakage Inductance	Pins 3-4, with Pins FLOAT 1&2 shorted, measured at 100 kHz, 0.4 VRMS	15 μH (Max.)

7.3 Materials

Item	Description
[1]	Core: EFD20 AND GAPPED ALG 211nH/T2
[2]	Bobbin: BEFD20 8 PIN HORIZONTAL; EPCOS P/N B66418-B1008-D1
[3]	Magnet Wire: 36 AWG
[4]	Magnet Wire: 31 AWG
[5]	Triple Insulated Wire: 26 AWG
[6]	Copper Tape: 1mil 12.2mm WIDE X 95mm LONG
[7]	Tape: 3M 1298 Polyester Film, 13.7mm wide
[8]	Tape: 3M 1298 Polyester Film, 16.5mm wide
[9]	Jumper wire: 30 AWG
[10]	Varnish

Transformer Build Diagram 7.4

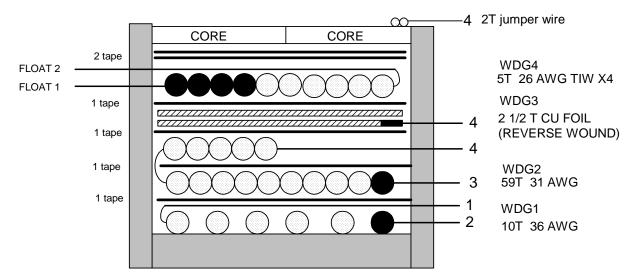


Figure 5 – Transformer Build Diagram.

7.4.1 SHLD Build diagram

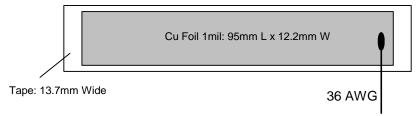


Figure 6 - Copper shield Build Diagram.

7.5 Transformer Construction

Bobbin Preparation	Pull Pin 6&7 on bobbin [2] to provide polarization. Position bobbin in the	
2000	winding machine such that pins 1-4 are on the right side	
WDG1: Vbias	Start at Pin 2. Wind 10 turns of 36 AWG wire in 1 layer. Spread turns	
WDG1. Vbias	evenly across the bobbin. Finish on Pin1.	
Basic Insulation	Basic Insulation Use one layer of 13.7mm tape for basic insulation.	
WDG2: Primary	Start at Pin 3. Wind 46 turns of 31 AWG wire in 1 layer. Avoid	
1 st layer	overlapping turns.	
Basic Insulation	Use one layer of 13.7mm tape for basic insulation.	
WDG2: Primary	Continue winding 13 turns of 31 AWG wire in the second layer. Do not	
2nd layer	spread the turns. Finish on Pin 4	
Basic Insulation Use one layer of 13.7mm tape for basic insulation.		
WDG3: SHLD	Use prepared copper shield shown in Figure 6. Start at Pin 4, wind 2 ½	
WDG3. SHED	turns in reverse direction.	
Basic Insulation Use one layer of 13.7mm tape for basic insulation.		
WDG4: SEC	Start at pin 8 temporarily. Starting from the topside of the bobbin wind 5	
WDG4. SEC	turns of quadfilar 26 AWG TIW. Finish on pin 5 temporarily.	
Basic Insulation	Use two layers of 13.7mm tape for basic insulation.	
	Pull out pins 8 and 5, and let the secondary leads to float, mark the start	
	lead.	
Core Assembly	Insert gapped cores into the bobbin and glue them together	
Core Wrap	Wrap the secondary side of the core with two layers of 16.5mm tape as	
Core Wrap	shown in Figure 7 and Figure 8	
Varnish	Dip varnish the finished transformer	

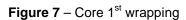


Figure 8 – Core 2nd wrapping

8 Common Mode Choke

8.1 Electrical Diagram

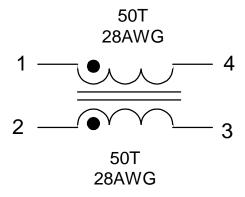


Figure 9 – Common Mode Choke Electrical Diagram

8.2 Electrical Specifications

Inductance	Pins 1-4, all other windings open, measured at 10kHz, 0.4 VRMS	7 mH, -0/+20%
Resonant Frequency	Pins 1-4, all other windings open	300 kHz (Min.)

8.3 Materials

Item	Description
[1]	Core: Ferrite Toroid P/N 5975001121 (Fair-Rite) (Distributor Lodestone Pacific USA Tel# (714) 970-0900)
[2]	Magnet Wire: 28 AWG
[3]	Varnish

8.4 Common Mode Choke Build Diagram

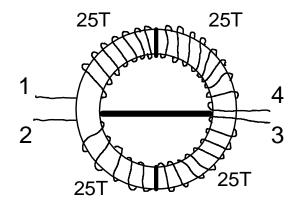
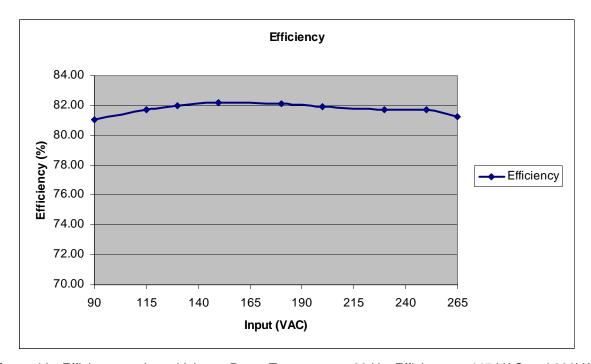


Figure 10 – Common Mode Choke Build Diagram.

Transformer Spreadsheets


	Jioaa	01100			
ACDC_TOPGX_Rev1.2_052901 Copyright Power Integrations Inc. 2001 ENTER APPLICATION VARIABLES	INPUT	INFO	OUTPUT	UNIT	TOP_GX_052901.xls: TOPSwitch-GX Continuous/Discontinuous Flyback Transformer Design Spreadsheet Customer
VACMIN	85			Volts	Minimum AC Input Voltage
VACMAX	265			Volts	Maximum AC Input Voltage
fL	50			Hertz	AC Mains Frequency
VO	5.25			Volts	Output Voltage
PO	15.75			Watts	Output Power
n	0.81				Efficiency Estimate
Z	0.5				Loss Allocation Factor
tC	15 3			Volts	Bias Voltage Bridge Rectifier Conduction Time Estimate
CIN	39			uFarads	Input Filter Capacitor
ENTER TOPSWITCH-GX VARIABLE				/ /ni .nnn/	77.E. On who (m. el. (2) 2731 /
Chosen Device	top245	TOF245	Fawer Out	Universal	115 Daubled/230V 100W
KI	0.45	7 67 2 75	7 20920 2001	6.6799	External Ilimit reduction factor (KI=1.0 for default ILIMIT, KI <1.0 for lower ILIMIT
ILIMITMIN			0.729	Amps	Use 1% resistor in setting external ILIMIT
ILIMITMAX			0.897	Amps	Use 1% resistor in setting external ILIMIT
Frequency - (F)=132kHz, (H)=66kHz			× 225 25		Full (F) frequency option - 132kHz
fS fSmin	132000		1.32E+05 1.24E+05		TOPSwitch-GX Switching Frequency: Choose between 132 kHz and 66 kHz TOPSwitch-GX Minimum Switching Frequency
fSmax			1.40E+05		TOPSwitch-GX Maximum Switching Frequency
VOR	70		7.702 00	Volts	Reflected Output Voltage
VDS	10			Volts	TOPSwitch on-state Drain to Source Voltage
VD	0.7			Volts	Output Winding Diode Forward Voltage Drop
VDB	0.7			Volts	Bias Winding Diode Forward Voltage Drop
KP	0.61				Ripple to Peak Current Ratio (0.4 < KRP < 1.0 : 1.0 < KDP < 6.0)
ENTER TRANSFORMER CORE/CO	NSTRUC efd20				
Core		EFD20		P/N:	EFD20-3F3
Babbin	EFD2	O_BOBBIN		P/N:	CSH-EFD20-1S-8P
AE				cm^2	Core Effective Cross Sectional Area
LE				cm	Core Effective Path Length
AL				nH/T^2	Ungapped Core Effective Inductance
M BW	0		13.2	mm	Bobbin Physical Winding Width Safety Margin Width (Half the Primary to Secondary Creepage Distance)
L	1.5			mm	Number of Primary Layers
NS	5				Number of Secondary Turns
DO INDUITIVOLETADE DADAMETER					
DC INPUT VOLTAGE PARAMETER	15		90	Volts	Minimum DC Input Voltage
VMAX				Volts	Maximum DC Input Voltage
CURRENT WAVEFORM SHAPE PA	RAMETER				
DMAX			0.48		Maximum Duty Cycle
IAVG				Amps	Average Primary Current
IP IR				Amps Amps	Peak Primary Current Primary Ripple Current
IRMS				Amps	Primary RMS Current
TRANSFORMER PRIMARY DESIGN	N PARAM				
LP			730	uHenries	Primary Inductance
NP			59		Primary Winding Number of Turns
NB			13		Bias Winding Number of Turns
ALG				nH/T^2	Gapped Core Effective Inductance
BM BP				Gauss Gauss	Maximum Flux Density at PO, VMIN (BM<3000) Peak Flux Density (BP<4200)
BAC				Gauss	AC Flux Density for Core Loss Curves (0.5 X Peak to Peak)
ur			1448		Relative Permeability of Ungapped Core
LG			0.15		Gap Length (Lg > 0.1 mm)
BWE			19.8	mm	Effective Bobbin Width
OD				mm	Maximum Primary Wire Diameter including insulation
INS				mm	Estimated Total Insulation Thickness (= 2*film thickness)
DIA				mm	Bare conductor diameter
AWG CM				AWG Cmils	Primary Wire Gauge (Rounded to next smaller standard AWG value) Bare conductor effective area in circular mils
CMA				Cmils/Amp	
TRANSFORMER SECONDARY DE Lumped parameters	SIGN PAR				
ISP ISRMS				Amps Amps	Peak Secondary Current Secondary RMS Current
IO				Amps	Secondary RMS Current Power Supply Output Current
IRIPPLE				Amps	Output Capacitor RMS Ripple Current
CMS				Cmils	Secondary Bare Conductor minimum circular mils
AWGS			20	AWG	Secondary Wire Gauge (Rounded up to next larger standard AWG value)
DIAS				mm	Secondary Minimum Bare Conductor Diameter
ODS				mm	Secondary Maximum Outside Diameter for Triple Insulated Wire
INSS			0.91	mm	Maximum Secondary Insulation Wall Thickness
VOLTAGE STRESS PARAMETERS					
VDRAIN				Volts	Maximum Drain Voltage Estimate (Includes Effect of Leakage Inductance)
PIVS PIVB				Volts Volts	Output Rectifier Maximum Peak Inverse Voltage Bias Rectifier Maximum Peak Inverse Voltage
1.17.0				1.01(9	DIGG F COMING MICKINGTH CAN INVESSE YORAYE

10 Performance Data

All measurements performed at room temperature, 60 Hz input frequency.

10.1 Efficiency

Efficiency was measured at the output terminals of the board (no cables).

Figure 11 - Efficiency vs. Input Voltage, Room Temperature, 60 Hz. Efficiency at 115 VAC and 230VAC were 81.7 % and 81.8% respectively.

10.2 No-load Input Power

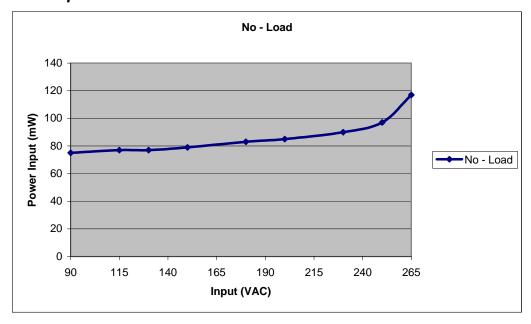


Figure 12 - Zero Load Input Power vs. Input Line Voltage, Room Temperature, 60 Hz. No load input power at 230V was 90mW

10.3 Regulation

10.3.1 Load



Figure 13 – Load Regulation, Room Temperature.

10.3.2 Line

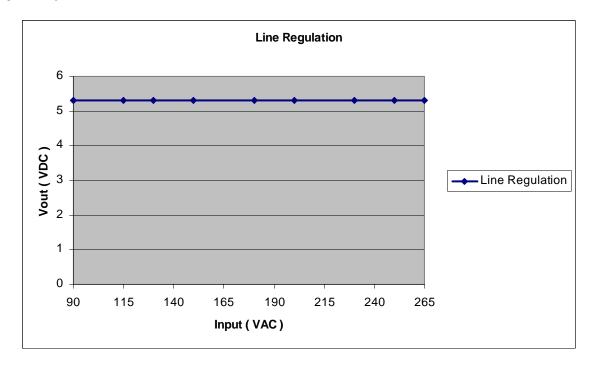


Figure 14 – Line Regulation, Room Temperature, Full Load.

10.4 Over Power Protection

	90VAC	115VAC	230VAC	265VAC
Output Current before Autorestart	3.9A	4.1A	4.4A	4.4A
VOUT	5.31 VDC	5.31 VDC	5.31 VDC	5.31 VDC
Output Power before Auto-restart	20.7 W	21.7 W	23.3 W	23.3 W

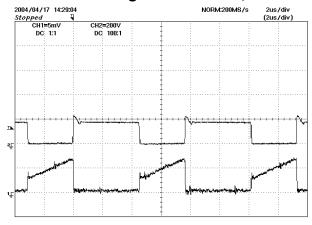
10.5 Leakage Current

The leakage current measured at 230VAC was 47uA.

11 Thermal Performance

11.1 Thermal measurements at max ambient

The power supply was placed inside a mock-up plastic case of the specified dimensions. The case was placed inside a large closed carton box, and the carton was placed in an oven. The carton box was to prevent airflow on the unit under test. The ambient temperature was monitored inside the carton. The internal temperatures stabilized after 1 hour of continuous full load operation.

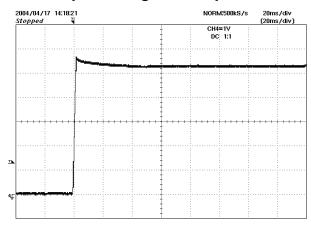

Temperature (°C)						
Item 90 VAC 265VAC						
External Ambient	45	45				
Bridge (BR1)	84	74				
Transformer (T1)	81	87				
Rectifier (D1)	120	122				
TOP245P (U1)	110	112				

11.2 Thermal margin test

As a test of thermal margin, the unit was operated at 10° above max rated external ambient, or 55°C. The unit did not go into thermal shutdown. This implies plenty of thermal margin.

12 Waveforms

12.1 Drain Voltage and Current, Normal Operation



2004/04/17 14:29:50 NORM:200MS/s 2us/div Stopped CH1=5mV (2us/div) CH2=200V DC 1:1 DC 100:1

Figure 15 – 90 VAC, Full Load. Upper: V_{DRAIN} , 200 V, 2 μs / div Lower: I_{DRAIN}, 0.5 A / div

Figure 16 - 265 VAC, Full Load Upper: V_{DRAIN} , 200 V / div Lower: I_{DRAIN}, 0.5 A / div

12.2 Output Voltage Start-up Profile

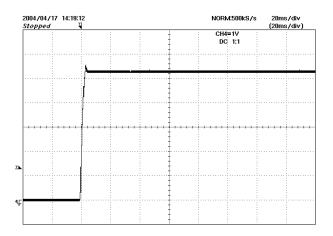
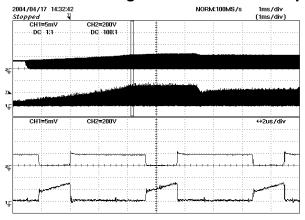
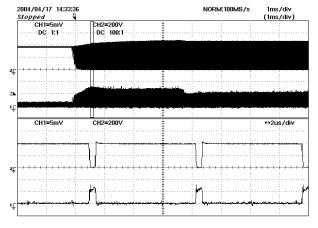
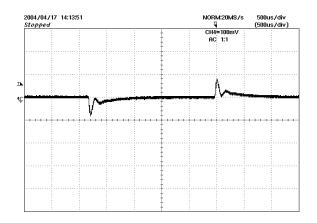



Figure 17 - Start-up Profile, NO LOAD 230VAC 1 V, 20 ms / div.

Figure 18 - Start-up Profile, FULL LOAD 230 VAC 1 V, 20 ms / div.

12.3 Drain Voltage and Current Start-up Profile

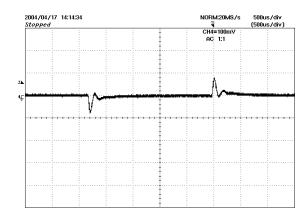

Figure 19 - 90 VAC Input and Maximum Load. Upper: V_{DRAIN}, 200 V & 1 ms / div. Lower: I_{DRAIN}, 0.5 A / div.

Figure 20 - 265 VAC Input and Maximum Load. Upper: V_{DRAIN}, 200 V & 1 ms / div. Lower: I_{DRAIN}, 0.5 A / div.

12.4 Load Transient Response (75% to 100% Load Step)

In the figures shown below, signal averaging was used to better enable viewing the load transient response. The oscilloscope was triggered using the load current step as a trigger source. Since the output switching and line frequency occur essentially at random with respect to the load transient, contributions to the output ripple from these sources will average out, leaving the contribution only from the load step response.

Figure 21 – Transient Response, 115 VAC, 75-100-75% Load Step.

Waveform: Output Voltage 100 mV, 500 μs / div.

Figure 22 – Transient Response, 230 VAC, 75-100-75% Load Step

Waveform: Output Voltage 100 mV, 500uS / div.

12.5 Output Ripple Measurements

12.5.1 Ripple Measurement Technique

For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pickup. Details of the probe modification are provided in Figure 23 and Figure 24.

The 5125BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) 0.1 μ F/50 V ceramic type and one (1) 1.0 μ F/50 V aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below).

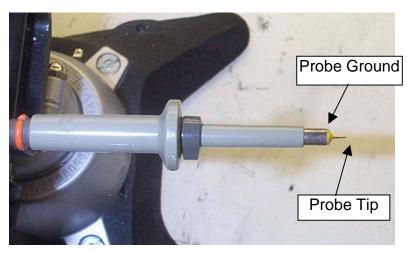
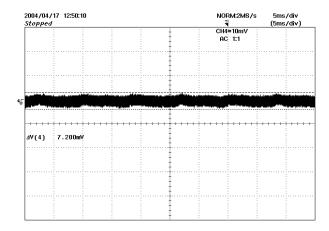



Figure 23 - Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed)

Figure 24 - Oscilloscope Probe with Probe Master 5125BA BNC Adapter. (Modified with wires for probe ground for ripple measurement, and two parallel decoupling capacitors added)

12.5.2 Measurement Results

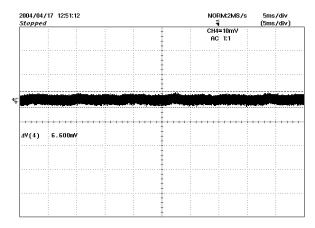


Figure 25 – 5V Ripple, 90 VAC, Full Load. 5 ms, 10 mV / div

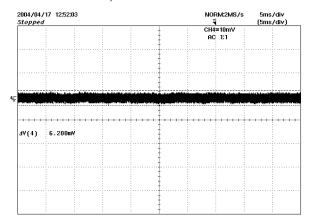


Figure 26 - 5 V Ripple, 115 VAC, Full Load. 5 ms, 10 mV / div

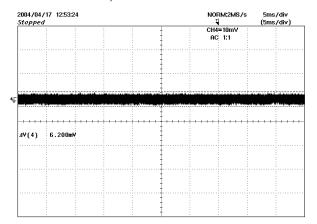


Figure 27 – 5V Ripple, 230 VAC, Full Load. 5 ms, 10 mV /div

Figure 28 – 5V Ripple, 265 VAC, Full Load. 5 ms, 10 mV /div

13 Control Loop Measurements

13.1 115 VAC Maximum Load

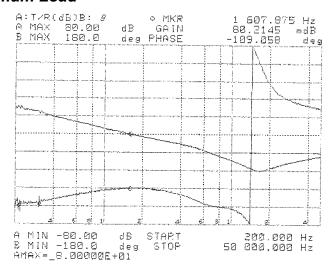


Figure 29 - Gain-Phase Plot, 115 VAC, Maximum Steady State Load Vertical Scale: Gain = 16 dB/div, Phase = 36 °/div.

Crossover Frequency = 1.6 kHz Phase Margin = 71°

13.2 230 VAC Maximum Load

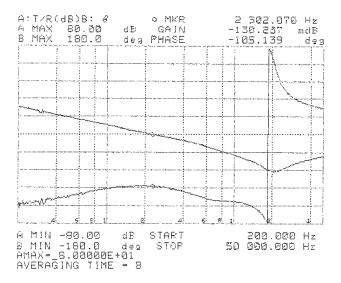


Figure 30 - Gain-Phase Plot, 230 VAC, Maximum Steady State Load Vertical Scale: Gain = 16 dB/div, Phase = 36 °/div.

Crossover Frequency = 2.3 KHz, Phase Margin = 75°

14 Conducted EMI

EMI was tested at room temperature, at 115 VAC & 230 VAC input, with a resistor load of 2 ohms at the end of a 1.5 meter cable. Scans are shown for both cases, with and without a ground wire connecting the load to the LISN's Protective Earth (PE) jack.

14.1 230Vac

14.1.1 Output grounded

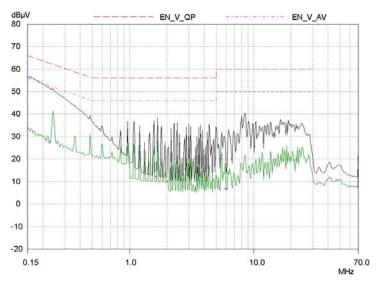


Figure 31 - NEUTRAL Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz, and EN55022 B Limits. With the LISN's PE connected to secondary ground.

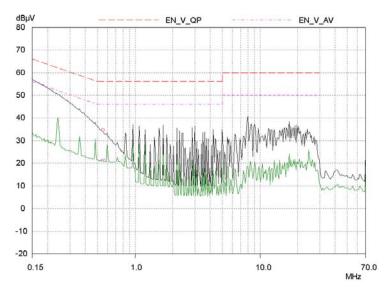


Figure 32 - LINE Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz, and EN55022 B Limits. With the LISN's PE connected to secondary ground.

14.1.2 Output floating

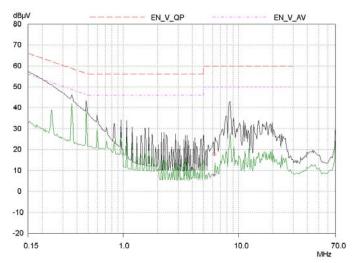


Figure 33 - NEUTRAL Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz, and EN55022 B Limits. Without the LISN's PE connection to secondary ground.

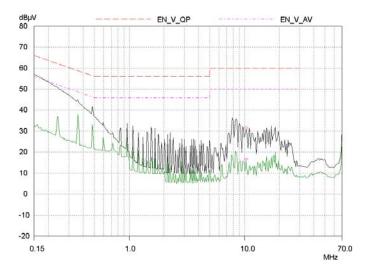


Figure 34 - LINE Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz, and EN55022 B Limits. Without the LISN's PE connection to secondary ground.

14.2 115Vac

14.2.1 Output grounded

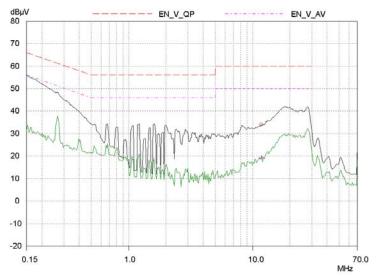


Figure 35 - NEUTRAL Conducted EMI, Maximum Steady State Load, 115 VAC, 60 Hz, and EN55022 B Limits. With the LISN's PE connected to secondary ground.

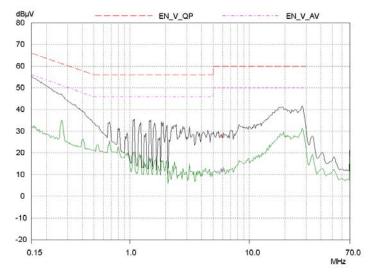


Figure 36 - LINE Conducted EMI, Maximum Steady State Load, 115 VAC, 60 Hz, and EN55022 B Limits. With the LISN's PE connected to secondary ground.

14.2.2 Output floating

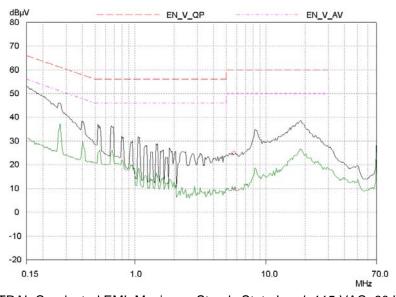


Figure 37 - NEUTRAL Conducted EMI, Maximum Steady State Load, 115 VAC, 60 Hz, and EN55022 B Limits. Without the LISN's PE connection to secondary ground.

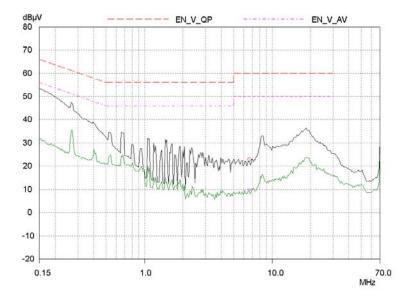


Figure 38 - LINE Conducted EMI, Maximum Steady State Load, 115 VAC, 60 Hz, and EN55022 B Limits. Without the LISN's PE connection to secondary ground.

15 Revision History

Date	Author	Revision	Description & changes	Reviewed
April 27, 2004	ME	1.0	Initial release	VC / AM

For the latest updates, visit our Web site: www.powerint.com

Power Integrations may make changes to its products at any time. Power Integrations has no liability arising from your use of any information, device or circuit described herein nor does it convey any license under its patent rights or the rights of others. POWER INTEGRATIONS MAKES NO WARRANTIES HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

PATENT INFORMATION

The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com.

The PI Logo, **TOPSwitch, TinySwitch**, **LinkSwitch**, and **EcoSmart** are registered trademarks of Power Integrations. PI Expert and DPA-Switch are trademarks of Power Integrations. © Copyright 2004, Power Integrations.

WORLD HEADQUARTERS

Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138, USA Main: +1-408-414-9200 **Customer Service:**

+1-408-414-9665 Phone: +1-408-414-9765 Fax: e-mail:

usasales@powerint.com

AMERICAS

Power Integrations, Inc. 4335 South Lee Street, Suite G,

Buford, GA 30518, USA Phone: +1-678-714-6033 Fax: +1-678-714-6012

e-mail:

usasales @powerint.com

CHINA (SHANGHAI)

CHINA (SHENZHEN)

Power Integrations International Holdings, Inc. Rm# 1705, Bao Hua Bldg. 1016 Hua Qiang Bei Lu, Shenzhen, Guangdong, 518031, China

+86-755-8367-5143 Phone: Fax: +86-755-8377-9610 e-mail: chinasales @powerint.com

GERMANY

Power Integrations, GmbH Rueckertstrasse 3. D-80336, Munich, Germany Phone: +49-895-527-3910 +49-895-527-3920 Fax: e-mail: eurosales @powerint.com

INDIA (TECHNICAL SUPPORT)

Power Integrations Innovatech International Holdings, Inc. 261/A, Ground Floor Rm 807, Pacheer, 7th Main, 17th Cross, Commercial Centre, Sadashivanagar Bangalore, India, 560080 555 Nanjing West Road, Shanghai, 200041, China Phone: +91-80-5113-8020 +86-21-6215-5548 Fax: Phone: +91-80-5113-8023 +86-21-6215-2468 Fax: e-mail: indiasales @powerint.com e-mail:

APPLICATIONS HOTLINE

chinasales @powerint.com

World Wide +1-408-414-9660 World Wide +1-408-414-9760

ER or EPR template - Rev 3.5 - Single sided

ITALY

Power Integrations s.r.l. Via Vittorio Veneto 12, Bresso, Milano, 20091, Italy Phone: +39-028-928-6001 Fax: +39-028-928-6009

e-mail:

eurosales @powerint.com

JAPAN

Power Integrations, K.K. Keihin-Tatemono 1st Bldg. 12-20 Shin-Yokohama, 2-Chome, Kohoku-ku, Yokohama-shi,

Kanagawa 222-0033, Japan Phone: +81-45-471-1021 +81-45-471-3717 Fax:

e-mail:

japansales@powerint.com

KOREA

Power Integrations International Holdings, Inc. 8th Floor, DongSung Bldg. 17-8 Yoido-dong, Youngdeungpo-gu, Seoul, 150-874, Korea +82-2-782-2840 Phone: Fax: +82-2-782-4427 e-mail·

koreasales @powerint.com

SINGAPORE (ASIA PACIFIC **HEADQUARTERS)**

Power Integrations, Singapore 51 Newton Road, #15-08/10 Goldhill Plaza, Singapore, 308900 +65-6358-2160 Phone:

+65-6358-2015 Fax:

e-mail:

singaporesales @powerint.com

TAIWAN

Power Integrations International Holdings, Inc. 17F-3, No. 510, Chung Hsiao E. Rd., Sec. 5, Taipei, Taiwan 110, R.O.C. Phone: +886-2-2727-1221 Fax: +886-2-2727-1223

taiwansales @powerint.com

UK (EUROPE & AFRICA **HEADQUARTERS)**

1st Floor, St. James's House East Street Farnham, Surrey GU9 7TJ

United Kingdom

+44-1252-730-140 Phone: Fax: +44-1252-727-689 e-mail: eurosales @powerint.com

APPLICATIONS FAX